2017年安徽省安庆市中考数学模拟试卷解析版
- 格式:doc
- 大小:486.00 KB
- 文档页数:25
2017年安徽省安庆市中考数学一模试卷一、选择题1.(3分)﹣的相反数等于()A.B.﹣ C.4 D.﹣42.(3分)下列式子计算的结果等于a6的是()A.a3+a3 B.a3•a2 C.a12÷a2D.(a2)33.(3分)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.(3分)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.(3分)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2 C.D.m2﹣4n26.(3分)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16 7.(3分)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A .110°B .115°C .120°D .125°8.(3分)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是( )A .90和87.5B .95和85C .90和85D .85和87.5 9.(3分)如图,点c 是⊙O 的直径AB 延长线上一点,CD 切⊙O 于点D ,DE 为⊙O的弦,若∠AED=60°,⊙O 的半径是2.则CD 的长( )A .4B .3C .D .10.(3分)如图,O 为坐标原点,四边彤OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .10B .9C .8D .6二、填空题11.(3分)的立方根是.12.(3分)方程+x=1的解为.13.(3分)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是.(把所有正确结论的序号都选上)三、解答题15.(6分)计算:﹣|1﹣|+(﹣)0.16.(8分)解不等式组:,并把它的解集在数轴上表示出来.17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.(8分)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(10分)如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.(10分)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.(12分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.(12分)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.(14分)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.2017年安徽省安庆市中考数学一模试卷参考答案与试题解析一、选择题1.(3分)(2008•青岛)﹣的相反数等于()A.B.﹣ C.4 D.﹣4【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.【点评】主要考查相反数的概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•安庆一模)下列式子计算的结果等于a6的是()A.a3+a3 B.a3•a2 C.a12÷a2D.(a2)3【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(3分)(2017•安庆一模)2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•农安县模拟)如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(3分)(2017•安庆一模)下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2 C.D.m2﹣4n2【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练利用公式法分解因式是解题关键.6.(3分)(2017•安庆一模)由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(3分)(2017•安庆一模)如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN 翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠ENC=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.【点评】本题考查了平行线的性质、翻折的性质,利用平行线的性质、翻折的性质是解题关键.8.(3分)(2017•安庆一模)弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.5【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.【点评】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)(2017•安庆一模)如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等边三角形的判定与性质.10.(3分)(2017•安庆一模)如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=S菱形OBCA=OB•AM=10.故选A.【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.二、填空题11.(3分)(2013•泉州)的立方根是.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.【点评】此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(3分)(2017•安庆一模)方程+x=1的解为x=1 .【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=1【点评】此题考查了解一元一次方程,解方程去分母时各项都要乘以各分母的最小公倍数.13.(3分)(2017•安庆一模)在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).【点评】本题考查了点的坐标,读懂题目信息,理解“影子点”的定义是解题的关键.14.(3分)(2017•安庆一模)如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是①②③④.(把所有正确结论的序号都选上)【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,AE=BE,于是得到;②S△AOE=S△OBE;OE:AC=:6;故②④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,∴S△AOE=S△OBE,故②正确;故选:①②③④.【点评】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△ABE是等边三角形,OE是△ABC的中位线是关键.三、解答题15.(6分)(2017•安庆一模)计算:﹣|1﹣|+(﹣)0.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.(8分)(2017•安庆一模)解不等式组:,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(8分)(2017•安庆一模)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A (1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.18.(8分)(2017•瑶海区三模)观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30 +1= 312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.19.(10分)(2017•安庆一模)如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt△GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)(2017•安庆一模)如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.【点评】本题主要考查待定系数法求函数解析式及抛物线与x轴的交点问题,设出点D坐标,表示出线段DE的长并熟练掌握二次函数的性质是解题的关键21.(12分)(2017•安庆一模)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2017•安庆一模)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:(180+75)÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(14分)(2017•安庆一模)如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,∴GI=AB=,S△DNG=KD•GI=×2×=.∵PD=x∴PK=2﹣x∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN,∴=()2=,即S△DPN=S△DKG=x2.同理,S△KPM=,S平行四边形PMGN=S△DKG﹣S△DPN﹣S△KPM=﹣x2﹣,则S△PMN=S平行四边形PMGN=﹣x2+x.(0<x<2).【点评】本题考查了平行四边形的判定与性质以及相似三角形的判定与性质,正确表示出△DNP和△PMK的面积是关键.。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是( )A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0。
