汽轮机3
- 格式:ppt
- 大小:1.47 MB
- 文档页数:51
汽轮机二、三、四段供热抽汽经济性分析摘要:本文对某公司 330MW 亚临界再热机组,通过抽汽等效焓降计算二、三、四段供热抽汽对汽机做功影响,分析得出三抽供热对汽轮机做功影响最少,二抽供热对汽轮机做功影响最大,三四抽供热经济性最好,二抽进行辅助调整来满足热用户的的结论,为供热机组供热调整提供依据。
关键词:等效焓降;抽汽;供热;经济性分析引言;随着我国国民经济的持续快速增长,石油、化工、炼油、制糖、纺织、环保等大型企业的发展,电厂和自备电站对于供热、供电的抽汽供热机组提出了更高的要求。
大容量供热汽轮发电机组,具有较高的供热蒸汽参数和较低的单位能耗,可以满足用户近、远期用热需求,实现集中供热,又可以节能降耗,减少污染,用等效焓降法,计算二、三、四段供热抽汽对汽机做功影响,调整供热运行方式,实现机组供热经济性最大化。
具体分析:一、先计算出同样供热量下,使用不同抽汽,抽汽量分别多少。
由于二、三、四段抽汽具有不同的压力,温度,对于相同的供热量,需要不同的抽汽量,所以要先计算相同供热量下,抽汽量的比例。
例如现在供热量需要:1KG/h,250℃,0.9Mpa的压力,2945.44KJ/KG二段抽汽额定参数:324.9℃,3.921Mpa,3029.28KJ/KG三段抽汽额定参数:437.8℃,1.836Mpa,3331.95KJ/KG四段抽汽额定参数:348℃,0.9717Mpa,3153.31KJ/KG凝补水作为减温水,热量是:(20℃)83.6KJ/KG根据质量、能量守恒定律,当需要1KG/h,250℃,0.9Mpa抽汽时,二段抽汽量分别是:3029.28x+(1-x)83.6=2945.44 →x=0.9715KG/h,减温水=0.0285KG/h三段抽汽量分别是:0.881KG/h,减温水=0.119KG/h。
使用供热匹配器后,引射系数达1时,二抽、四抽流量分别为:0.475KG/h,0.475KG/h,减温水量0.048KG/h设引射系数为z,二、四抽流量分别为x,y 则二、利用抽汽等效焓降计算1KG二段抽汽、三段抽汽、四段抽汽等效焓降。
简述汽轮机的分类汽轮机是具有一定温度和压力的蒸汽来做功的回转式原动机。
一、按汽轮机所具有的级数分类所谓汽轮机的级,是由一段喷嘴与其后边的一级动叶片所组成,用来完成从蒸汽热能转变为机械功全过程的基本单元。
1.单级汽轮机:单级汽轮机是只有一个级的汽轮机,即只有一段喷嘴及其后面的叶片,是最简单的汽轮机。
2.复速级汽轮机:复速级汽轮机是单级汽轮机的变种,仍然是单级汽轮机,它与一般单级汽轮机不同之处是具有两列以上的动叶片,又称为速度级汽轮机。
3.多级汽轮机二、按蒸汽在汽轮机内流动的方向分类1.轴流式汽轮机:这种汽轮机的蒸汽在汽轮机内流动的方向和轴平行。
2.辐流式汽轮机:蒸汽在汽轮机内流动的方向与汽轮机轴相垂直的汽轮机。
3.周流式汽轮机:蒸汽在汽轮机中既不是沿轴线方向流动,也不是沿辐向流动,而是沿圆周方向,几进几出。
三、按汽缸的数目分类1.单缸汽轮机2、双缸汽轮机 3、多缸汽轮机四、按汽轮机的用途分类1.电站汽轮机2、工业汽轮机 3、船用汽轮机五、按汽轮机进汽压力分类低压汽轮机 1.2~1.5MPa 中压汽轮机 2~4MPa次高压汽轮机5~6MPa 高压汽轮机 6~10MPa超高压汽轮机12~14MPa 亚临界汽轮机 16~18MPa超临界汽轮机大于22.17MPa六、按汽轮机热力系统分类1.凝汽式汽轮机:蒸汽在汽轮机内做功后,除有一部分轴封漏汽外,全部排入凝汽器。
