初一数学上册多边形的内角和说课稿
- 格式:docx
- 大小:39.26 KB
- 文档页数:4
11.3.2多边形的内角和说课稿一、说教材本文为《11.3.2多边形的内角和》,在初中数学课程中具有重要作用和地位。
它是学生在学习了三角形、四边形的内角和的基础上,对多边形内角和概念进行拓展和深化的内容。
本节主要内容包括:多边形内角和的定义、计算公式及其推导过程,通过实际操作和例题分析,让学生更好地理解多边形的内角和性质,提高学生的空间想象能力和逻辑思维能力。
(1)作用与地位:多边形的内角和是几何学中的基础概念,对于培养学生的空间观念和逻辑思维具有重要作用。
它是连接平面几何与立体几何的桥梁,为后续学习多面体的内角和、表面积和体积等内容打下基础。
(2)主要内容:本节课主要围绕多边形的内角和展开,包括以下小节内容:1. 多边形内角和的定义;2. 多边形内角和的计算公式;3. 多边形内角和的推导过程;4. 应用多边形内角和解决实际问题。
二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解多边形内角和的定义,掌握多边形内角和的计算公式;(2)通过实际操作和推导过程,培养学生的空间想象能力和逻辑思维能力;(3)能够运用多边形内角和的性质解决实际问题,提高学生的应用能力;(4)激发学生对几何学的兴趣,培养学生的探究精神。
三、说教学重难点(1)重点:多边形内角和的定义、计算公式及其推导过程。
(2)难点:多边形内角和的推导过程,以及运用多边形内角和解决实际问题。
在教学过程中,要注意引导学生理解多边形内角和的定义,突破推导过程的难点,同时注重培养学生的空间想象能力和逻辑思维能力,为解决实际问题打下基础。
四、说教法在教学《11.3.2多边形的内角和》这一课时,我计划采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色:1. 启发法:- 通过提出问题引导学生思考,例如:“一个三角形的内角和是多少?四边形的内角和又是多少?那么五边形、六边形呢?它们之间是否存在某种规律?”- 利用学生已知的三角形和四边形的内角和知识,启发学生发现多边形内角和的规律。
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
《多边形的内角和与外角和》说课稿《多边形的内角和与外角和》说课稿(精选3篇)《多边形的内角和与外角和》说课稿1一,说教材分析从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
二,说学生情况学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。
因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三,说教学目标及重点,难点的确定新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。
根据新课标和本节课的内容特点我确定以下教学目标及重点,难点【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理【教学难点】转化的数学思维方法四,说教法和学法本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
《多边形的内角和》说课稿蔺娟本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.一、说教学目标【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.二、说重难点【教学重点】多边形内角和定理的探索和应用【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.三、说教学过程设计本节课分六个教学环节第一环节创设现实情境,提出问题,引入新课1.三角形是如何定义的?2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?3.结合图形认识多边形的顶点、边、内角及对角线。
目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。
同时渗透类比思想。
第二环节实验探究1.三角形的内角和是多少度?你是怎么得出的?①用量角器度量:分别测量出三角形三个内角的度数,再求和。
②拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。
目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。
2.四边形的内角和是多少?你又是怎样得出的?1度量; 2拼角; 3将四边形转化成三角形求内角和。
目的:学生先通过度量、拼角两种方法,猜想得出四边形的内角和是360°,然后引导学生利用分割的方法,将四边形分割成两个三角形来得到四边形的内角和,进一步渗透类比,转化的数学思想。
多边形的内角和(第一课时)说课稿施秋红一.说教材1.教材的地位和作用从教材的编排上,本节课作为第七章第三节,起着承上启下的作用。
在内容上,从三角形内角和到四边形内角和到多边形内角和环环相扣,再将多边形内角和公式应用于平面镶嵌,层层递进,知识间的联系性比较强,特别是教材中设计了一些:“想一想”“试一试”“做一做”等内容,体现了课改的精神。
在编写意图上,编者有意从简单的几何图形入手,让学生经历探索、猜想、归纳等过程,发展了学生的合情推理能力。
易于激发学生的学习兴趣,很适合学生的认知特点。
通过这节课的学习,可以培养学习探索与归纳能力,体会到从简单到复杂,从特殊到一般的数学方法和转化的数学思想。
2.教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:[知识与技能] 掌握多边形的内角和公式,并能熟练运用。
[过程与方法](1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
(3)通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
[情感态度与价值观]通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,体验数学充满探索和创造,从而提高学生的学习热情。
3.教学重点和难点重点:探索多边形内角和公式。