16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为( )A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术"的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16 9.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= .五、(每题10分,共20分)19.(10分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.20.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD 交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.六、(本题满分12分)21.(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8乙 8 8 2.2丙 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)22.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?八、(本题满分14分)23.(14分)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(2017•安徽)的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)(2017•安徽)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a6,故选(A)【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(2017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.【分析】俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4分)(2017•安徽)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(2017•安徽)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(2017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000×=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.【点评】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(2017•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=16【分析】等量关系为:原价×(1﹣降价的百分率)2=现价,把相关数值代入即可.【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选D.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.(4分)(2017•安徽)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【分析】根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac 的图象.【解答】解:∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选:B.【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.10.(4分)(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()A. B. C.5 D.【分析】首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【解答】解:设△ABC中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故选D.【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.二、填空题(每题5分,共20分)11.(5分)(2017•安徽)27的立方根为 3 .【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.(5分)(2017•安徽)因式分解:a2b﹣4ab+4b= b(a﹣2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2﹣4a+4)=b(a﹣2)2,故答案为:b(a﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2017•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为π.【分析】连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.【解答】解:连接OD、OE,如图所示:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵OA=OD,OB=OE,∴△AOD、△BOE是等边三角形,∴∠AOD=∠BOE=60°,∴∠DOE=60°,∵OA=AB=3,∴的长==π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.14.(5分)(2017•安徽)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE 后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为40或cm.【分析】解直角三角形得到AB=10,∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=ABC=30°,BE=AB=10,求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解答】解:∵∠A=90°,∠C=30°,AC=30cm,∴AB=10,∠ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=ABC=30°,BE=AB=10,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=,∴平行四边形的周长=,如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40,综上所述:平行四边形的周长为40或,故答案为:40或.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.三、(每题8分,共16分)15.(8分)(2017•安徽)计算:|﹣2|×cos60°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.【解答】解:原式=2×﹣3=﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,正确化简各数是解题关键.16.(8分)(2017•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53,答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.四、(每题8分,共16分)17.(8分)(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D 处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD •sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.18.(8分)(2017•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF关于直线l对称的三角形.(3)填空:∠C+∠E= 45°.【分析】(1)将点A、B、C分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;(2)分别作出点D、E、F关于直线l的对称点,顺次连接即可得;(3)连接A′F′,利用勾股定理逆定理证△A′C′F′为等腰直角三角形即可得.【解答】解:(1)△A′B′C′即为所求;(2)△D′E′F′即为所求;(3)如图,连接A′F′,∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,∵A′C′==、A′F′==,C′F′==,∴A′C′2+A′F′2=5+5=10=C′F′2,∴△A′C′F′为等腰直角三角形,∴∠C+∠E=∠A′C′F′=45°,故答案为:45°.【点评】本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾股定理逆定理是解题的关键.五、(每题10分,共20分)19.(10分)(2017•安徽)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.【解答】解:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=(2n+1)×(1+2+3+…+n)=(2n+1)×,因此,12+22+32+…+n2=;故答案为:2n+1,,;【解决问题】原式==×(2017×2+1)=1345,故答案为:1345.【点评】本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,并运用规律解决实际问题是解题的关键.20.(10分)(2017•安徽)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.【分析】(1)根据圆周角定理得到∠B=∠E,得到∠E=∠D,根据平行线的判定和性质定理得到AE∥CD,证明结论;(2)作OM⊥BC于M,ON⊥CE于N,根据垂径定理、角平分线的判定定理证明.【解答】证明:(1)由圆周角定理得,∠B=∠E,又∠B=∠D,∴∠E=∠D,∵CE∥AD,∴∠D+∠ECD=180°,∴∠E+∠ECD=180°,∴AE∥CD,∴四边形AECD为平行四边形;(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.【点评】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.六、(本题满分12分)21.(12分)(2017•安徽)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲 8 8 2乙 8 8 2.2丙 6 6 3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.【分析】(1)根据方差公式和中位数的定义分别进行解答即可;(2)根据方差公式先分别求出甲的方差,再根据方差的意义即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵甲的平均数是8,∴甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是=6;故答案为:6,2;(2)∵甲的方差是:[(9﹣8)2+2(10﹣8)2+4(8﹣8)2+2(7﹣8)2+(5﹣8)2]=2;乙的方差是:[2(9﹣8)2+2(10﹣8)2+2(8﹣8)2+3(7﹣8)2+(5﹣8)2]=2.2;丙的方差是:[(9﹣6)2+(8﹣6)2+2(7﹣6)2+2(6﹣6)2+2(5﹣6)2+(4﹣6)2+(3﹣6)2]=3;∴S甲2<S乙2<S丙2,∴甲运动员的成绩最稳定;(3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况,∴甲、乙相邻出场的概率是=.