CO2混相驱和非混相驱的驱油机理
- 格式:ppt
- 大小:159.50 KB
- 文档页数:19
气体混相驱提高采收率方法、注气驱帖子创建时间: 2014年11月19日10:36评论:0浏览:876投稿气体混相驱气体混相驱的目的是利用注入气怵能与原油达到混相的特性,使注入流体与原油之间的界面消失,即界面张力降低至零,从而驱替出油藏的残余油。
气体混相驱按混相机理可分为一次接触混相驱和多次接触混相驱。
按注入气体类型可分为烃类气体混相驱(如LPG 段塞驱、富气驱、贫气驱)和非烃类气体混相驱(如CO2驱和N2驱)。
(一)LPG 段塞混相驱液化石油气(简称LPG)段塞混相驱是指首先注入与地下原油能一次接触达到混相的溶剂段塞,如LPG、丙烷等,然后注入天然气、惰性气体或水。
LP G 段塞混相驱工艺中水段塞是用来控制流度、提高波及效率的)。
一般来说,L PG 段塞尺寸约为10%~15%孔隙体积,而后续的天然气或水的段塞尺寸就非常大。
LPG 段塞混相驱非常有效。
注入的LPG 段塞与原油达到混相后,残余的油滴及可动油都可能被采出,因此这种方法的采收率较高。
此外,混相压力低、适应性强等都是LPG 段塞混相驱的优点。
但是,LPG 段塞混相驱的成本高以及波及效率低等因素限制了该方法的应用。
(二)富气混相驱富气是富含丙烷、丁烷和戊烷的烃类气体。
富气混相驱是指往油层中注入富含C2—C6中间组分的烃类气体段塞,然后再注入干气段塞,通过富气与原油多次接触达到混相来提高采收率的方法。
注入富气与原油接触时,注入气中的C2—C6组分凝析而进入油相,形成一个由C2—C6富气和原油的混相带,如果注入的富气能保证足够的量时,混相带就会向前不断地把油推向生产井。
由于富气成本要比干气高,因此通常是富气段塞后紧接的是干气。
尽管富气驱的成本低于LPG 段塞驱,但是要求的混相压力相对较高。
富气驱的优点是基本上能完全驱替油层内所接触的残余油,而且一旦混相带被破坏能后自身修复,重新获得混相。
但是,富气驱仍然成本较高,而且重力超覆、粘性指进现象严重,波及效率较低。
目前,世界上大部分油田仍采用注水开发,这就面临着需要进一步提高采收率和水资源缺乏的问题。
对此,国外近年来大力开展二氧化碳驱油提高采收率技术的研发和应用。
这项技术不仅能满足油田开发的需求,还可以解决二氧化碳的封存问题,保护大气环境。
该技术不仅适用于常规油藏,尤其对低渗、特低渗透油藏,可以明显提高原油采收率。
一、二氧化碳驱油技术二氧化碳驱油,是一种把二氧化碳注入油层中以提高油田采收率的技术。
标准状况下,二氧化碳是一种无色、无味、比空气重的气体,密度是1.977克/升。
当温度压力高于临界点时,二氧化碳的性质发生变化:形态近于液体,黏度近于气体,扩散系数为液体的100倍。
这时的二氧化碳是一种很好的溶剂,其溶解性、穿透性均超过水、乙醇、乙醚等有机溶剂。
如果将二氧化碳流体与待分离的物质接触,它就能够有选择性地把该物质中所含的极性、沸点和分子量不同的成分依次萃取出来。
萃取出来的混合物在压力下降或温度升高时,其中的超临界流体变成普通的二氧化碳气体,而被萃取的物质则完全或基本析出,二氧化碳与萃取物就迅速分离为两相,这样,可以从许多种物质中提取其有效成分。
二氧化碳驱油一般可提高原油采收率7%~15%,延长油井生产寿命15~20年。
在二氧化碳与地层原油初次接触时并不能形成混相,但在合适的压力、温度和原油组分的条件下,二氧化碳可以形成混相前缘。
超临界流体将从原油中萃取出较重的碳氢化合物,并不断使驱替前缘的气体浓缩。
于是,二氧化碳和原油就变成混相的液体,形成单一液相,从而可以有效地将地层原油驱替到生产井。
应用混相驱油提高石油采收率的一个关键性参数是气体与原油的最小混相压力(MMP),MMP是确定气驱最佳工作压力的基础。
一般情况下,因为混相驱油比非混相驱油能采出更多的原油,所以希望在等于或略高于MMP下进行气驱。
如果压力远高于MMP,就容易造成地层破裂,无法保障生产过程的安全性,其结果是不仅不能大幅度提高原油产量,还会降低经济效益。
二氧化碳驱油技术及比较1.2 CO2-EOR驱油技术目前CO2-EOR的实施方法主要有CO2混相驱、CO2非混相驱和CO2吞吐,其中CO2混相驱应用最为普遍。
另外,CO2-EOR实施中也有热CO2驱、碳酸水驱、就地生成CO2技术等其他方法。