难点:在探索多边形内角和时,如何把多边形转化成三角形。
二.说教法数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。
整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
《多边形的内角和》说课稿多边形的内角和说课稿
一、教学目标
通过本节课的研究,学生应能够:
1. 认识多边形的基本概念和特点;
2. 理解多边形的内角和的概念;
3. 掌握计算多边形的内角和的方法;
4. 运用所学知识解决与多边形内角和相关的问题。
二、教学重点
1. 多边形的内角和的概念;
2. 计算多边形的内角和的方法。
三、教学准备
1. 教材:《几何》教科书;
2. 教具:白板、黑板、彩色粉笔;
3. 学具:多边形的模型。
四、教学过程
1. 导入(5分钟)
通过简单的引导,复上节课所学的几何知识,例如:点、线、
角等。
2. 研究(25分钟)
2.1 介绍多边形的概念和特点(5分钟)
通过使用多边形的模型,向学生介绍多边形的基本概念和特点,如边的定义、顶点的定义等。
2.2 讲解多边形的内角和的概念(10分钟)
通过绘制不同种类的多边形,引导学生观察多边形的内角和的特点,讲解内角和的概念及其与多边形边数的关系。
2.3 计算多边形的内角和的方法(10分钟)
介绍计算正多边形和一般多边形内角和的方法,并通过具体例子进行讲解和演示。
3. 练(15分钟)
划分小组,让学生利用所学方法计算不同多边形的内角和,并在小组内进行互相讨论和解答。
4. 总结与拓展(10分钟)
综合总结多边形的内角和的概念和计算方法,提醒学生在实际问题中应用多边形的性质和定理解决问题。
五、课堂小结
通过本节课的研究,学生对多边形的内角和有了初步的了解,并掌握了计算多边形内角和的方法。
六、作业布置
1. 预下一节课的内容;
2. 完成课堂练题。
多边形的内角和说课稿一、引言多边形是几何学中的重要概念,它由多个边和角组成。
在本次说课中,我将重点介绍多边形的内角和相关概念。
通过本节课的学习,学生将能够理解多边形的内角和的计算方法,并能够应用所学知识解决与多边形内角和相关的问题。
二、教学目标1. 知识与技能:a. 掌握多边形的定义和内角的概念;b. 理解多边形内角和的计算方法;c. 能够应用所学知识解决多边形内角和的问题。
2. 过程与方法:a. 通过教师讲解、示例演示和学生练习相结合的方式,引导学生理解内角和的计算方法;b. 通过小组合作、讨论和展示的方式,培养学生合作能力和表达能力;c. 通过解决实际问题的方式,培养学生的应用能力和解决问题的能力。
3. 情感态度与价值观:a. 培养学生对几何学的兴趣和好奇心;b. 培养学生合作学习的意识和团队精神;c. 培养学生解决问题的积极态度和创新思维。
三、教学重难点1. 教学重点:a. 多边形的定义和内角的概念;b. 多边形内角和的计算方法。
2. 教学难点:a. 引导学生理解多边形内角和的计算方法;b. 培养学生应用所学知识解决相关问题的能力。
四、教学过程1. 导入(5分钟)a. 引入多边形的概念,让学生回顾多边形的定义;b. 提问:你们知道什么是多边形?请举例说明。
2. 讲解多边形的内角和(15分钟)a. 通过示意图,让学生观察多边形的内角;b. 引导学生发现多边形内角和的规律:n边形的内角和等于180°×(n-2);c. 通过具体例子,让学生运用公式计算多边形的内角和。
3. 学生练习与合作(20分钟)a. 将学生分成小组,每一个小组完成一道多边形内角和的计算题目;b. 学生相互讨论,合作解决问题,并记录解题过程;c. 鼓励学生展示自己的解题思路和答案,促进学生之间的交流与合作。
4. 拓展与应用(15分钟)a. 提供一些实际问题,要求学生运用所学知识解决;b. 学生个别或者小组完成拓展问题,鼓励学生思量和创新。
多边形的内角和教学设计及说课稿这是多边形的内角和教学设计及说课稿,是优秀的数学教案文章,供老师家长们参考学习。
多边形的内角和教学设计及说课稿第1篇一、教学任务分析1、教学目标定位根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。
因此,确定如下教学目标:(1).知识技能目标让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。
2、教学重、难点定位教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
二、教学内容分析1、教材的地位与作用本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。
本节课作为第七章第三节,起着承上启下的作用。
在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。
因此多边形的边、内角、内角和等等都可以同三角形类比。
通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。
而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
三、教学诊断分析学生对三角形的知识都已经掌握。
让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。
由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。
《多边形的内角和》的说课稿(精选9篇)《多边形的内角和》的篇1一、教材分析1、教学内容“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。
2、本章及本节的地位与作用本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础,公式的运用还充分地体现了图形与客观世界的密切联系。
3、重点与难点多边形内角和的公式及公式的推导和运用是本节课的重点;因为公式的得出可以用多种不同的方法推导,所以我确定本节课的难点是如何引导学生通过自主学习,探索多边形内角和的公式。
二、教学目标根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:①识别多边形的顶点、边、内角及对角线;②理解多边形内角和公式的推导过程;③掌握多边形内角和公式的内涵及其运用。
能力目标:①培养学生类比归纳、转化的能力;②培养学生观察分析、猜想和概括的能力。
思想情感目标:通过体会数学图形的美感,提高审美能力,树立认识数学来源于生活,又服务于实践的观点。