【点评】此题考查了方差、平均数、中位数和画树状图法求概率,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)(2017•安徽)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.八、(本题满分14分)23.(14分)(2017•安徽)已知正方形ABCD,点M边AB的中点.(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.①求证:BE=CF;②求证:BE2=BC•CE.(2)如图2,在边BC上取一点E,满足BE2=BC•CE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.【分析】(1)①由正方形的性质知AB=BC、∠ABC=∠BCF=90°、∠ABG+∠CBF=90°,结合∠ABG+∠BAG=90°可得∠BAG=∠CBF,证△ABE≌△BCF可得;②由RtABG斜边AB中线知MG=MA=MB,即∠GAM=∠AGM,结合∠CGE=∠AGM、∠GAM=∠CBG知∠CGE=∠CBG,从而证△CGE∽△CBG得CG2=BC•CE,由BE=CF=CG可得答案;(2)延长AE、DC交于点N,证△CEN∽△BEA得BE•CN=AB•CE,由AB=BC、BE2=BC•CE知CN=BE,再由==且AM=MB得FC=CN=BE,设正方形的边长为1、BE=x,根据BE2=BC•CE求得BE的长,最后由tan∠CBF==可得答案.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCF=90°,∴∠ABG+∠CBF=90°,∵∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠BAG=∠CBF,∵AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF,∴BE=CF,②∵∠AGB=90°,点M为AB的中点,∴MG=MA=MB,∴∠GAM=∠AGM,又∵∠CGE=∠AGM,∠GAM=∠CBG,∴∠CGE=∠CBG,又∠ECG=∠GCB,∴△CGE∽△CBG,∴=,即CG2=BC•CE,由∠CFG=∠GBM=∠BGM=∠CGF得CF=CG,由①知BE=CF,∴BE=CG,∴BE2=BC•CE;(2)延长AE、DC交于点N,∵四边形ABCD是正方形,∴AB∥CD,∴∠N=∠EAB,又∵∠CEN=∠BEA,∴△CEN∽△BEA,∴=,即BE•CN=AB•CE,∵AB=BC,BE2=BC•CE,∴CN=BE,∵AB∥DN,∴==,∵AM=MB,∴FC=CN=BE,不妨设正方形的边长为1,BE=x,由BE2=BC•CE可得x2=1•(1﹣x),解得:x1=,x2=(舍),∴=,则tan∠CBF===.【点评】本题主要考查相似形的综合问题,熟练掌握正方形与直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。
2017年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.12 的相反数是( )A .12B .-12C .2D .﹣2 【解析】相反数的概念,主要考查有理数的相关概念,主要有有理数的倒数,有理数的绝对值,有理数的相反数,有理数在数轴上的表示.是中考考试中的必考考点.本题考查了相反数的意义,根据相反数的概念解答即可.一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12的相反数是−12,添加一个负号即可,故选:B. 2.计算(﹣a 3)2的结果是( )A .a 6B .﹣a 6C .﹣a 5D .a 5 【解析】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.幂的乘方与积的乘方.根据整式的运算法则即可求出答案. 解:原式=a 6,故选A.3.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【解析】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.简单组合体的三视图.俯视图是分别从物体的上面看,所得到的图形.一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选B.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010 B.1.6×1010C.1.6×1011 D.0.16×1012【解析】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法—表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.1600亿用科学记数法表示为1.6×1011,故选:C.5.不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.【解析】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.解一元一次不等式;在数轴上表示不等式的解集.根据解一元一次不等式基本步骤:移项、系数化为1可得.移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.6.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()。
2017年安徽省安庆市中考数学模拟试卷一、选择题1.﹣的相反数等于()A.B.﹣C.4 D.﹣42.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)33.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n26.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=167.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM ∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5 B.95和85 C.90和85 D.85和87.59.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6二、填空题11.的立方根是.12.方程+x=1的解为.13.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是.(把AOE所有正确结论的序号都选上)三、解答题15.计算:﹣|1﹣|+(﹣)0.16.解不等式组:,并把它的解集在数轴上表示出来.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.2017年安徽省安庆市中考数学模拟试卷参考答案与试题解析一、选择题1.﹣的相反数等于()A.B.﹣C.4 D.﹣4【考点】14:相反数.【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.2.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.3.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n2【考点】58:实数范围内分解因式.【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.6.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16【考点】AC:由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.7.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM ∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120°D.125°【考点】L3:多边形内角与外角;JA:平行线的性质.【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠END=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5 B.95和85 C.90和85 D.85和87.5【考点】W5:众数;W4:中位数.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.9.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C.D.【考点】MC:切线的性质.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6【考点】G5:反比例函数系数k的几何意义;L8:菱形的性质;T7:解直角三角形.【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,=S菱形OBCA=OB•AM=10.∴S△AOF故选A.二、填空题11.的立方根是.【考点】24:立方根.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.12.方程+x=1的解为x=1.【考点】86:解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=113.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【考点】D1:点的坐标.【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是①②③AOE④.(把所有正确结论的序号都选上)【考点】S9:相似三角形的判定与性质;KF:角平分线的性质;L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,AE=BE,于是得到;②S△AOE =S△OBE;OE:AC=:6;故②④正确.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,∴S△AOE =S△OBE,故②正确;故选:①②③④.三、解答题15.计算:﹣|1﹣|+(﹣)0.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+216.解不等式组:,并把它的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30+1=312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】1G:有理数的混合运算.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n+2)+1=(2n+1)2,∵左边=4n2+4n+1,右边=4n2+4n+1,∴左边=右边.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt△GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【考点】HA:抛物线与x轴的交点;F8:一次函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN=y,求出y与x的函数关系式.【考点】LO:四边形综合题.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,=KD•GI=×2×=.∴GI=AB=,S△DNG∵PD=x∴PK=2﹣x∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN,∴=()2=,即S△DPN=S△DKG=x2.=,S平行四边形PMGN=S△DKG﹣S△DPN﹣S△KPM=﹣x2﹣,同理,S△KPM=S平行四边形PMGN=﹣x2+x.(0<x<2).则S△PMN2017年5月23日。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A.B.﹣C.2D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60°B.50°C.40°D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280B.240C.300D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25B.25(1﹣2x)=16C.16(1+x)2=25D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.B.C.5D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b=.13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1。