1.2.1 CO2混相驱CO2混相驱一般采用CO2与水交替注入储层的方法,具体注入方法取决于储层的性质,主要有连续注入、简单注入、锥形注入等(如图2)。
实施过程中首先注入CO2,由于连续注CO2驱替油层时宏观波及系数很低,因此注水改变二氧化碳的驱油速度,扩大CO2的波及效率。
基本机理是CO2和地层原油在油藏条件下形成稳定的混相带前缘,该前缘作为单相流体移动并有效地把原油驱替到生产井(图3),由于混相,多孔介质中的毛细管力降至为零,理论上可使微观驱替效率达到100%。
混相驱要求油藏压力高于或等于CO2与原油完全混相的最低压力(MMP)。
由于受地层破裂压力等条件的限制,该方法通常用于原油相对密度小于0.89g/cm3,油层温度小于120℃的中、深层油藏。
通过CO2混相驱,原油采收率比注水方法提高约30%~40%。
与水交替注入驱油示意图图2 CO2混相驱技术示意图图3 CO2混相驱对开采下面几类油根据以往的经验,CO2藏具有更重要的意义。
(1)不合适水驱开采的低渗透油藏。
(2)水淹后的砂岩油藏。
(3)接近开采经济极限的深层、轻质油藏。
1.2.2 CO2非混相驱CO2非混相驱效率次于混相驱,但高于水驱或惰性气驱,一般以重力稳定CO2注入方式生产,将二氧化碳注入到圈闭构造的顶部,使原油向下及构造两边移动,在构造两边的生产井中将原油采出(图4)。
主要采油机理是对原油中轻烃汽化和抽提,使原油体积膨胀,黏度降低,界面张力减小。
另外,CO2还可以提高或保持地层压力,当地层压力下降时,CO2就会从饱和了CO2的原油中溢出,形成溶解气驱,达到提高原油采收率的目的。
适用于非混相驱的油藏类型主要有:(1)重油或高黏油油藏;(2)压力衰竭的低渗透油藏;(3)高倾角、垂向渗透率高的油藏。
1.二氧化碳驱油机理1.1二氧化碳驱油机理二氧化碳驱的作用机理可分为CO2混相驱和CO2非混相驱(表1-1),当最小混相压力小于原始地层压力时,能够达到混相驱油,高于原始地层压力时为非混相驱。
非混相驱主要通过溶解、膨胀、降粘,降低界面张力等作用来驱油;而混相驱除了溶解、膨胀、降粘等,就是CO2与原油能够达到混相,也就是一种相态,没有界面张力,理论上驱油效率能够达到100%。
一般稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱。
表1-1 混相驱油与非混相驱油对比表在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态下的CO2可以降低所波及的油水界面张力。
CO2注入浓度越大,油水相界面张力越小,原油越容易被驱替。
通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率增加幅度。
非混相CO2驱开采稠油的机理主要是:降低原油粘度,改善油水流度比,使原油膨胀,乳化作用及降压开采。
CO2在油中的溶解度随压力增加而增加。
当压力降低时,CO2从饱和CO2原油中溢出并驱动原油,形成溶解气驱。
气态CO2渗入地层与地层水反应产生的碳酸,能有效改善井筒周围地层的渗透率。
提高驱油机理。
与CO2驱相关的另一个开采机理是由CO2形成的自由气可以部分代替油藏中的残余油。
CO2驱油机理主要有以下方面:(1)降低原油粘度溶于原油后,降低了原油粘度,原油粘度越高,粘度降低程度越大(表CO21-2)。
原油粘度降低时,原油流动能力增加,从而提高了原油产量。
并且原油初始粘度越高,CO降粘效果越明显,如下表所示。
江苏油田富48井注入37.161%2后,原油粘度降低了60.173%;Maini和Sayegh研究发现,在(摩尔分率)CO2之后,其粘度从6822MPa·s降低到了226MPa·s。
61.55MPa下,稠油饱和CO2表1-2 CO2完全饱和时原油粘度变化对比表原油初始粘度(mPa.s) CO2完全饱和时原油粘度(mPa.s)1000~9000 15~160100~600 3~510~100 1~31~9 0.5~0.9溶解度降低,降粘作用反而变差(图1-1)。
二氧化碳的驱替机理2010年09月 02日摘要多年来,国内外许多学者对油藏使用C02提高原油采收率进行了研究,室内实验和现场应用都证明,C02是一种高效驱油剂。
C02驱是油田三次采油提高原油采收率的一项重要手段。
