4G全网通信技术-任务1 规划无线及核心网
- 格式:ppt
- 大小:2.36 MB
- 文档页数:32
4G通信的网络结构与关键技术解析
随着电信业务的不断发展,移动通信的需求也越来越多样化。
由此,4G通信技术应运而生。
4G通信技术是指第四代移动通
信技术,是从3G通信技术逐渐升级而来的,而其网络结构与
关键技术也是逐渐完善的。
下面就为大家解析4G通信的网络
结构与关键技术。
4G通信的网络结构主要分为两部分:核心网和无线接入网。
核心网是通讯网络中最重要最核心的部分,是一个高速数据交换和控制信息处理的网状系统。
无线接入网,作为连接手机和核心网之间的桥梁,是支持高速数据传输的无线交换设备。
在实现高速率、高效率的无线宽带接入的同时,4G通信技术
需要应用许多关键技术。
其中最为重要的技术莫过于MIMO
技术(Multiple Input Multiple Output),它是利用多个天线数
组在同一频段上进行数据传输的技术,能有效增加信道容量和抗干扰能力。
除此之外,4G通信技术还应用了OFDMA技术(正交频分多址技术),其应用前景十分广阔。
在4G通信技术中,核心网与无线接入网对于整个系统的运行
发挥了非常关键的作用。
核心网采用分布式处理方式,能够灵活、高效地完成各种网络控制和管理任务。
无线接入网部分则采用了目前全球最通用的WCDMA(广域码分多址)技术,
能够更好地抵抗多径传播和干扰。
总的来看,4G通信技术在无线通信领域中的地位越来越重要,
其网络结构与应用的关键技术的完善助推了4G通信技术的应用。
未来,4G技术将会在更多的领域得到应用。
4G移动通信系统的关键技术4G移动通信系统的关键技术一:引言4G移动通信系统是第四代移动通信技术的代表,它具有更高的速率、更低的时延和更大的容量。
本文将对4G移动通信系统的关键技术进行详细介绍。
二:物理层技术1. OFDM技术OFDM(正交频分复用)技术是4G移动通信系统的关键基础技术,它能够有效地抵抗多径衰落以及频率选择性衰落,提高系统的频谱效率和抗干扰性能。
2. MIMO技术MIMO(多输入多输出)技术可以利用多个天线进行信号的传输和接收,通过空域上的多径传播提高系统的速率和容量,并提高信号的可靠性。
三:网络层技术1. IP分包技术IP分包技术可以将数据分成多个小包进行传输,提高网络的灵活性和传输效率,适应多种不同的应用场景。
2. 全IP网络技术全IP网络技术是4G移动通信系统中的核心技术,它通过统一的IP协议对语音、数据和视频进行传输,提供统一的服务和优化的网络接入。
四:数据链路层技术1. 自适应调制与编码技术自适应调制与编码技术可以根据信道条件来动态调整调制方式和编码率,提高信号的传输质量和系统的容量。
2. 空间复用技术空间复用技术可以将频率和空间进行灵活的分配,提高系统的频谱效率和容量。
五:移动接入层技术1. LTE技术LTE(Long Term Evolution)技术是4G移动通信系统中最主流的技术,它具有更高的速率和容量,支持多种应用场景和业务需求。
2. WiMAX技术WiMAX(Worldwide Interoperability for Microwave Access)技术是另一种重要的4G移动通信技术,具有较大的覆盖范围和灵活的接入方式。
六:安全与管理技术1. 身份鉴别与认证技术身份鉴别与认证技术可以保护用户和网络的安全,防止未经授权的访问和攻击。
2. 密钥管理技术密钥管理技术可以确保通信过程中的数据安全性,通过合理的密钥、分发和更新策略,保护用户隐私和通信内容的保密性。
4G通信技术汇总随着移动通信技术的不断发展,4G通信技术已经逐渐取代了3G,成为现代移动通信领域的主流技术。
本文将对4G通信技术进行汇总,并从网络架构、传输技术、多天线技术和协议等方面进行介绍。
1.网络架构4G通信技术采用了分层结构的网络架构,主要包括核心网和无线接入网两部分。