2.调整抽汽式汽轮机:它与凝汽式汽轮机的区别是:其抽汽压力可以在某一范围加以调整,可以有一级调整抽汽,也可以有两级调整抽汽。
3.背压式汽轮机:蒸汽在汽轮机内做功后,以高于大气压力被排入排汽室,以供热用户采暖或工业用汽,这种汽轮机在热力系统中只有给水加热器,没有凝汽器,因而不存在冷源损失,热能利用率高。
4.中间再热式汽轮机:为了使排其汽温度不超过允许限度,采用了蒸汽中间再热,称为中间再热式汽轮机。
这种汽轮机是将在汽轮机高压缸做完功的蒸汽,再送回锅炉再热器中加热到接近于新蒸汽温度,然后回至汽轮机的中低压缸继续做功。
3.7.6 汽轮机冷态滑参数启动:3.7.6.1启动方式的选择原则:3.7.6.1.1高压缸启动方式为汽轮机常规的启动方式,只有在极端寒冷气候下,空冷岛启动有冻结的潜在威胁时,方可采用高中压缸联合启动方式。
3.7.6.1.2 汽轮机启动方式选择是通过DEH“旁路投切”功能实现,选择“旁路切除”启动方式为高压缸启动,选择“旁路投入”启动方式为高中压缸联合启动。
3.7.6.2 汽轮机高压缸启动:3.7.6.2.1 冲转条件:1)主蒸汽压力:5.0Mpa。
2)主蒸汽温度:340℃。
3)再热汽压:0Mpa。
4)再热蒸汽温度:320℃。
5)排汽装置背压低于20Kpa。
6)转子的偏心<0.076mm。
7)凝结水母管压力正常,低压缸后缸喷水阀投自动。
8)机组保护投入正常。
9)蒸汽品质符合要求。
10)高压缸排汽区、中压缸抽汽区和中压缸排汽区上、下缸温差<42℃。
11)汽缸本体所有疏水阀已开启。
12)盘车连续运行12小时以上,盘车电流正常,汽缸内、汽封处无异音。
13)润滑油系统工作正常,油温38℃(冲转后调整油温38~49℃)油压0.096~0.124Mpa。
14)EH油系统工作正常,油温:38~55℃,油压12.41-15.17Mpa。
15)发电机氢、油、水系统工作正常,机内氢压不小于0.31MPa,氢纯度≥96%,机内氢压与密封油压差84KPa,空氢侧密封油压差<±490Pa,空、氢侧密封油温度38~49℃,发电机定子冷却水压力≤0.25MPa,定子冷却水流量55t/h。
16)检查各表计齐全,指示正常,声光报警系统试验正常,且无异常报警信号。
3.7.6.2.2 冲转:1)检查冲转条件全部满足,记录以下参数:主、再热蒸汽温度、压力、高压缸第一级金属温度、中压缸第一静叶持环温度、偏心率、真空、轴向位移、差胀、盘车电流、润滑油压力、温度、EH油温度等。
2)检查高压缸排汽通风阀关闭。
3)在挂闸前,DEH应处于“操作员自动”,“ATC监视”,“单阀”,“旁路切除”灯亮。
汽轮机本体检修工艺规程低压缸揭缸检修目录目录 (I)汽机设备检修工艺规程 (1)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)汽轮机低压缸揭缸检修工艺规程1 范围本标准根据Q/HHW 217002-2017《标准编制导则》给出的规则编制,规定了东方汽轮机厂超超临界、中间再热、冲动式、单轴、三缸四排汽凝汽式发电机组汽机汽缸揭缸检修检修工艺的标准及要求。
2 规范性引用文件DL/T 338-2010 并网运行汽轮机调节系统技术监督导则DL/T 1055-2007 发电厂汽轮机、水轮机技术监督导则国能安全[2014]161号防止电力生产事故的二十五项重点要求DL/T 870-2004 火力发电企业设备点检定修管理导则GB 26164.1-2010 电业安全工作规程第1部分:热力和机械DL/T 838-2017 燃煤火力发电企业设备检修导则3 术语和定义汽轮机是将蒸汽的热能转换为机械能的旋转式蒸汽动力装置,是火电和核电的主要设备之一,用于拖动发电机发电。