针对这一问题,本文主要介绍C02驱油的发展现状,C02的基本性质,驱油机理:降粘作用、膨胀作用,驱油方式:CO2单井吞吐,高压注CO2气体,动态计算,实施工艺及驱油过程中遇到的一些问题等,并对现场实施效果进行分析,总结出驱油效果的影响因素及其规律,为油田生产提供指导。
关键词:二氧化碳,发展现状;驱油机理;数学模型;动态计算ABSTRACTOver the years use of CO2has been studied to improve oil recovery by many scholars at home and abroad. Laboratory tests and field applications have proved that CO2 was an efficient oil displacement agent.CO2 flooding is an important enhanced oil recovery methods in EOR. To solve this problem, this paper describes the development of CO2,basic nature of the CO2; Flooding mechanism: viscosity effect, swelling; flooding pattern: CO2single well stimulation, high pressure CO2gas; dynamic calculation; implementation process and flooding some of the problems encountered, etc. Implementation and on-site analysis of the effects, summed up the effect of oil displacement factor and its law , provide guidance for the oil production.Keywords:carbon dioxide; development; flooding mechanism; mathematical model; dynamic calculation目录摘要 (2)ABSTRACT (3)第一章前言 (1)驱国外发展概况 (1)1.1 CO21.1.1美国CO驱项目情况 (1)2混相驱的应用与研究 (1)1.1.2小油田CO21.1.3重油CO非混相驱的研究与应用 (1)21.2 国内研究应用现状 (2)第二章二氧化碳驱油特点 (3)2.1 二氧化碳的基本性质 (3)2.2 二氧化碳驱油机理 (4)2.2.1降粘机理 (4)2.2.2原油膨胀机理 (4)2.2.3溶解气驱机理 (4)驱油影响因素分析 (5)2.3 CO22.3.1 储层特征影响因素分析 (5)2.3.2 流体性质影响因素分析 (5)工艺 (6)2.4矿场上注CO22.4.1筛选标准 (6)工艺 (6)2.4.2 注CO2驱油过程中容易遇到一些问题 (6)2.4.3 CO2第三章二氧化碳驱油动态计算 (8)3.1碳化水驱油动态计算 (8)3.1.1 物理模型 (8)3.1.2 数学模型及解 (8)3.1.3 激波条件和物质平衡条件(熵条件) (8)3.1.4 小结 (10)3.2 低渗透油藏CO驱渗流模型 (11)23.2.1 渗流模型 (11)3.2.2 特性方程 (12)第四章结论 (15)参考文献 (16)第一章前言1.1CO2驱国外发展概况利用CO2驱提高采收率的历史可以追溯到上世纪50年代。
一简述二氧化碳混相驱的机理混相驱的基本机理是驱替剂(注入的混相气体)和被驱剂(地层原油)在油藏条件下形成混相,消除界面,使多孔介质中的毛细管力降至零,从而降低因毛细管效应产生毛细管滞留所圈闭的石油,原则上可以使微观驱油效率达到百分之百。
根据不同注入气体及其与原油系统的特性,混相驱可分为:一次接触混相(FCM)、多级接触混相(MCM)和非混相(IMM)几种方式。
而CO2混相驱一般属于多级接触混相驱。
通过适合CO2驱的油藏筛选标准可知稀油油藏主要采用CO2混相驱,而稠油油藏主要采用CO2非混相驱。
在稀油油藏条件下CO2易与原油发生混相,在混相压力下,处于超临界状态的CO2可以降低所波及油水的界面张力,CO2注入浓度越大,油水相界面张力越小,原油越易被驱替。