核心网由多个网络节点组成,负责处理用户的数据传输和接入控制等功能。
无线接入网则负责将用户数据从终端设备传输到核心网中。
这种分层结构的网络架构能够提供更高的网络容量和更低的传输时延。
2.传输技术4G通信技术采用了OFDM(正交频分复用)和MIMO(多输入多输出)等传输技术。
其中,OFDM技术可以将信号分成多个子载波频带进行传输,提高了信道容量和抗干扰能力。
MIMO技术则利用多个天线实现空间多样性,提高了系统的传输速率和可靠性。
3.多天线技术4G通信技术中的多天线技术主要包括MIMO和波束赋形技术。
MIMO技术利用多个天线实现空间多样性,提高了系统的传输速率和可靠性。
波束赋形技术则通过调整天线的辐射方向和功率分配,使得信号能够更加集中地传输到目标终端,提高了系统的覆盖范围和传输速率。
4.协议4G通信技术采用了LTE(Long Term Evolution)协议作为网络接口协议,提供了更高的数据传输速率和更低的传输时延。
LTE协议支持IP数据传输和VoIP(Voice over IP)技术,可以实现高质量的语音通话和视频传输。
5.其他技术除了以上介绍的主要技术外,4G通信技术还包括了其他一些辅助技术。
例如,4G通信技术利用了移动IP技术,为移动终端提供了无缝漫游和IP地址持久性等功能。
此外,4G通信技术还支持SIM卡和R-UIM卡等多种身份认证方式,确保用户的通信安全性。
总结起来,4G通信技术在网络架构、传输技术、多天线技术和协议等方面取得了显著的进展。
它提供了更高的数据传输速率、更低的传输时延和更广的覆盖范围,为用户提供了更好的通信体验。
4G系统网络结构及其关键技术详解随着移动通信技术的不断发展和进步, 4G系统已经逐渐的被广泛应用,为人们的生活和工作带来了很多便利。
然而对于很多人来说,4G系统的网络结构和关键技术还不够了解。
本文将对4G系统的网络结构以及其关键技术进行详细的解释。
4G系统网络结构介绍4G系统的网络结构主要分成两个部分,即核心网和无线接入网。
核心网由多个网络节点组成,用于处理用户所产生的数据和信令。
无线接入网为移动终端提供数据的无线接入,由若干个基站和网络节点组成。
在4G系统中,核心网和无线接入网采用了分离的结构,其中核心网使用了统一的核心网架构,这种架构可以提供多种不同的服务,例如语音、数据、云计算等。
无线接入网结构则采用了分布式结构,这种结构可以更加灵活、可靠,并且可以根据用户的需求进行扩展。
4G系统关键技术详解OFDMA技术OFDMA是一种现代无线通讯技术,主要应用于4G系统。
它允许多个用户同时使用同一频段,同时也可以使无线网络的频段资源得到充分的利用。
OFDMA技术可以防止在较低的信号强度下的干扰,以及可以减少动态资源管理的复杂性。
OFDMA技术也可以被用于多天线系统中,通过在不同的天线和子载波上发送数据来实现多用户的数据传输。
这种技术可以提高系统的吞吐量、容量和覆盖范围,并且提升终端用户数据传输的速度和稳定性。
MIMO技术MIMO是一种多天线技术,主要应用于4G系统。
它可以在多个天线之间传输数据,并拥有更高的吞吐量和覆盖范围。
MIMO技术可以在不增加带宽和发射功率的情况下提高系统的吞吐量。
它可以利用同一带宽内的多条传输通道,并将这些通道的信号组合起来,从而获得更强的信号。
在MIMO技术中,用户可以同时使用多个天线接收数据,然后将它们组合在一起以提高接收信号的质量和稳定性。
同时,MIMO技术也可以被用于多用户多天线系统中,从而增加系统的容量和覆盖范围。
主动干扰抑制技术主动干扰抑制技术主要应用于4G系统中,主要是为了解决移动终端之间的干扰问题。
后4G时代核心网的发展随着移动通信技术的发展,人们对网络速度和数据传输能力的需求也在不断增加。
4G 时代的到来,满足了人们对高速移动互联网的需求,为人们的生活和工作带来了巨大的便利。
随着人们对网络使用需求的不断提高,4G时代已经无法满足人们的需求,需要向下一代移动通信网络发展。