6×1010C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术"的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD 都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路"沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为( )A.16×1010B.1。
6×1010C.1。
6×1011D.0。
16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。
2017安庆市中考模拟数学试题(满分为150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.41-相反数是 ( )A.41-B.41C.4D.-42.下列式子计算的结果等于6a 的是 ( )A.33a a +B.32a a ⋅ C.212a a ÷ D.32)(a3.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资约334亿元人民币.把334亿用科学记数法可表示为 ( )A.0.3341110⨯ B.10103.34⨯ C.9103.34⨯ D.2103.34⨯4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是 ( )5.下列多项式不能因式分解的是 ( ) A.x x 23+ B.22b a + C.412++y y D.224n m - 6.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元连续两次降价后,售价下调到每斤16元.设平均每次降价的百分率为a ,下列所列方程中正确的是 ( ) A.16(1+a)2=25 B.25(1−2a)=16 C.25(1−a)2=16 D.25(1−a 2)=167.如图,四边形ABCD 中,∠B=60°,∠D=50°.将△CMN 沿MN 翻折得△EMN ,若EM ∥AB ,EN ∥AD ,则∠C 的度数为 ( )A.110°B.115°C.120°D.125°8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,10名评审团成员对我市2016年度文明创建工作进行认真评分,结果如下表:人数 2 3 4 1 分数 80 85 90 95A.90和87.5B.95和85C.90和85D.85和87.59.如图,点C 是⊙O 的直径AB 延长线上一点,CD 切⊙O 于点D ,⊙O 的弦,若∠AED=60°,⊙O 的半径是2,则CD 的长为 ( )A.4B.3C.32D.2210.如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =54,反比例函数xy 12=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( ) A.10 B.9 C.8 D.6二、填空题(本大题共4小题,每小题5分,满分20分) 11.81的立方根是 .12.方程113x x -+=的解为 .13.在平面直角坐标系中,当),(y x M 不是原点时,定义M 的“影子点”为⎪⎪⎭⎫⎝⎛-y x x yM ,'.若点),(b a P 的“影子点”是点P ',则点P '的“影子点”P ''的坐标为 .14.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC=60°,AB=2BC ,连接OE .下列四个结论:①∠ACD=30°;②OE=OC ;③S □ABCD=AC•BC ;④OE :OA=1:3;⑤OEF AOE S S ∆∆=2.其中结论正确的序号是 .(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.0)21(2118-+--16.解不等式组⎪⎩⎪⎨⎧≤-->-032136x x,并把它的解集在数轴上表示出来.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A (1,−4),B (3,−3),C(1,−1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC 沿y 轴方向向上平移5个单位,画出平移后 得到的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得到 的△A 2B 2C 2.(正确作出图形不写作法)18.观察下列关于自然数的等式:22011⨯+= ① 24213⨯+= ② 28617⨯+= ③ 21614115⨯+= ④根据上述规律解决下列问题: (1)完成第五个等式:32× +1= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.五、(本大题共2小题,每小题10分,满分20分)19.如图,在楼AB 和楼CD 之间有一旗杆EF ,从AB 顶部A 点处经过旗杆顶部E 点恰好看到楼CD 的底部D 点,且俯角为45°,从楼CD 顶部C 点处经过旗杆顶部E 点恰好看到楼AB 的G 点,BG=1米,且俯角为30°,已知楼AB 高20米,求旗杆EF 的高度.(结果精确到1米,参考数据:2≈1.41,3≈1.73)20.如图,直线4921+-=x y 与x 轴,y 轴分别交于B ,C 两点,抛物线c bx x y ++=2过点B ,C . (1)求b 、c 的值;(2)若点D 是抛物线在x 轴下方图象上的动点,过点D 作x 轴的垂线,与直线BC 相交于点E .当线段DE 的长度最大时,求点D 的坐标.六、(本大题满分12分)21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动。
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A .B B.﹣.﹣C .2D .﹣.﹣2 22.(4分)计算(﹣分)计算(﹣a a 3)2的结果是()A .a 6B .﹣.﹣a a 6C C.﹣.﹣.﹣a a 5D .a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A A..B .C .D .4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A .1616××1010B .1.61.6××1010C C..1.61.6××1011D D..0.160.16××10125.(4分)不等式4﹣2x 2x>>0的解集在数轴上表示为()A .B B..C .D D..6.(4分)直角三角板和直尺如图放置,若∠分)直角三角板和直尺如图放置,若∠1=201=201=20°,则∠°,则∠°,则∠22的度数为()A .6060°°B B..5050°°C C..4040°°D D..3030°°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A .280B .240C .300D .2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(满足( )A .1616((1+2x 1+2x))=25B .2525((1﹣2x 2x))=16C .1616((1+x 1+x))2=25 D .2525((1﹣x )2=169.(4分)已知抛物线y=ax 2+bx+c 与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是(的图象可能是( )A .B .C .D .1010..(4分)如图,在矩形ABCD 中,中,AB=5AB=5AB=5,,AD=3AD=3,动点,动点P 满足S △PAB =S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为(的最小值为( )A .B B..C C..5D D..二、填空题(每题5分,共20分) 1111..(5分)分)2727的立方根为的立方根为 .1212..(5分)因式分解:分)因式分解:a a 2b ﹣4ab+4b= .1313..(5分)如图,已知等边△分)如图,已知等边△ABC ABC 的边长为6,以AB 为直径的⊙为直径的⊙O O 与边AC AC、、BC 分别交于D 、E 两点,则劣弧的长为的长为 .1414..(5分)在三角形纸片ABC 中,∠中,∠A=90A=90A=90°,∠°,∠°,∠C=30C=30C=30°,°,°,AC=30cm AC=30cm AC=30cm,将该纸片沿过点,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD BD(如图(如图1),减去△,减去△CDE CDE 后得到双层△BDE BDE(如图(如图2),再沿着过△,再沿着过△BDE BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为中有一个是平行四边形,则所得平行四边形的周长为 cm cm..三、(每题8分,共16分)1515..(8分)计算:分)计算:||﹣2|2|××cos60cos60°﹣(°﹣()﹣1.1616..(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何? 译文为:译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?多少人?这个物品的价格是多少? 请解答上述问题.请解答上述问题.四、(每题8分,共16分)1717..(8分)如图,游客在点A 处坐缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m AB=BD=600m,,α=75=75°,°,β=45=45°,求°,求DE 的长.