CO2混相驱和非混相驱的驱油机理
- 格式:ppt
- 大小:159.50 KB
- 文档页数:19
气体混相驱提高采收率方法、注气驱帖子创建时间: 2014年11月19日10:36评论:0浏览:876投稿气体混相驱气体混相驱的目的是利用注入气怵能与原油达到混相的特性,使注入流体与原油之间的界面消失,即界面张力降低至零,从而驱替出油藏的残余油。
气体混相驱按混相机理可分为一次接触混相驱和多次接触混相驱。
按注入气体类型可分为烃类气体混相驱(如LPG 段塞驱、富气驱、贫气驱)和非烃类气体混相驱(如CO2驱和N2驱)。
(一)LPG 段塞混相驱液化石油气(简称LPG)段塞混相驱是指首先注入与地下原油能一次接触达到混相的溶剂段塞,如LPG、丙烷等,然后注入天然气、惰性气体或水。
LP G 段塞混相驱工艺中水段塞是用来控制流度、提高波及效率的)。
一般来说,L PG 段塞尺寸约为10%~15%孔隙体积,而后续的天然气或水的段塞尺寸就非常大。
LPG 段塞混相驱非常有效。
注入的LPG 段塞与原油达到混相后,残余的油滴及可动油都可能被采出,因此这种方法的采收率较高。
此外,混相压力低、适应性强等都是LPG 段塞混相驱的优点。
但是,LPG 段塞混相驱的成本高以及波及效率低等因素限制了该方法的应用。
(二)富气混相驱富气是富含丙烷、丁烷和戊烷的烃类气体。
富气混相驱是指往油层中注入富含C2—C6中间组分的烃类气体段塞,然后再注入干气段塞,通过富气与原油多次接触达到混相来提高采收率的方法。
注入富气与原油接触时,注入气中的C2—C6组分凝析而进入油相,形成一个由C2—C6富气和原油的混相带,如果注入的富气能保证足够的量时,混相带就会向前不断地把油推向生产井。
由于富气成本要比干气高,因此通常是富气段塞后紧接的是干气。
尽管富气驱的成本低于LPG 段塞驱,但是要求的混相压力相对较高。
富气驱的优点是基本上能完全驱替油层内所接触的残余油,而且一旦混相带被破坏能后自身修复,重新获得混相。
但是,富气驱仍然成本较高,而且重力超覆、粘性指进现象严重,波及效率较低。
目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。
对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。
这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。
该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。
一、二氧化碳驱油技术二氧化碳驱油,是一种把二氧化碳注入油层中以提高油田采收率的技术。
标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。
当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。
这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。
如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。
萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。
二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。
在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。
超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。
于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。
应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP是确定气驱最佳工作压力的基础。
一般情况下,因为混相驱油比非混相驱油能采出更多的原油,所以希望在等于或略高于MMP下进行气驱。
如果压力远高于MMP,就容易造成地层破裂,无法保障生产过程的安全性,其结果是不仅不能大幅度提高原油产量,还会降低经济效益。
二氧化碳驱油技术及比较1.2 CO2-EOR驱油技术目前CO2-EOR的实施方法主要有CO2混相驱、CO2非混相驱和CO2吞吐,其中CO2混相驱应用最为普遍。
另外,CO2-EOR实施中也有热CO2驱、碳酸水驱、就地生成CO2技术等其他方法。
1.2.1 CO2混相驱CO2混相驱一般采用CO2与水交替注入储层的方法,具体注入方法取决于储层的性质,主要有连续注入、简单注入、锥形注入等(如图2)。
实施过程中首先注入CO2,由于连续注CO2驱替油层时宏观波及系数很低,因此注水改变二氧化碳的驱油速度,扩大CO2的波及效率。
基本机理是CO2和地层原油在油藏条件下形成稳定的混相带前缘,该前缘作为单相流体移动并有效地把原油驱替到生产井(图3),由于混相,多孔介质中的毛细管力降至为零,理论上可使微观驱替效率达到100%。
混相驱要求油藏压力高于或等于CO2与原油完全混相的最低压力(MMP)。
由于受地层破裂压力等条件的限制,该方法通常用于原油相对密度小于0.89g/cm3,油层温度小于120℃的中、深层油藏。
通过CO2混相驱,原油采收率比注水方法提高约30%~40%。
与水交替注入驱油示意图图2 CO2混相驱技术示意图图3 CO2混相驱对开采下面几类油根据以往的经验,CO2藏具有更重要的意义。
(1)不合适水驱开采的低渗透油藏。
(2)水淹后的砂岩油藏。
(3)接近开采经济极限的深层、轻质油藏。
1.2.2 CO2非混相驱CO2非混相驱效率次于混相驱,但高于水驱或惰性气驱,一般以重力稳定CO2注入方式生产,将二氧化碳注入到圈闭构造的顶部,使原油向下及构造两边移动,在构造两边的生产井中将原油采出(图4)。
主要采油机理是对原油中轻烃汽化和抽提,使原油体积膨胀,黏度降低,界面张力减小。
另外,CO2还可以提高或保持地层压力,当地层压力下降时,CO2就会从饱和了CO2的原油中溢出,形成溶解气驱,达到提高原油采收率的目的。