工序0 概述汽轮机低压缸分为A低压缸和B低压缸。
低压缸设置有两个排汽口,排汽口处设有扩压段。
每个低压缸为分流式三层焊接结构,由低压外缸、低压内缸和低压进汽室三部分组成。
排汽缸采用了逐渐扩大型排汽室等新技术,使排汽缸具有良好的空气动力性能。
工序1 安全措施□检查确认安全和技术措施已正确执行。
□拆卸和复装导汽管时,按要求搭设脚手架和围栏,并设置安全网。
□使用加热棒,戴必要的防护手套,避免烫伤;加热棒妥善放置以免高温着火。
使用螺栓加热装置,做好防止触电和烫伤措施,加热后的螺栓加热棒应放在专用架上或放入其它螺栓孔内。
□部件回装前必须用压缩空气吹扫干净,对照封堵记录,将封堵有序撤出,确保缸内干净,内部无任何异物。
工序2 主机低压缸A解体2.1 解体低压缸□推力轴承未解体及靠背轮未断开前测量A、B低压转子轴向定位尺寸。
□盘车停止后拆除低压外缸及两端轴封套水平中分面螺栓,拔出定位销。
汽轮机三级抽汽系统的问题一简要说明汽轮机的抽汽回热加热系统,共有六级管道及阀门等组成,其中,第三级抽汽,取自汽轮机中压缸的低部,主要作用是加热除氧器中的锅炉给水;在其进入除氧器之前,和来自机组辅助蒸汽加热系统中,用于机组启动初期使用的加热除氧器给水的管道合并,共用一根管道进入除氧器系统。
二存在的问题1)机组运行期间,三级抽汽出口压力经常小于或者等于除氧器压力,此时,三级抽汽系统不能正常供汽。
2)机组运行期间,控制机组辅助蒸汽加热系统中的辅助联箱压力偏高,经常大于三级抽汽出口的压力,此时,三级抽汽系统不能正常供汽。
三潜在危害1)三段抽汽系统不能正常供汽,造成管道内蒸汽滞留,容易凝结形成积水,特别是机组在低负荷下长期运行时,蒸汽滞留加聚,形成的积水也会更严重。
2)三段抽汽管道位于中压蒸汽进口处的中压缸低部,管道内的滞留蒸汽很容易反流进入中压缸低部,造成中压缸下部/上部的温差增大,如果存在积水,温差将会更大,其结果必会造成机组受力不均匀,引起机组振动,甚至跳机。
四采取的措施1)虽然三段抽汽系统有自动检测管道积水打开疏水阀组的功能,但是,按照运行实践经验,这些是有滞后的。
也就是说,不能等到其自动打开,最好是要提前采取措施,比如,机组低负荷下运行时间较长时,手动开启相应的疏水阀组减少积水现象。
2)严密监视三级抽汽压力,除氧器压力,以及辅助蒸汽联箱的压力,保证压差,确保三段抽汽系统正常供汽。
3)改变辅助蒸汽加热系统的供汽汽源,把目前使用的锅炉低温过热器出口蒸汽汽源,切换为再热蒸汽冷段蒸汽汽源,降低辅助联箱的供汽压力。
如不能满足汽轮机轴封供汽系统的压力温度时,退入辅助蒸汽加热除氧器系统运行。
4)机组低负荷(35%额定负荷以下)下长期运行时,要求锅炉增加热负荷,强化燃烧,提高锅炉出口蒸汽压力和温度等参数,尽量保证机组接近额定参数运行,保证三级抽汽压力正常。
刘大力2017年3月7日星期二。
第三章汽轮机在变工况下的工作汽轮机的热力设计就是在已经确定初终参数、功率和转速的条件下,计算和确定蒸汽流量、级数、各级尺寸、参数和效率,得出各级和全机的热力过程线等。
汽轮机在设计参数下运行称为汽轮机的设计工况。
由于汽轮机各级的主要尺寸基本上是按照设计工况的要求确定的,所以一般在设计工况下汽轮机的内效率达最高值,因此设计工况也称为经济工况。
汽轮机在实际运行中,因外界负荷、蒸汽的状态参数、转速以及汽轮机本身结构的变化等,均会引起汽轮机级内各项参数以及零部件受力情况的变化,进而影响其经济性和安全性。
这种偏离设计工况的运行工况叫做汽轮机的变工况。
研究变工况的目的,在于分析汽轮机在不同工况下的效率、各项热经济指标以及主要零部件的受力情况。
