PPT-弗兰克-赫兹实验
- 格式:ppt
- 大小:4.90 MB
- 文档页数:20
99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。
对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。
1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。
1925年弗兰克和赫兹共同获得诺贝尔物理学奖。
通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。
实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。
进行F-H 实验通常使用的碰撞管是充汞的。
这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。
实验三十八弗兰克—赫兹实验1913年丹麦物理学家玻尔(N❿Bohr)提出了原子能级的概念并建立了原子模型理论。
该理论指出,原子处于稳定状态时不辐射能量,当原子从高能态(能量E m)向低能态(能量E n)跃迁时才辐射。
辐射能量满足∆E = E m-E n(1)对于外界提供的能量,只有满足原子跃迁到高能级的能级差,原子才吸收并跃迁,否则不吸收。
1914年德国物理学家弗兰克(J❿Franck)和赫兹(G❿Hertz)用慢电子穿过汞蒸气的实验,测定了汞原子的第一激发电位,从而证明了原子分立能态的存在。
后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔理论。
弗兰克—赫兹实验的结果为玻尔理论提供了直接证据。
玻尔因其原子模型理论获1922年诺贝尔物理学奖,而弗兰克与赫兹的实验也于1925年获此奖。
夫兰克——赫兹实验与玻尔理论在物理学的发展史中起到了重要的作用。
一、实验目的1、研究弗兰克—赫兹管中电流变化的规律2、测量氩原子的第一激发电位;证实原子能级的存在,加深对原子结构的了解;3、了解在微观世界中,电子与原子的碰撞几率。
二、实验仪器LB-FH弗兰克-赫兹实验仪,示波器三、实验原理夫兰克一赫兹实验原理(如图1所示),氧化物阴极K,阳极A,第一、第二栅极分别为G1、G2。
图1弗兰克-赫兹实验原理图灯丝电压K-G 1-G 2加正向电压,为电子提供能量。
V G1K 的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。
G 2-A 加反向电压,形成拒斥电场。
电子从K 发出,在K-G 2区间获得能量,在G 2-A 区间损失能量。
如果电子进入G 2-A 区域时动能大于或等于eV G2K ,就能到达板极形成板极电流I .电子在不同区间的情况:(1) K-G 1区间 电子迅速被电场加速而获得能量。
(2) G 1-G 2区间 电子继续从电场获得能量并不断与氩原子碰撞。
当其能量小于氩原子第一激发态与基态的能级差∆E =E 2-E 1 时,氩原子基本不吸收电子的能量,碰撞属于弹性碰撞。