的长. (参考数据:(参考数据:sin75sin75sin75°≈°≈°≈0.970.970.97,,cos75cos75°≈°≈°≈0.260.260.26,,≈1.411.41))1818..(8分)分)如图,如图,如图,在边长为在边长为1个单位长度的小正方形组成的网格中,给出了格点△个单位长度的小正方形组成的网格中,给出了格点△ABC ABC 和△DEF DEF(顶点为网格线的交点)(顶点为网格线的交点),以及过格点的直线l . (1)将△)将△ABC ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形. (2)画出△)画出△DEF DEF 关于直线l 对称的三角形.对称的三角形.(3)填空:∠)填空:∠C+C+C+∠∠E= .五、(每题10分,共20分) 1919..(10分)【阅读理解】【阅读理解】我们知道,我们知道,1+2+3+1+2+3+1+2+3+……+n=,那么12+22+32+…+n 2结果等于多少呢?结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+22+2,,即22,…;第n 行n 个圆圈中数的和为,即n 2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n 2.【规律探究】【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,,因此,112+22+32+…+n 2= .【解决问题】【解决问题】 根据以上发现,计算:的结果为的结果为 .2020..(10分)如图,在四边形ABCD 中,中,AD=BC AD=BC AD=BC,∠,∠,∠B=B=B=∠∠D ,AD 不平行于BC BC,过点,过点C 作CE CE∥∥AD 交△交△ABC ABC 的外接圆O 于点E ,连接AE AE.. (1)求证:四边形AECD 为平行四边形;为平行四边形; (2)连接CO CO,求证:,求证:,求证:CO CO 平分∠平分∠BCE BCE BCE..六、(本题满分12分)2121..(12分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:次,每次射靶的成绩如下: 甲:甲:99,1010,,8,5,7,8,1010,,8,8,7 乙:乙:55,7,8,7,8,9,7,9,1010,,10 丙:丙:77,6,8,5,4,7,6,3,9,5 (1)根据以上数据完成下表:)根据以上数据完成下表:平均数平均数 中位数中位数 方差方差 甲 8 8 乙 8 8 2.2 丙63(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由; (3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.七、(本题满分12分)2222..(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:部分数据如下表:售价x (元(元//千克)千克)506070销售量y (千克)(千克) 100 80 60(1)求y 与x 之间的函数表达式;之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润之间的函数表达式(利润==收入﹣成本); (3)试说明(试说明(22)中总利润W 随售价x 的变化而变化的情况,的变化而变化的情况,并指出售价为多少元时获得最并指出售价为多少元时获得最大利润,最大利润是多少?大利润,最大利润是多少?八、(本题满分14分)2323..(14分)已知正方形ABCD ABCD,点,点M 边AB 的中点.的中点.(1)如图1,点G 为线段CM 上的一点,且∠上的一点,且∠AGB=90AGB=90AGB=90°,延长°,延长AG AG、、BG 分别与边BC BC、、CD 交于点E 、F . ①求证:①求证:BE=CF BE=CF BE=CF;; ②求证:②求证:BE BE 2=BC =BC••CE CE..(2)如图2,在边BC 上取一点E ,满足BE 2=BC =BC••CE CE,连接,连接AE 交CM 于点G ,连接BG 并延长CD 于点F ,求tan tan∠∠CBF 的值.2017年安徽省中考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)(20172017•安徽)•安徽)的相反数是(的相反数是( ) A .B .﹣C C..2D .﹣.﹣2 2【分析】根据相反数的概念解答即可.根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.,添加一个负号即可. 故选:故选:B B .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,正数的相反数是负数,一个负数的相反数是正数,00的相反数是0.2.(4分)(20172017•安徽)计算(﹣•安徽)计算(﹣•安徽)计算(﹣a a 3)2的结果是(的结果是( )A .a 6B .﹣.﹣a a 6C .﹣.﹣a a 5D .a 5【分析】根据整式的运算法则即可求出答案.根据整式的运算法则即可求出答案.【解答】解:原式解:原式=a =a 6, 故选(故选(A A )【点评】本题考查整式的运算,解题的关键是熟练运用幂的乘方公式,本题属于基础题型.3.(4分)(20172017•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(•安徽)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( )A .B .C .D .【分析】俯视图是分别从物体的上面看,所得到的图形.俯视图是分别从物体的上面看,所得到的图形.【解答】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆. 故选B .【点评】本题考查了几何体的三种视图,本题考查了几何体的三种视图,掌握定义是关键.掌握定义是关键.注意所有的看到的棱都应表现在三视图中.三视图中.4.(4分)(20172017•安徽)截至•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为(亿用科学记数法表示为( )A .1616××1010B .1.61.6××1010C C..1.61.6××1011D D..0.160.16××1012【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a||a|<<1010,,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥原数绝对值≥11时,时,n n 是非负数;当原数的绝对值<是非负数;当原数的绝对值<11时,时,n n 是负数.是负数.【解答】解:解:16001600亿用科学记数法表示为1.61.6××1011, 故选:故选:C C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a||a|<<1010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.5.(4分)(20172017•安徽)不等式•安徽)不等式4﹣2x 2x>>0的解集在数轴上表示为(的解集在数轴上表示为( )A .B .C .D .【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.可得. 【解答】解:移项,得:﹣解:移项,得:﹣2x 2x 2x>﹣>﹣>﹣44, 系数化为1,得:,得:x x <2, 故选:故选:D D .【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.(4分)(20172017•安徽)直角三角板和直尺如图放置,若∠•安徽)直角三角板和直尺如图放置,若∠•安徽)直角三角板和直尺如图放置,若∠1=201=201=20°,则∠°,则∠°,则∠22的度数为(的度数为( )A .6060°°B B..5050°°C C..4040°°D D..3030°°【分析】过E 作EF EF∥∥AB AB,则,则AB AB∥∥EF EF∥∥CD CD,根据平行线的性质即可得到结论.,根据平行线的性质即可得到结论.,根据平行线的性质即可得到结论.【解答】解:如图,过E 作EF EF∥∥AB AB,, 则AB AB∥∥EF EF∥∥CD CD,, ∴∠∴∠1=1=1=∠∠3,∠,∠2=2=2=∠∠4, ∵∠∵∠3+3+3+∠∠4=604=60°,°,°, ∴∠∴∠1+1+1+∠∠2=602=60°,°,°, ∵∠∵∠1=201=201=20°,°,°, ∴∠∴∠2=402=402=40°,°,°, 故选C .【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.7.(4分)(20172017•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查•安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(小时之间的学生数大约是( )A .280B .240C .300D .260【分析】用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生所占的百分数乘以该校学生总人数,即可得解.乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣3030﹣﹣2424﹣﹣1010﹣﹣8=288=28(人)(人), ∴10001000××=280=280(人)(人), 即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.人. 故选:故选:A A .【点评】本题考查了频数分布直方图以及用样本估计总体,本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,利用统计图获取信息时,利用统计图获取信息时,必须认必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.8.(4分)(20172017•安徽)一种药品原价每盒•安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(满足( )A .1616((1+2x 1+2x))=25B .2525((1﹣2x 2x))=16C .1616((1+x 1+x))2=25 D .2525((1﹣x )2=16【分析】等量关系为:原价×(等量关系为:原价×(11﹣降价的百分率)2=现价,把相关数值代入即可.现价,把相关数值代入即可. 【解答】解:第一次降价后的价格为:解:第一次降价后的价格为:252525×(×(×(11﹣x ); 第二次降价后的价格为:第二次降价后的价格为:252525×(×(×(11﹣x )2; ∵两次降价后的价格为16元,元,∴2525((1﹣x )2=16=16.. 故选D .【点评】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b =b..9.(4分)(20172017•安徽)已知抛物线•安徽)已知抛物线y=ax 2+bx+c 与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是(的图象可能是( )A .B .C .D .