以便设法保证汽轮机在这些工况下安全、经济运行。
本章主要讨论电厂使用的等转速汽轮机在不同工况下稳态的热力特性,即讨论汽轮机负荷的变动、蒸汽参数的变化以及不同调节方式对汽轮机工作的影响。
同研究设计工况下的特性一样,分析汽轮机的变工况特性也应从构成汽轮机级的基本元件一一喷嘴和动叶开始。
喷嘴和动叶虽然作用不同,但是如果对动叶以相对运动的观点进行分析,则喷嘴的变工况特性完全适用于动叶。
第一节渐缩喷嘴的变工况研究喷嘴的变动工况,主要是分析喷嘴前后压力与流量之间的变化关系,喷嘴的这种关系是以后研究汽轮机级和整个汽轮机变工况特性的基础。
喷嘴又分渐缩喷嘴和缩放喷嘴两种型式。
本节主要分析渐缩喷嘴的变工况特性。
一、渐缩喷嘴的流量关系式本书第一章已指出,对渐缩喷嘴,在定熵指数k和流量系数μn都不变的条件下,当其初参数p*0、ρ*0及出口面积A n不变时,通过喷嘴的蒸汽流量G与喷嘴前、后压力比εn的关系可用流量曲线(如图3-1中曲线ABC)表示。
当εnεc时,其流量为(3-1) 当εn≤εc,时,其流量为(3-2) 显然,对应另一组初参数(p*10、ρ*01),可得到另一条相似的流量曲线A1B1C1(p*01p*0),此时通过该喷嘴的临界流量亦相应地改变为由于初参数不同的同一工质具有相同的临界压力比,故各条流量曲线的临界点B、B1…均在过原点的辐射线上,如图3-1所示。
汽轮机的热应力、热膨胀和热变形关于汽轮机的三热问题汽轮机的热应力、热膨胀和热变形蒸汽在汽轮机中的传热现象金属部件的温度分布汽轮机的热应力汽轮机的热膨胀汽轮机的热变形汽轮机的热应力、热膨胀和热变形蒸汽在汽轮机中的传热现象蒸汽在汽轮机内膨胀做功,将热能转变为机械能,同时又以对流传热的方式,将热量传递给汽缸、转子等金属部件的表面。
热量在汽缸内以导热的方式从内壁传到外壁,最后经保温层散到大气;热量在转子内以导热方式从转子表面传到中心孔,通过中心孔散给周围空间。
由于热量从金属内导热需要一定的时间,因而在汽缸内、外壁间以及转子表面和中心孔间形成温差。
汽轮机的热应力、热膨胀和热变形汽轮机在稳定工况下运行时的传热过程汽轮机在启停和工况变化时的传热过程换热系数对金属部件上引起的温差的影响蒸汽在汽轮机中的传热现象汽轮机的热应力、热膨胀和热变形汽轮机在稳定工况下运行时的传热过程汽轮机在蒸汽参数不随时间变化的稳定工况下运行时,汽缸、转子等金属部件内的温度分布是不随时间变化的称为稳态传热过程。
汽轮机的热应力、热膨胀和热变形汽轮机在启停和工况变化时的传热过程在汽轮机启停和工况变化时,汽缸和转子整个金属部件的温度分布将发生变化。
在汽轮机启动和加负荷过程中,由于蒸汽温度比金属部件温度高,蒸汽将热量传给金属部件,使其温度升高,金属部件内温度分布是不均匀的。
而在停机和减负荷过程中,蒸汽温度低于金属部件温度,使其冷却,温度下降,金属部件内温度分布是不均匀的。
汽轮机的热应力、热膨胀和热变形凝结换热的概念当蒸汽与温度低于蒸汽压力对应的饱和温度的金属表面接触时,在金属表面容易发生凝结换热现象,蒸汽放出汽化潜热,凝结成液体。
膜状凝结珠状凝结汽轮机的热应力、热膨胀和热变形膜状凝结凝结换热时蒸汽在金属表面凝结成水膜。
珠状凝结凝结换热时蒸汽在金属表面凝结成水珠。
(汽轮机转子以一定转速旋转,由于离心力作用,形不成水膜)。
汽轮机的热应力、热膨胀和热变形珠状凝结的放热系数比膜状凝结的放热系数要大得多,约大15~20倍。
汽机试题三一填空1.汽轮机的变压运行不但提高了汽轮机的经济性,而且()了金属部件内部引起的温差。
2.汽轮机金属部件的最大允许温差由机组结构、汽缸转子的热()、热()以及转子与汽缸的()等因素来确定。