5G时代正在迎头赶上,而在5G时代到来之前,我们将会迎来一个过渡阶段——“后4G时代”。
让我们先来了解一下4G时代的核心网技术。
4G时代的核心网技术采用的是IP (Internet Protocol)技术。
IP技术能够将数据分成小块并通过互联网进行传输,从而实现高速、稳定的数据传输。
随着用户数量的不断增加,4G时代的核心网面临着数据传输能力不足的问题。
由于用户对高清视频、大型游戏等大流量应用的需求增加,核心网的传输容量已经达到了瓶颈。
为了满足用户对更高速、更稳定的数据传输的需求,需要对核心网进行改进和升级。
在后4G时代,核心网的发展将主要体现在以下几个方面:1. 面向服务的核心网架构:后4G时代的核心网将实现从数据中心到用户的端到端服务,以满足用户对高速、低时延的数据传输的需求。
这将实现对用户个性化需求的精确识别和服务,提供更好的网络体验。
2. 云计算和虚拟化技术的应用:后4G时代的核心网将更加注重云计算和虚拟化技术的应用。
通过将网络功能虚拟化,可以实现更高效的网络管理和资源利用,同时降低网络建设和运维成本。
3. 网络切片技术的发展:后4G时代的核心网将进一步发展网络切片技术,实现对不同用户、不同应用的精确服务。
通过将网络划分成多个独立的虚拟网络切片,可以针对不同应用需求提供定制化的网络服务,提高用户对移动互联网的满意度。
4. 异构网络的融合:后4G时代的核心网将实现异构网络的融合,通过统一的核心网架构,实现对不同网络类型的融合。
无论是4G、5G、Wi-Fi、蜂窝网络还是广域网,都能够实现无缝切换和互联互通。
5. 安全和隐私保护:后4G时代的核心网将更加注重网络安全和用户隐私保护。
《4G移动通信技术及优化》课程标准一、课程基本信息二、课程的性质、目的和任务1.课程性质《4G移动通信技术及优化》是电子信息工程技术专业移动通信方向的专业必修课,本课程是移动通信的专业核心课程之一,是移动通信工程的一个重要分支,也是无线通信网络中不可或缺的一部分。
通过该课程学习使学生具备4G网络体系架构的理解与认识、掌握4G原理及组网规划方式方法以及简单的故障排查能力;本课程配备行业一线商用设备,开展实训操作;同时引入中兴通讯研发的仿真软件,全方位系统化锻炼学生4G无线设备开通调试及网规网优方面的技术技能,提高学习效果和效率。
2.目的和任务通过本课程学习,学生将获得LTE无线接入网网络规划设计,网络勘察,工程实施及网络优化的工作技能,为从事移动通信工程行业,网规网优行业及其他移动通信行业相关工作奠定扎实的理论与实践基础。
《4G移动通信技术及优化》为第四学期开设,其前置课程为2G移动通信技术及优化,WCDMA移动通信技术及优化,CDMA2000移动通信技术,后续专业课程为通信工程实战等课程。
三、课程教学的基本要求四、课程的教学重点和难点、学时分配教学重点:LTE原理及关键技术,OFDM关键技术,RF优化,4G无线接入网及EPC 核心网的建设教学难点:LTE网络小区搜索流程,LTEMIMO基本原理介绍课程学时分配一览表五、相关课程的衔接本课程的前导的课程为《移动通信技术》、《2G移动通信技术及优化》《WCDMA移动通信技术及优化》,《CDMA2000移动通信技术》,后续课程为《移动通信网络优化项目实施》及4G全网建设与实施等课程。
六、实验教学七、其它课程的考核与评价。
总成绩=平时成绩(20%)+过程考核成绩(30%)+期末操作考试成绩(50%)考核中注意课程考核和职业技能认证考试相结合、理论与实践相结合,注重过程考核,发挥考核促进教法和学法改进的作用,力争科学全面地评价学生的综合素质,逐步强化实践能力、应用能力和创新能力的考核。
4G系统网络结构及其关键技术4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。