三、教法分析在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察————分析————猜想————概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。
四、过程设计1、创设问题情境,引入新课我是这样设计问题的:在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定,又围成什么图形?……不断地向外拉,结果围成什么图形?如果上述情况不是往外拉而是往里推,那是什么图形?在学生的回答中引出主题:今天我们来学习多边形的有关知识。
多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。
情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]教学重点:多边形的内角和。
的应用。
教学难点:探索多边形的内角和与外角和公式过程。
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。
[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。
n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。
)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。
五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。
初一数学上册多边形的内角和说课稿
一、教材分析
1、教学内容
“多边形的内角和”一节包括的内容主要有多边形的相关概念以及多边形内角和公式的推导和使用。
2、本章及本节的地位与作用
本章《多边形》,探索的是三角形和多边形的相关概念和性质,是学生在上学期初步理解和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。
本节课“多边形的内角和”作为本章的一个重点,是三角形相关知识的拓展,学习四边形的基础, 公式的使用还充分地体现了图形与客观世界的密切联系。
3、重点与难点
多边形内角和的公式及公式的推导和使用是本节课的重点; 因为公式的得出能够用多种不同的方法推导, 所以我确定本节课的难点是如何引导学生通过自主学习, 探索多边形内角和的公式。
二、教学目标
根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于实行创造性的教学。
所以,我把本节课的教学目标确定为以下三个方面:
知识目标:
① 识别多边形的顶点、边、内角及对角线;
② 理解多边形内角和公式的推导过程;
③ 掌握多边形内角和公式的内涵及其使用。
水平目标:
① 培养学生类比归纳、转化的水平;
② 培养学生观察分析、猜想和概括的水平。
思想情感目标:
通过体会数学图形的美感,提升审美水平, 树立理解数学来源于生活,又服务于实践的观点。
三、教法分析
在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察----分析----猜想----概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。
学法指导是培养学生学习水平的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。
教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提升了课堂教学的效果。
四、过程设计
1、创设问题情境,引入新课
我是这样设计问题的:
在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定, 又围成什么图形?……持续地向外拉,结果围成什么图形?
如果上述情况不是往外拉而是往里推,那是什么图形?
在学生的回答中引出主题:今天我们来学习多边形的相关知识.
(板书:多边形的内角和)。
因为前面已经学过三角形的相关知识, 从学生熟悉的情境入手引
入新知识, 更能引起学生的学习兴趣, 启发思考:多边形与三角形有
什么密切的联系呢? 渗透了互为转化的思想。
2、新课学习:
(1)基本概念
我把新课的引入过程作为本节课一条主线,各环节都围绕着这条
主线展开。
首先告诉学生:我们往外拉得到的这些图形称为凸多边形,你能
给往里推得到的多边形起个名字吗?怎样区别这两种图形呢?把凹多
边形与凸多边形从分割的角度来区别,指出暂时研究的仅仅凸多边形。
协助学生复习三角形的相关概念,类比得出四边形、五边形、…
n边形的定义,识别多边形的顶点、边及内角,并会表示出一个多边形。
引入特殊多边形之前, 先欣赏生活中常见到的丰富多彩的图案,
让学生体会数学图形的美,提升审美情趣. 称这样的多边形为正多边形,说明这种规则的、对称的图形非常重要,为下一节学习用正多边
形铺设地板作好铺垫。
在多边形的对角线这个概念的理解和理解上,应突出它的作用,
引导学生观察、发现,因为这种特殊的线段,把多边形分割成了最基本
的图形——三角形,目的是为多边形内角和公式的推导埋下伏笔。
(2)知识探究
为了加深对概念的理解,领会其使用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这个部分,我采取以下
两个探究活动充分调动全体学生主动探索多边形的内角和公式:
探究活动1:多边形的对角线
先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。
思考并分小组讨论以下两个问题:①从多边形的一个顶点出发能画出几条对角线?②这样的画法把多边形分成了多少个三角形?
因为多边形内角和公式的推导就是从对角线和三角形入手的,所以,这两个问题就显得尤其重要。
引导学生回想课前引入的过程,图形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。
探究活动2:多边形的内角和
这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?
四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是
2×180°……在肯定准确的答案和各种想法的同时,让学生寻找出办法。