3.汽轮机刚升到满负荷时,调节级的蒸汽温度(),此时金属部件内部温差达到()。
4.金属在高温下长期工作,其组织结构将发生显著变化,引起机械性能的改变,出现蠕变、()、应力()、()等现象。
5.一般规定汽轮机超速试验后,方可进行( ),以免影响超速试验的准确性。
6.汽轮机热态启动时,调节级的蒸汽温度如果低于该级的金属温度,则汽缸内壁受到冷却产生( )应力,汽缸外壁产生( )应力。
7.汽轮机在稳定工况下运行时,汽缸和转子的热应力( )。
8.当蒸汽的温升率一定,汽轮机启动进入( )时,汽缸和转子的热应力达到最大值。
9.汽轮机每减一次负荷后又增至原来,则转子表面和中心孔的热应力及汽缸内壁与外壁的热应力完成一个( )循环。
10.表示工质状态特性的物理量叫( )。
11.平壁导热传递的热量与壁两面表面温度差成( ),与壁面面积成( ),与壁厚成( )。
12.当给水温度在某一值使回热循环的热耗率最低,此给水温度称为热力学上的( )。
13.汽轮机凝汽器的铜管结垢将使循环水出入口温差()、造成凝汽器的端差()。
14.发现汽轮机轴向位移指示值偏高,应参照()温度、推力瓦工作面及非工作面()温度、推力瓦油膜压力、主蒸汽流量、监视段压力及胀差等进行分析,采取措施。
15.蒸汽在汽轮机内膨胀做功,将()能转变为(),同时又以()传热的方式传给汽缸内壁,汽缸内壁的热量以()方式由内壁传到外壁。
16.当蒸汽与低于蒸汽饱和温度的金属表面接触时,会在金属表面发生蒸汽凝结现象,在凝结过程中蒸汽放出()。
17.蒸汽对汽轮机转子和汽缸等金属部件的放热系数不是一个常数,它随蒸汽的流动状态以及蒸汽的()、()和()的变化而变化。
18.汽轮机在冷态启动和加负荷过程中,蒸汽温度(),蒸汽将热量传给金属部件,使金属部件的温度()。
Q/GDNSPC国电石嘴山发电公司企业标准批准:审核:编写:马海民检修部2011年08月22日有限#3汽轮机本体大修扣缸技术措施有限#3汽轮机大修于2011年8月22日具备扣缸条件,特制定以下技术措施:1、清理汽缸,将缸内各部件吊出,用空压机吹干净或用吸尘器吸干净,拆除临时封堵,汽缸干净,无杂物、灰尘。
2、吊装下隔板、下隔板套、下轴封套,将隔板套、隔板及下轴封套,清扫干净,逐级吊入,用铜棒打到位,用塞尺检查挂耳与汽缸结合面是否有间隙,挂耳下部与汽缸结合面应无间隙。
3、用专用吊具将转子吊平慢慢吊入缸内,扶好转子,防止碰伤转子并在轴瓦浇上透平油转子用水平仪找正。
4、复测通流间隙,如各数值均在检修范围之内,进行下一步工作,如果有间隙超标现象,必须查清原因,进行处理好后才能进行下部工作。
54、回装轴封套及扣内缸,吊入轴封套打入稳钉,用重型扳手紧中分面螺栓,并点焊防止松动。
吊入内缸打入稳钉,盘动转子,用听针监听应无磨擦声。
冷紧内缸螺栓最后热紧,从汽缸中部左右对称向前后紧。
6、回装隔板套及其它轴封套,试扣外缸,吊入隔板套,打上销钉螺栓并紧固,最后点焊防止松动。
吊入轴封套打入稳钉,紧中分面螺栓并点焊防止松动。
吊起外缸进行找平,由专人指挥行车将汽缸慢慢落下,如有卡涩应吊起,撑好汽缸进行打磨,打磨光滑后再下落,不能强行用螺栓往下紧,待汽缸完全落靠后,再吊起抹汽缸胶,盘动转子,用听钉监听应无磨擦。
7、当汽缸快要落靠时,装入四角定位销,最后落下汽缸,技术记录齐全、验收单齐全,汽缸胶涂抹要均匀,不能有遗漏的地方,冷紧内缸螺栓最后热紧,从汽缸中部左右对称向前后紧。
8、紧外缸螺栓,汽缸落下后,在各螺栓处装垫圈,注意检查垫圈各密封面,确认没有伤痕,再装入螺母。
进行紧固,从汽缸中部左右对称向前后依次紧螺栓,需要热紧时不能强行拧到规定的位置。