物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。
中间环境层的功能有QoS映射、地址变换和完全性管理等。
物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。
这一服务能自适应多个无线标准及多模终端能力,跨越多个运营者和服务,提供大范围服务。
第四代移动通信系统的关键技术包括信道传输;抗干扰性强的高速接入技术、调制和信息传输技术;高性能、小型化和低成本的自适应阵列智能天线;大容量、低成本的无线接口和光接口;系统管理资源;软件无线电、网络结构协议等。
第四代移动通信系统主要是以正交频分复用(OFDM)为技术核心。
OFDM技术的特点是网络结构高度可扩展,具有良好的抗噪声性能和抗多信道干扰能力,可以提供无线数据技术质量更高(速率高、时延小)的服务和更好的性能价格比,能为4G无线网提供更好的方案。
例如无线区域环路(WLL)、数字音讯广播(DAB)等,预计都采用OFDM技术。
4G移动通信对加速增长的广带无线连接的要求提供技术上的回应,对跨越公众的和专用的、室内和室外的多种无线系统和网络保证提供无缝的服务。
通过对最适合的可用网络提供用户所需求的最佳服务,能应付基于因特网通信所期望的增长,增添新的频段,使频谱资源大扩展,提供不同类型的通信接口,运用路由技术为主的网络架构,以傅利叶变换来发展硬件架构实现第四代网络架构。
移动通信会向数据化,高速化、宽带化、频段更高化方向发展,移动数据、移动IP预计会成为未来移动网的主流业务。
A.W iMAX技术下图说明了终端到终端的网络架构的移动WiMAX。
它包括两个关键实体:接入服务网络(ASN)和连接服务网络(CSN)的。
核心元素ASN的是基地台(BS)和ASN网关(ASNGW)这是连接在IP基础设施。
4G系统网络结构及其关键技术资料1. 4G系统概述4G系统是第四代移动通信技术,主要特点是高速、海量和全数字。
4G系统包括TD-LTE和FDD-LTE两种制式,其中TD-LTE是LTE技术的国际标准,FDD-LTE是全球领先的LTE技术。
2. 4G系统网络结构4G系统的网络结构包括核心网、无线接入网和终端设备三个层次。
2.1 核心网核心网是4G系统的核心部分,主要功能是提供高速互联网连接和多媒体业务处理。
4G系统的核心网由多个网络元素组成,包括MME、SGW、PGW和PCRF 等。
其中,MME是移动管理实体,负责控制用户的接入和切换;SGW是服务网关,负责用户数据的转发;PGW是分组网关,负责IP地址分配和流量控制;PCRF是策略和充值功能实体,负责用户计费和策略控制。
2.2 无线接入网无线接入网是4G系统的重要组成部分,主要负责用户的接入和数据传输。
4G系统的无线接入网采用LTE技术,主要包括基站子系统和无线网关子系统两个部分。
基站子系统主要负责用户数据的发射和接收,无线网关子系统主要负责用户数据的转发和控制。
2.3 终端设备4G终端设备包括智能手机、平板电脑、移动路由器等多种类型,能够实现高速网络接入和多媒体业务处理。
3. 4G系统关键技术4G系统的关键技术包括LTE技术、MIMO技术和VoLTE技术等。
3.1 LTE技术LTE技术可实现高速数据传输和低时延的空口接入。
在LTE技术中,数据包通过IP方式传输,实现了真正的全IP网络。
同时,通过多天线技术和动态频谱分配能够有效提高网络性能和用户体验。
3.2 MIMO技术MIMO技术是一种多天线技术,它通过多个天线发送和接收数据,从而提高网络吞吐量和覆盖范围。
4G系统使用的MIMO技术是2x2或4x4的天线技术,能够有效提高网络性能和用户体验。
3.3 VoLTE技术VoLTE技术是一种基于IP网络的语音通信技术,相比传统的语音通信技术,VoLTE能够提供更高质量的语音通话和更快的接通速度。