适用于非混相驱的油藏类型主要有:(1)重油或高黏油油藏;(2)压力衰竭的低渗透油藏;(3)高倾角、垂向渗透率高的油藏。
1.二氧化碳驱油机理1.1二氧化碳驱油机理二氧化碳驱的作用机理可分为CO2混相驱和CO2非混相驱(表1-1),当最小混相压力小于原始地层压力时,能够达到混相驱油,高于原始地层压力时为非混相驱。
非混相驱主要通过溶解、膨胀、降粘,降低界面张力等作用来驱油;而混相驱除了溶解、膨胀、降粘等,就是CO2与原油能够达到混相,也就是一种相态,没有界面张力,理论上驱油效率能够达到100%。
一般稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱。
表1-1 混相驱油与非混相驱油对比表在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态下的CO2可以降低所波及的油水界面张力。
CO2注入浓度越大,油水相界面张力越小,原油越容易被驱替。
通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率增加幅度。
非混相CO2驱开采稠油的机理主要是:降低原油粘度,改善油水流度比,使原油膨胀,乳化作用及降压开采。
CO2在油中的溶解度随压力增加而增加。
当压力降低时,CO2从饱和CO2原油中溢出并驱动原油,形成溶解气驱。
气态CO2渗入地层与地层水反应产生的碳酸,能有效改善井筒周围地层的渗透率。
提高驱油机理。
与CO2驱相关的另一个开采机理是由CO2形成的自由气可以部分代替油藏中的残余油。
CO2驱油机理主要有以下方面:(1)降低原油粘度溶于原油后,降低了原油粘度,原油粘度越高,粘度降低程度越大(表CO21-2)。
原油粘度降低时,原油流动能力增加,从而提高了原油产量。
并且原油初始粘度越高,CO降粘效果越明显,如下表所示。
江苏油田富48井注入37.161%2后,原油粘度降低了60.173%;Maini和Sayegh研究发现,在(摩尔分率)CO2之后,其粘度从6822MPa·s降低到了226MPa·s。
61.55MPa下,稠油饱和CO2表1-2 CO2完全饱和时原油粘度变化对比表原油初始粘度(mPa.s) CO2完全饱和时原油粘度(mPa.s)1000~9000 15~160100~600 3~510~100 1~31~9 0.5~0.9溶解度降低,降粘作用反而变差(图1-1)。
二氧化碳的驱替机理2010年09月 02日摘要多年来,国内外许多学者对油藏使用C02提高原油采收率进行了研究,室内实验和现场应用都证明,C02是一种高效驱油剂。
C02驱是油田三次采油提高原油采收率的一项重要手段。
针对这一问题,本文主要介绍C02驱油的发展现状,C02的基本性质,驱油机理:降粘作用、膨胀作用,驱油方式:CO2单井吞吐,高压注CO2气体,动态计算,实施工艺及驱油过程中遇到的一些问题等,并对现场实施效果进行分析,总结出驱油效果的影响因素及其规律,为油田生产提供指导。
关键词:二氧化碳,发展现状;驱油机理;数学模型;动态计算ABSTRACTOver the years use of CO2has been studied to improve oil recovery by many scholars at home and abroad. Laboratory tests and field applications have proved that CO2 was an efficient oil displacement agent.CO2 flooding is an important enhanced oil recovery methods in EOR. To solve this problem, this paper describes the development of CO2,basic nature of the CO2; Flooding mechanism: viscosity effect, swelling; flooding pattern: CO2single well stimulation, high pressure CO2gas; dynamic calculation; implementation process and flooding some of the problems encountered, etc. Implementation and on-site analysis of the effects, summed up the effect of oil displacement factor and its law , provide guidance for the oil production.Keywords:carbon dioxide; development; flooding mechanism; mathematical model; dynamic calculation目录摘要 (2)ABSTRACT (3)第一章前言 (1)驱国外发展概况 (1)1.1 CO21.1.1美国CO驱项目情况 (1)2混相驱的应用与研究 (1)1.1.2小油田CO21.1.3重油CO非混相驱的研究与应用 (1)21.2 国内研究应用现状 (2)第二章二氧化碳驱油特点 (3)2.1 二氧化碳的基本性质 (3)2.2 二氧化碳驱油机理 (4)2.2.1降粘机理 (4)2.2.2原油膨胀机理 (4)2.2.3溶解气驱机理 (4)驱油影响因素分析 (5)2.3 CO22.3.1 储层特征影响因素分析 (5)2.3.2 流体性质影响因素分析 (5)工艺 (6)2.4矿场上注CO22.4.1筛选标准 (6)工艺 (6)2.4.2 注CO2驱油过程中容易遇到一些问题 (6)2.4.3 CO2第三章二氧化碳驱油动态计算 (8)3.1碳化水驱油动态计算 (8)3.1.1 物理模型 (8)3.1.2 数学模型及解 (8)3.1.3 激波条件和物质平衡条件(熵条件) (8)3.1.4 小结 (10)3.2 低渗透油藏CO驱渗流模型 (11)23.2.1 渗流模型 (11)3.2.2 特性方程 (12)第四章结论 (15)参考文献 (16)第一章前言1.1CO2驱国外发展概况利用CO2驱提高采收率的历史可以追溯到上世纪50年代。