【分析】根据抛物线y=ax 2+bx+c 与反比例函数y=的图象在第一象限有一个公共点,可得b >0,根据交点横坐标为1,可得a+b+c=b a+b+c=b,,可得a ,c 互为相反数,依此可得一次函数y=bx+ac 的图象.的图象.【解答】解:∵抛物线y=ax 2+bx+c 与反比例函数y=的图象在第一象限有一个公共点,的图象在第一象限有一个公共点, ∴b >0,∵交点横坐标为1, ∴a+b+c=b a+b+c=b,, ∴a+c=0a+c=0,,∴ac ac<<0,∴一次函数y=bx+ac 的图象经过第一、三、四象限.的图象经过第一、三、四象限. 故选:故选:B B .【点评】考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b >0,ac ac<<0.1010..(4分)(20172017•安徽)如图,在矩形•安徽)如图,在矩形ABCD 中,中,AB=5AB=5AB=5,,AD=3AD=3,动点,动点P 满足S △PAB =S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为(的最小值为( )A .B B..C C..5D D..【分析】首先由S △PAB =S 矩形ABCD ,得出动点P 在与AB 平行且与AB 的距离是2的直线l 上,作A 关于直线l 的对称点E ,连接AE AE,连接,连接BE BE,则,则BE 的长就是所求的最短距离.然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.的最小值. 【解答】解:设△解:设△ABC ABC 中AB 边上的高是h . ∵S △PAB =S 矩形ABCD , ∴AB AB••h=AB AB••AD AD,, ∴h=AD=2AD=2,,∴动点P 在与AB 平行且与AB 的距离是2的直线l 上,如图,作A 关于直线l 的对称点E ,连接AE AE,连接,连接BE BE,则,则BE 的长就是所求的最短距离.的长就是所求的最短距离. 在Rt Rt△△ABE 中,∵中,∵AB=5AB=5AB=5,,AE=2+2=4AE=2+2=4,, ∴BE===,即PA+PB 的最小值为.故选D .【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.所在的位置是解题的关键.二、填空题(每题5分,共20分)1111..(5分)(20172017•安徽)•安徽)•安徽)2727的立方根为的立方根为 3 . 【分析】找到立方等于27的数即可.的数即可.【解答】解:∵解:∵333=27=27,, ∴27的立方根是3, 故答案为:故答案为:33.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.1212..(5分)(20172017•安徽)因式分解:•安徽)因式分解:•安徽)因式分解:a a 2b ﹣4ab+4b= b (a ﹣2)2. 【分析】原式提取b ,再利用完全平方公式分解即可.,再利用完全平方公式分解即可.【解答】解:原式解:原式=b =b =b((a 2﹣4a+44a+4))=b =b((a ﹣2)2,故答案为:故答案为:b b (a ﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.关键.1313..(5分)(20172017•安徽)如图,已知等边△•安徽)如图,已知等边△•安徽)如图,已知等边△ABC ABC 的边长为6,以AB 为直径的⊙为直径的⊙O O 与边AC AC、、BC 分别交于D 、E 两点,则劣弧的长为的长为 π .【分析】连接OD OD、、OE OE,先证明△,先证明△,先证明△AOD AOD AOD、△、△、△BOE BOE 是等边三角形,得出∠是等边三角形,得出∠AOD=AOD=AOD=∠∠BOE=60BOE=60°,求出°,求出∠DOE=60DOE=60°,再由弧长公式即可得出答案.°,再由弧长公式即可得出答案.°,再由弧长公式即可得出答案. 【解答】解:连接OD OD、、OE OE,如图所示:,如图所示:,如图所示: ∵△∵△ABC ABC 是等边三角形,是等边三角形, ∴∠∴∠A=A=A=∠∠B=B=∠∠C=60C=60°,°,°, ∵OA=OD OA=OD,,OB=OE OB=OE,,∴△∴△AOD AOD AOD、△、△、△BOE BOE 是等边三角形,是等边三角形, ∴∠∴∠AOD=AOD=AOD=∠∠BOE=60BOE=60°,°,°, ∴∠∴∠DOE=60DOE=60DOE=60°,°,°, ∵OA=AB=3AB=3,, ∴的长的长===π;故答案为:π.【点评】本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.是等边三角形是解决问题的关键.1414..(5分)(20172017•安徽)在三角形纸片•安徽)在三角形纸片ABC 中,∠中,∠A=90A=90A=90°,∠°,∠°,∠C=30C=30C=30°,°,°,AC=30cm AC=30cm AC=30cm,将该纸片,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),减去△减去△CDE CDE 后得到双层△后得到双层△BDE BDE BDE(如图(如图2),再沿着过△,再沿着过△BDE BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为的平面图形中有一个是平行四边形,则所得平行四边形的周长为 40或cm cm..【分析】解直角三角形得到AB=10,∠ABC=60ABC=60°,根据折叠的性质得到∠°,根据折叠的性质得到∠ABD=ABD=∠∠EBD=ABC=30ABC=30°,°,BE=AB=10,求得DE=10DE=10,,BD=20BD=20,,如图1,平行四边形的边是DF DF,,BF BF,,如图2,平行四边形的边是DE DE,,EG EG,于是得到结论.,于是得到结论.,于是得到结论. 【解答】解:∵∠解:∵∠A=90A=90A=90°,∠°,∠°,∠C=30C=30C=30°,°,°,AC=30cm AC=30cm AC=30cm,,∴AB=10,∠,∠ABC=60ABC=60ABC=60°,°,°,∵△∵△ADB ADB ADB≌△≌△≌△EDB EDB EDB,, ∴∠∴∠ABD=ABD=ABD=∠∠EBD=ABC=30ABC=30°,°,°,BE=AB=10BE=AB=10,∴DE=10DE=10,,BD=20BD=20,,如图1,平行四边形的边是DF DF,,BF BF,且,且DF=BF=,∴平行四边形的周长∴平行四边形的周长==,如图2,平行四边形的边是DE DE,,EG EG,且,且DF=BF=10DF=BF=10,, ∴平行四边形的周长∴平行四边形的周长=40=40=40,,综上所述:平行四边形的周长为40或,故答案为:故答案为:4040或.【点评】本题考查了剪纸问题,本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.的关键.三、(每题8分,共16分)1515..(8分)(20172017•安徽)计算:•安徽)计算:•安徽)计算:||﹣2|2|××cos60cos60°﹣(°﹣()﹣1.【分析】分别利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值化简求出答案.案.【解答】解:原式解:原式=2=2=2××﹣3 =﹣2.【点评】此题主要考查了负整数指数幂的性质以及绝对值、此题主要考查了负整数指数幂的性质以及绝对值、特殊角的三角函数值等知识,特殊角的三角函数值等知识,特殊角的三角函数值等知识,正正确化简各数是解题关键.确化简各数是解题关键.1616..(8分)(20172017•安徽)•安徽)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何? 译文为:译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?多少人?这个物品的价格是多少? 请解答上述问题.请解答上述问题.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.根据这个物品的价格不变,列出一元一次方程进行求解即可. 【解答】解:设共有x 人,可列方程为:人,可列方程为:8x 8x 8x﹣﹣3=7x+43=7x+4.. 解得x=7x=7,, ∴8x 8x﹣﹣3=533=53,,答:共有7人,这个物品的价格是53元.元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.列出相应的方程.四、(每题8分,共16分)1717..(8分)(20172017•安徽)如图,游客在点•安徽)如图,游客在点A 处坐缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m AB=BD=600m,,α=75=75°,°,β=45=45°,求°,求DE 的长.的长.(参考数据:(参考数据:sin75sin75sin75°≈°≈°≈0.970.970.97,,cos75cos75°≈°≈°≈0.260.260.26,,≈1.411.41))【分析】在R △ABC 中,求出BC=AB BC=AB••cos75cos75°≈°≈°≈600600600××0.260.26≈≈156m 156m,,在Rt Rt△△BDF 中,求出DF=BD •sin45sin45°°=600=600××≈300300××1.411.41≈≈423423,,由四边形BCEF 是矩形,可得EF=BC EF=BC,由此即可解决,由此即可解决问题.问题.【解答】解:在Rt Rt△△ABC 中,∵中,∵AB=600m AB=600m AB=600m,∠,∠,∠ABC=75ABC=75ABC=75°,°,°, ∴BC=AB BC=AB••cos75cos75°≈°≈°≈600600600××0.260.26≈≈156m 156m,, 在Rt Rt△△BDF 中,∵∠中,∵∠DBF=45DBF=45DBF=45°,°,°,∴DF=BD DF=BD••sin45sin45°°=600=600××≈300300××1.411.41≈≈423423,,∵四边形BCEF 是矩形,是矩形, ∴EF=BC=156EF=BC=156,,∴DE=DF+EF=423+156=579m DE=DF+EF=423+156=579m.. 答:答:DE DE 的长为579m 579m..【点评】本题考查解直角三角形的应用,本题考查解直角三角形的应用,锐角三角函数、锐角三角函数、锐角三角函数、矩形的性质等知识,解题的关键是矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.学会利用直角三角形解决问题,属于中考常考题型.1818..(8分)(20172017•安徽)如图,在边长为•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△格点△ABC ABC 和△和△DEF DEF DEF(顶点为网格线的交点)(顶点为网格线的交点),以及过格点的直线l . (1)将△)将△ABC ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形. (2)画出△)画出△DEF DEF 关于直线l 对称的三角形.对称的三角形. (3)填空:∠)填空:∠C+C+C+∠∠E= 4545°° .【分析】(1)将点A 、B 、C 分别右移2个单位、下移2个单位得到其对应点,顺次连接即可得;得;(2)分别作出点D 、E 、F 关于直线l 的对称点,顺次连接即可得;的对称点,顺次连接即可得;(3)连接A ′F ′,利用勾股定理逆定理证△′,利用勾股定理逆定理证△A A ′C ′F ′为等腰直角三角形即可得.