LTE知识学习之网络架构——无线及核心网组网LTE (Long-Term Evolution) 是第四代移动通信技术,致力于提供更快的数据传输速度、更低的延迟和更高的网络容量。
它的网络架构分为无线网络和核心网络两部分。
无线网络组网包括基站(eNodeB)、无线控制器(eNB)和用户设备(UE)三个主要组成部分。
基站是LTE网络中的无线接入节点,负责与用户设备的无线通信。
一个基站可以覆盖一个或多个小区,每个小区可以覆盖数百米到几公里的范围。
基站由基站子系统(BSS)和传输子系统(TSS)组成。
BSS包括基站控制器(BSC)和射频单元(RU),负责控制数据传输和接收/发送射频信号。
TSS负责将数据从基站传输到核心网络。
无线控制器是LTE网络中的控制节点,负责控制和管理基站。
它与核心网络和基站之间建立通信连接,并通过无线资源分配和调度控制实现调度用户设备的功能。
用户设备是指使用LTE网络的终端设备,如智能手机、平板电脑等。
用户设备通过与基站之间的无线链路进行通信,可以接收或发送数据。
核心网络是LTE网络中的中央处理单元,负责用户设备的认证和连接管理。
核心网络由多个功能单元组成,如移动管理实体(MME)、家庭环境(HSS)、目录(SLF)等,它们协同工作以提供各种服务和功能。
移动管理实体负责用户设备的用户鉴权、位置管理、基站切换等功能。
它还负责与用户设备进行连接建立和释放,并处理用户设备的位置更新。
家庭环境负责管理用户设备的用户配置文件和用户身份信息。
当用户设备尝试连接到网络时,家庭环境根据用户的身份和配置要求提供相应的服务。
目录是一个全局数据库,用于存储用户身份信息和相关数据。
它提供了用户设备和核心网络之间的数据访问和查询功能。
此外,核心网络还包括服务网络,它提供各种增值服务,如语音通话、短信、互联网接入等。
LTE的网络架构使得数据传输速度更快,延迟更低,并具有更高的网络容量。
无线网络的组网方式以基站、无线控制器和用户设备为主,实现了无线通信。
一:4G(TD-LTE)关键技术4G移动系统网络结构可分为三层:物理网络层、中间环境层、应用网络层。
物理网络层提供接入和路由选择功能,它们由无线和核心网的结合格式完成。
中间环境层的功能有QoS映射、地址变换和完全性管理等。
物理网络层与中间环境层及其应用环境之间的接口是开放的,它使发展和提供新的应用及服务变得更为容易,提供无缝高数据率的无线服务,并运行于多个频带。
1OFDM技术OFDM由多载波调制(MCM)发展而来,OFDM技术是多载波传输方案的实现方式之一,它的调制和解调是分别基于快速傅立叶反变换(IFFT)和快速傅立叶变换(FFT)来实现的,是实现复杂度最低、应用最广的一种多载波传输方案。
在传统的频分复用系统中,各载波上的信号频谱是没有重叠的,以便接收端利用传统的滤波器分离和提取不同载波上的信号。
OFDM 系统是将数据符号调制在传输速率相对较低的、相互之间具有正交性的多个并行子载波上进行传输。
它允许子载波频谱部分重叠,接收端利用各子载波间的正交性恢复发送的数据。
因此,OFDM系统具有更高的频谱利用率。
同时,在OFDM符号之间插入循环前缀,可以消除由于多径效应而引起的符号间干扰,能避免在多径信道环境下因保护间隔的插入而影响子载波之间的正交性。
这使得OFDM系统非常适用于多径无线信道环境。
OFDM的优点在于抗多径衰落的能力强,频谱效率高,OFDM将信道划分为若干子信道,而每个子信道内部都可以认为是平坦衰落的,可采用基于IFFT/FFT的OFDM快速实现方法,在频率选择性信道中,OFDM接收机的复杂度比带均衡器的单载波系统简单。
与其它宽带接入技术不同,OFDM可运行在不连续的频带上,这将有利于多用户的分配和分集效果的应用等。
但OFDM技术对频偏和相位噪声比较敏感,而且峰值平均功率比(PAPR)大。
2MIMO技术要达到LTE-A提出的目标数据传输速率,需要通过增加天线数量以提高峰值频谱效率,即多天线技术,包括Beam-forming和空间复用。