9、装温度测点法兰,热工配合穿温度线,装测温线法兰,用重型扳手均匀紧固,兰盘紧均匀,各密封面要严密。
36科技资讯 SCIENCE & TECHNOLOGY INFORMATION动力与电气工程DOI:10.16661/ki.1672-3791.2103-5042-2206某电厂汽轮机三抽温度高原因分析及处理①李隆锋 陈浩(浙江浙能乐清发电有限责任公司 浙江温州 320609)摘 要:某发电公司660 MW汽轮发电机组三抽温度随着机组启停逐步升高,最高达到508 ℃,严重影响了机组的安全。
该文主要从机组结构出发,对三抽温度升高的原因进行分析,制定临时运行措施,保证运行期间机组的安全性,同时结合高中压缸检修时,对缺陷进行了处理,最终达到了预期的效果,保证了机组的经济性。
该问题的处理和解决可为其他同类型电厂提供借鉴。
关键词:电厂 660 MW 三抽 安全性中图分类号:TM621 文献标识码:A文章编号:1672-3791(2021)03(b)-0036-04Cause Analysis and Treatment of High Temperature of ThirdExtraction of Steam Turbine in a Power PlantLI Longfeng CHEN Hao(Zhejiang Zheneng Leqing Power Generation Co., Ltd., Wenzhou, Zhejiang Province, 320609 China)Abstract : With the start-up and shut-down of 660 MW steam turbine generator unit, the temperature of the third extraction of 660 MW steam turbine generator unit in a power generation company gradually increases, and the maximum temperature reaches 508 ℃, which seriously affects the safety of the unit. Starting from the structure of the unit, this paper analyzes the reasons for the temperature rise of the third extraction, formulates temporary operation measures to ensure the safety of the unit during operation, and at the same time, combined with the maintenance of the high and medium pressure cylinder, it deals with the defects, and finally achieves the expected effect and ensures the economy of the unit. The treatment and solution of this problem can provide reference for other similar power plants.Key Words : Power plant; 660 MW; Third extraction; Safety①作者简介:李隆锋(1983—),男,本科,工程师,研究方向为汽轮机设备技术管理。