′为等腰直角三角形即可得.【解答】解:(1)△)△A A ′B ′C ′即为所求;′即为所求;(2)△)△D D ′E ′F ′即为所求;′即为所求;(3)如图,连接A ′F ′,′,∵△∵△ABC ABC ABC≌△≌△≌△A A ′B ′C ′、△′、△DEF DEF DEF≌△≌△≌△D D ′E ′F ′,′, ∴∠∴∠C+C+C+∠∠E=E=∠∠A ′C ′B ′+∠D ′E ′F ′=∠A ′C ′F ′,′,∵A ′C ′==、A ′F ′==,C ′F ′==,∴A ′C ′2+A +A′′F ′2=5+5=10=C =5+5=10=C′′F ′2, ∴△∴△A A ′C ′F ′为等腰直角三角形,′为等腰直角三角形, ∴∠∴∠C+C+C+∠∠E=E=∠∠A ′C ′F ′=45=45°,°,°, 故答案为:故答案为:454545°.°.°.【点评】本题主要考查作图﹣平移变换、本题主要考查作图﹣平移变换、轴对称变换,熟练掌握平移变换、轴对称变换,熟练掌握平移变换、轴对称变换,熟练掌握平移变换、轴对称变换及勾轴对称变换及勾股定理逆定理是解题的关键.股定理逆定理是解题的关键.五、(每题10分,共20分)1919..(10分)(20172017•安徽)•安徽)【阅读理解】【阅读理解】我们知道,我们知道,1+2+3+1+2+3+1+2+3+……+n=,那么12+22+32+…+n 2结果等于多少呢?结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+22+2,,即22,…;第n 行n 个圆圈中数的和为,即n 2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n 2.【规律探究】【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n ﹣1行的第一个圆圈中的数分别为n ﹣1,2,n ),发现每个位置上三个圆圈中数的和均为个圆圈中数的和均为 2n+1 ,由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n 2)= ,因此,,因此,112+22+32+…+n 2= .【解决问题】【解决问题】 根据以上发现,计算:的结果为的结果为 1345 .【分析】【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;从而得出答案;【解决问题】运用以上结论,将原式变形为,化简计算即可得.计算即可得.【解答】解:【规律探究】【规律探究】由题意知,每个位置上三个圆圈中数的和均为n ﹣1+2+n=2n+11+2+n=2n+1,, 由此可得,这三个三角形数阵所有圆圈中数的总和为:由此可得,这三个三角形数阵所有圆圈中数的总和为: 3(12+22+32+…+n 2)=(2n+12n+1)×()×()×(1+2+3+1+2+3+1+2+3+……+n +n))=(2n+12n+1)×)×,因此,因此,112+22+32+…+n 2=;故答案为:故答案为:2n+12n+12n+1,,,;【解决问题】【解决问题】原式原式===×(×(201720172017××2+12+1))=1345=1345,,故答案为:故答案为:134513451345..【点评】本题主要考查数字的变化类,阅读材料、本题主要考查数字的变化类,阅读材料、理解数列求和的具体方法得出规律,理解数列求和的具体方法得出规律,理解数列求和的具体方法得出规律,并运并运用规律解决实际问题是解题的关键.用规律解决实际问题是解题的关键.2020..(10分)(20172017•安徽)如图,在四边形•安徽)如图,在四边形ABCD 中,中,AD=BC AD=BC AD=BC,∠,∠,∠B=B=B=∠∠D ,AD 不平行于BC BC,过,过点C 作CE CE∥∥AD 交△交△ABC ABC 的外接圆O 于点E ,连接AE AE.. (1)求证:四边形AECD 为平行四边形;为平行四边形; (2)连接CO CO,求证:,求证:,求证:CO CO 平分∠平分∠BCE BCE BCE..【分析】(1)根据圆周角定理得到∠)根据圆周角定理得到∠B=B=B=∠∠E ,得到∠,得到∠E=E=E=∠∠D ,根据平行线的判定和性质定理得到AE AE∥∥CD CD,证明结论;,证明结论;,证明结论;(2)作OM OM⊥⊥BC 于M ,ON ON⊥⊥CE 于N ,根据垂径定理、角平分线的判定定理证明.,根据垂径定理、角平分线的判定定理证明. 【解答】证明:(1)由圆周角定理得,∠)由圆周角定理得,∠B=B=B=∠∠E ,又∠,又∠B=B=B=∠∠D , ∴∠∴∠E=E=E=∠∠D , ∵CE CE∥∥AD AD,,∴∠∴∠D+D+D+∠∠ECD=180ECD=180°,°,°, ∴∠∴∠E+E+E+∠∠ECD=180ECD=180°,°,°, ∴AE AE∥∥CD CD,,∴四边形AECD 为平行四边形;为平行四边形; (2)作OM OM⊥⊥BC 于M ,ON ON⊥⊥CE 于N , ∵四边形AECD 为平行四边形,为平行四边形, ∴AD=CE AD=CE,又,又AD=BC AD=BC,,。
2017年安徽省安庆市中考数学模拟试卷一、选择题1.﹣的相反数等于()A.B.﹣ C.4 D.﹣42.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)33.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×1024.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C. D.m2﹣4n26.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16 7.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120° D.125°8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5 B.95和85 C.90和85 D.85和87.59.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C. D.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6二、填空题11.的立方根是.12.方程+x=1的解为.13.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为.14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB 丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是.(把所有正确结论的序号都选上)三、解答题15.计算:﹣|1﹣|+(﹣)0.16.解不等式组:,并把它的解集在数轴上表示出来.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B (3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E 点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM=y,求出y与x的函∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN数关系式.2017年安徽省安庆市中考数学模拟试卷参考答案与试题解析一、选择题1.﹣的相反数等于()A.B.﹣ C.4 D.﹣4【考点】14:相反数.【分析】根据相反数的概念即可解答.【解答】解:﹣的相反数等于.故选A.2.下列式子计算的结果等于a6的是()A.a3+a3B.a3•a2C.a12÷a2D.(a2)3【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a3+a3=2a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a12÷a2=a12﹣2=a10,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.3.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334×1011B.3.34×1010C.3.34×109D.3.34×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:把334亿用科学记数法可表示为3.34×1010,故选:B.4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.5.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C. D.m2﹣4n2【考点】58:实数范围内分解因式.【分析】分别利用完全平方公式以及平方差公式和提取公因式法分解因式得出即可.【解答】解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.6.由于受H7N9禽流感的影响,今年1月份市场上鸡的价格两次大幅下降.由原来每斤25元经过连续两次降价后,售价下调到每斤l6元.设平均每次降价的百分率为a,则下列所列方程中正确的是()A.16(1+a)2=25 B.25(1﹣2a)=16 C.25(1﹣a)2=16 D.25(1﹣a2)=16【考点】AC:由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每次下调的百分率为x,根据“由原来每斤16元下调到每斤9元”,即可得出方程.【解答】解:设平均每次下调的百分率为x,则第一次每斤的价格为:25(1﹣x),第二次每斤的价格为25(1﹣x)2=16;所以,可列方程:25(1﹣x)2=16.故选C.7.如图,四边形ABCD中,∠B=60°,∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为()A.110°B.115°C.120° D.125°【考点】L3:多边形内角与外角;JA:平行线的性质.【分析】根据平行线的性质,可得∠EMC,∠END,根据翻折的性质,可得∠NMC,∠MNC,根据三角形的内角和,可得答案.【解答】解:由若EM∥AB,EN∥AD,得∠EMC=∠B=60°,∠END=∠D=50°.由将△CMN沿MN翻折得△EMN,得∠NMC=∠EMC=30°,∠MNC=ENC=25°,由三角形的内角和,得∠C=180°﹣∠NMC﹣∠MNC=125°,故选:D.8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:则得分的众数和中位数分别是()人数2341分数80859095A.90和87.5 B.95和85 C.90和85 D.85和87.5【考点】W5:众数;W4:中位数.【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:∵得分为90分的人数为4人,人数最多,∴众数为90,∵总人数为10人,∴中位数为第5和6人的得分的平均值,∴中位数为(85+90)÷2=87.5,故选:A.9.如图,点c是⊙O的直径AB延长线上一点,CD切⊙O于点D,DE为⊙O的弦,若∠AED=60°,⊙O的半径是2.则CD的长()A.4 B.3 C. D.【考点】MC:切线的性质.