《移动通信技术》课程标准课程名称:移动通信技术课程代码:1203067 建议课时数:48 学分:3适用专业:软件技术专业、软件技术(海本直通车)专业、软件技术(嵌入式培训)专业1.前言1.1课程的性质本课程是高等职业技术院校通信网络专业的一门专业选修课程,主要定位于LTE通用网络技术,覆盖了4G全网的通信原理、网络拓扑、网络规划、工程部署、数据配置、业务调试等移动通信技术,强调学生、学员的实际应用能力已经将在社会上面临的考验。
1.2设计思路本课程的设置依据是通信网络与设备专业工作任务与职业能力分析表中的相应职业能力要求,并根据通信网络行业技术发展趋势及其对人才要求的变化进行调整。
根据市场调研和企业人才需求分析,我院通信网络与设备专业毕业生所从事的工作岗位主要有通信网络工程设计与施工、通信网络设备生产、管理、销售与技术支持等,掌握现代通信技术能使学生更好地胜任这些岗位并顺应整个行业的发展要求。
因此本课程在通信网络与设备专业中处于比较重要的地位,应当作为专业选修课程。
本课程立足于实际能力的培养,打破以知识传授为主要特征的传统学科课程模式,转变为以工作任务为中心组织课程内容和课程教学,让学生在完成具体项目的过程中来构建相关理论知识,并发展职业能力。
经过与企业专家深入、细致、系统的讨论分析,本课程最终确定以LTE通用网络技术作为逻辑主线来组织课程内容,据此确定了以下6个典型工作任务:4G全网的通信原理;网络拓扑;网络规划;工程部署;数据配置;业务调试。
课程内容突出对学生职业能力的训练,理论知识的选取紧紧围绕工作任务完成的需要来进行,充分考虑了高等职业教育对理论知识学习的需要。
按照情境学习理论的观点,只有在实际情境中学生才可能获得真正的职业能力,并获得理论认知水平的发展,因此本课程要求打破纯粹讲述的教学方式,实施项目教学以改变学与教的行为。
这是教学模式的一个重大转变,要有力地推动这一转变,需要以项目为载体来组织课程内容。
《4G全网建设与实施》课程标准一、课程基本信息二、课程的性质、目的和任务1.课程性质本课程是电子信息工程技术专业移动通信方向的必修课,是移动通信的职业能力核心课程之一。
本课程从通信行业发展方向及企业用人需求出发,为对接企业生产一线职业岗位打下基础,同时培养学生养成良好的职业素质和分析问题、解决问题的能力。
2.目的和任务本课程的主要目的是通过仿真软件和实体设备,完成4G全网建设的任务,让学生掌握4G全网建设技术,掌握LTE移动通信系统的开通,多部门协同作业,既强化了理论基础知识及技能,又能根据实际情况,处理工程中出现的故障和突发事故,为学生从事移动通信工程类相关岗位的顶岗实习打下扎实的基础。
三、课程教学的基本要求四、课程的教学重点和难点、学时分配教学重点:数据规划,容量规划,工程实施与业务验证,故障处理教学难点:故障处理,数据规划,容量规划课程学时分配一览表五、相关课程的衔接本课程开设于第五学期,是移动通信专业方向的职业技能核心课,本课程的前导课程是《4G移动通信技术及优化》,《移动通信工程建设实施与管理》,后续课程为综合实战和顶岗实习。
六、实验教学七、其它课程的考核与评价。
总成绩=平时成绩(20%)+过程考核成绩(30%)+期末操作考试成绩(50%)考核中注意课程考核和职业技能认证考试相结合、理论与实践相结合,注重过程考核,发挥考核促进教法和学法改进的作用,力争科学全面地评价学生的综合素质,逐步强化实践能力、应用能力和创新能力的考核。
学生成绩包括平时成绩,过程考核成绩,期末上机考试成绩,其中,平时成绩占20%,过程考核成绩占30%,期末考核占50%。
平时成绩包括出勤表现50%、课堂表现50%,主要考察学生的上课纪律和上课表现,培养学生的职业素质。
过程考核理论测评40%、实践操作40%、实验结果及报告20%,主要考核学生的理论知识水平、实践动手能力、团队协作精神、服从意识等。
期末考试为操作考核,力求科学全面地评价学生的综合素质。