【分析】先证明△OAE为等边三角形得到∠1=60°,则∠2=60°,再根据切线的性质得∠ODC=90°,然后利用正切的定义计算CD的长.【解答】解:如图,∵OA=OB,∠E=60°,∴△OAE为等边三角形,∴∠1=60°,∴∠2=60°,∵CD切⊙O于点D,∴OD⊥CD,∴∠ODC=90°,在Rt△ODC中,tan∠2=,∴CD=2tan60°=2.故选C.10.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.10 B.9 C.8 D.6【考点】G5:反比例函数系数k的几何意义;L8:菱形的性质;T7:解直角三角形.【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB=S菱形OBCA,结合菱形的面积公式即可是菱形、点F在边BC上,即可得出S△AOF得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=4,OM=3,OB=OA=5.∵四边形OACB是菱形,点F在边BC上,=S菱形OBCA=OB•AM=10.∴S△AOF故选A.二、填空题11.的立方根是.【考点】24:立方根.【分析】根据立方根的定义即可得出答案.【解答】解:的立方根是;故答案为:.12.方程+x=1的解为x=1.【考点】86:解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:x﹣1+3x=3,移项合并得:4x=4,解得:x=1,故答案为:x=113.在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M的“影子点”为M(,﹣),点P(a,b)的“影子点”是点P’,则点P’的“影子点”P''的坐标为(﹣,).【考点】D1:点的坐标.【分析】根据“影子点”的定义先求出P′,再求出P″即可.【解答】解:点P(a,b)的“影子点”是点P’为(,﹣),∵=﹣,﹣=,∴点P’的“影子点”P''的坐标为(﹣,).故答案为:(﹣,).14.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB丁点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列四个结论:①∠ACD=30°;②S△AOE=S△OBE;③S平行四边形ABCD=AC•AD;④OE:OA=1:,其中结论正确的序号是①②③④.(把所有正确结论的序号都选上)【考点】S9:相似三角形的判定与性质;KF:角平分线的性质;L5:平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故③正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质=S△OBE;OE:AC=:6;故②④正确.得到OE=BC,AE=BE,于是得到;②S△AOE【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故③正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=BC,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6,故③正确;∵AE=BE,∴S△AOE =S△OBE,故②正确;故选:①②③④.三、解答题15.计算:﹣|1﹣|+(﹣)0.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式﹣|1﹣|+(﹣)0的值是多少即可.【解答】解:﹣|1﹣|+(﹣)0=3﹣+1+1=2+216.解不等式组:,并把它的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>﹣3,解不等式②,得:x≤2,在数轴上表示其解集为:所以,原不等式组的解集为﹣3<x≤2.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B (3,﹣3),C(1,﹣1).(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)请将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)利用点平移的规律写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点A2、B2、C2,从而得到△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.18.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×30+1=312;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】1G:有理数的混合运算.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n+2)+1=(2n+1)2,∵左边=4n2+4n+1,右边=4n2+4n+1,∴左边=右边.19.如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E 点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼AB的G点,BG=1米,且俯角为30°,己知楼AB高20米,求旗杆EF的高度.(结果精确到1米)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,在Rt △GEH中利用锐角三角函数的定义可得出GH的长,再由BD=BF+FD=GH+FD即可得出结论.【解答】解:过点G作GP⊥CD于点P,与EF相交于点H.设EF的长为x米,由题意可知,FH=GB=1米,EH=EF﹣FH=(x﹣1)米,又∵∠BAD=∠ADB=45°,∴FD=EF=x米,AB=BD=20米,在Rt△GEH中,∠EGH=30°,∵tan∠EGH=,即=,∴GH=(x﹣1)米,∵BD=BF+FD=GH+FD,∴(x﹣1)+x=20,解得,x≈8米,答:旗杆EF的高度约为8米.20.如图,直线y=﹣x+与x轴,y轴分别交于B,C两点,抛物线y=x2+bx+c 过点B,C.(1)求b、c的值;(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.【考点】HA:抛物线与x轴的交点;F8:一次函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)由直线解析式求得点B、C的坐标,代入抛物线解析式即可得;(2)设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+),由DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+可得答案.【解答】解:(1)对于直线,当x=0时,y=;当y=0时,x=.把(0,)和(,0)代入y=x2+bx+c,得:,解得:b=﹣5,c=;(2)由(1)知,抛物线的解析式为y=x2﹣5x+,当y=0时,有x2﹣5x+=0,解得:x=或x=,即A(,0)、B(,0),设点D的横坐标为m,则点D的坐标为(m,m2﹣5m+),点E的坐标为(m,﹣m+).∴DE=﹣m+﹣(m2﹣5m+)=﹣(m﹣)2+,∵﹣1<0,∴当时,线段DE的长度最大.将x=m=代入y=x2﹣5x+,得y=﹣.而<m<,∴点D的坐标为.21.为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由A的人数和其所占的百分比即可求出总人数;(2)由总人数求出B等级人数,根据其占被调查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【解答】解:(1)参加本次比赛的学生有:4÷8%=50(人);(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴B等级所对应扇形的圆心角度数为:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)=.22.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上与A地相距105km的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两下车同时到达B地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR和线段OR.(1)求乙车从A地到B地所用的时间;(2)求图中线段PQ的解析式(不要求写自变量的取值范围);(3)在甲车返回到C地取货的过程中,当x=,两车相距25千米的路程.【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得图中线段PQ的解析式;(3)根据函数图象中的数据可以求得乙车对应的函数解析式,然后根据题意即可求得甲车返回到C地取货的过程中,当x为何值时,两车相距25千米的路程.【解答】解:(1)解:由图象可知,乙车从A地到B地所用的时间是5小时;(2)由题意可得,甲车的速度为:180÷2=90km/h,∴甲车到点Q时,离A地的距离是105km,用的时间为:÷90=(h),∴点Q的坐标为(,105),设图中线段PQ的解析式为y=kx+b,,得,即图中线段PQ的解析式为:y=﹣90x+360;(3)设乙车对应的函数解析式为y=ax,则5a=300,得a=60,∴乙车对应的函数解析式为y=60x,∴|60x﹣(﹣90x+360)|=25,(2≤x≤)解得,x1=,x2=,即甲车返回到C地取货的过程中,当x=或时,两车相距25千米的路程.23.如图l,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:△DOK≌△BOG;(2)求证:AB+AK=BG:(3)如图2,若KD=KG=2,点P是线段KD上的动点(不与点D、K重台),PM=y,求出y与x的函∥DG交KG于点M,PN∥KG交DG于点N,设PD=x,S△PMN数关系式.【考点】LO:四边形综合题.【分析】(1)利用AAS即可证得;(2)证明△ABF是等腰直角三角形,四边形AFGK是平行四边形即可证得;(3)过点G作GI⊥KD于点I,首先求得△DGK的面积,然后根据△DKG∽△PKM ∽△DPN,利用相似三角形的面积的比等于相似比的平方,用x表示出△PKM和△DPN的面积,则函数解析式即可求得.【解答】解:(1)∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴在△DCK和△BOG中,,∴△DOK≌△BOG(AAS),(2)∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK;(3)如图,过点G作GI⊥KD于点I,由(2)知,四边形AFGK是平行四边形,△ABF为等腰直角三角形.∴AF=KG=2,AB=AF=,∵四边形ABCD是矩形,=KD•GI=×2×=.∴GI=AB=,S△DNG∵PD=x∴PK=2﹣x∵PM ∥DG ,PN ∥KG∴四边形PMGN 是平行四边形,△DKG ∽△PKM ∽△DPN , ∴=()2=,即S △DPN =S △DKG =x 2.同理,S △KPM =,S平行四边形PMGN =S △DKG ﹣S △DPN ﹣S △KPM =﹣x 2﹣,则S △PMN =S 平行四边形PMGN =﹣x 2+x .(0<x <2).2017年5月23日。