水、气交替注入时,水对混相有不利的影响。
通过调整注入气体的段塞使CO2形成混相,可以提高原油采收率。
混相驱油是在地层高温条件下,原油中轻质烃类分子被CO2:析取到气相中,形成富含烃类的气相和溶解CO2的液相(原油)两种状态。
其驱油机理主要包括以下三个方面:(1)当压力足够高时,CO2析取原油中轻质组分后,原油溶解沥青、石蜡的能力下降,重质成分从原油中析出,原油黏度大幅度下降,提高了油的流动能力达到混相驱油的目的。
在适合的储层压力、温度及原油组分等条件下,临界CO2:与原油混合,形成一种简单的流体相。
(2) CO2在地层油中具有较高的溶解能力,从而有助于地层油膨胀,充分发挥地层油的弹性膨胀能,推动流体流人井底。
(3)油气相互作用的结果可以使原油表面张力减小。
随着压力的增加,原油一空气系统的表面张力减小不大,这是由于氮气(空气的主要成分)在油中的溶解度极低,因此,系统的表面张力随压力变化缓慢。
对于原油一CO2系统,由于CO2的饱和蒸汽压很小,在原油中的溶解度大于甲烷在原油中的溶解度,因此原油一CO2系统的界面张力随着压力增加而快速下降。
对于原油一天然气系统而言,天然气中甲烷以及少量的乙烷、丙烷、丁烷等使得天然气在油中的溶解度要远大于氮气的溶解度,故界面张力随压力增加而急剧降低。
CO2在驱油过程中的作用机理综述梁萌;袁海云;杨英;蔺江涛;杨云博【摘要】综述了CO2驱油过程中存在的几种作用机理,地层条件下CO2在原油中的溶解导致了原油组成与性质的变化,具体表现在原油黏度降低、体积膨胀、油气界面张力改善和沥青质沉积等方面;CO2在地层水中的溶解为岩石的腐蚀提供了弱酸环境,水中阳离子浓度的增大和CO2的过量导致了碳酸盐的溶解/析出平衡.受以上因素影响,注CO2过程中发生了岩石润湿性和渗透率的改变.上述各个现象和作用机理并不是孤立存在,它们之间相互联系相互影响,在不同程度上影响着驱替过程和最终的采收率,所以在油藏开发工艺制定、优化时,必须充分比较、衡量各自的影响作用.【期刊名称】《石油化工应用》【年(卷),期】2016(035)006【总页数】6页(P1-5,9)【关键词】二氧化碳;提高采收率;机理;驱替【作者】梁萌;袁海云;杨英;蔺江涛;杨云博【作者单位】俄罗斯国立古勃金石油天然气大学,俄罗斯莫斯科 119991;中国石油长庆油田分公司第三采气厂,陕西西安 710021;俄罗斯国立古勃金石油天然气大学,俄罗斯莫斯科 119991;中国石油长庆油田分公司第三采气厂,陕西西安 710021;中国石油长庆油田分公司第三采气厂,陕西西安 710021【正文语种】中文【中图分类】TE357.45气体驱油在油田开发领域的应用日益广泛,常用的有N2、CH4、石油伴生气和CO2。
CO2的特殊性质以及CO2兼具驱油、减排的双赢效果使CO2驱俨然成为开发领域的最大热点。
针对不同地质特征的油藏及原油特性,开发出了多种工艺,如CO2非混相驱和混相驱、CO2段塞+N2驱、CO2水交替工艺以及CO2吞吐等。
地层内CO2可与原油以及岩石和地层水发生作用,其结果导致促进驱油过程或者不利影响。
CO2的溶解降低原油黏度、体积溶胀、改善油气界面张力、沥青质沉积等;在地层水中的溶解降低了地层环境的pH,碳酸盐发生溶解,改变岩层表面润湿性与地层渗透率等。
浅议二氧化碳的驱油方式与驱油机理作者:张宇来源:《中国化工贸易》2014年第10期摘要:二氧化碳是怎样驱油的呢?将二氧化碳从地下采出来,然后再注入油层,它与油层“亲密接触”后,就产生四种作用。
一是降低原油黏度。
二是能使原油体积膨胀10%至40%。
这样能让一部分不流动的残余油动起来,抽油机就能让原油“走出”地面了。
三是可降低油水界面张力,把黏在岩壁上的原油洗下来,从而提高了采收率。
四是能解堵及改善油水黏度比。
这样就减弱了“水窜”,减少了无效循环,进而提高了水驱效果。
关键词:二氧化碳驱油机理一、二氧化碳的驱油方式1、 CO2混相驱混相驱油是在地层高退条件下,油中的轻质烃类分子被CO2提取到气相中来,形成富含烃类的气相和溶解了CO2的原油的液相两种状态。
当压力达到足够高时,CO2把原油中的轻质和中间组分提取后,原油溶解沥青、石蜡的能力下降,这些重质成分将会从原油中析出,残留在原地,原油粘度大幅度下降,从而达到混相驱的目的。
混相驱油效率很高,条件允许时,可以使排驱剂所到之处的原油百分之百的采出。
但要求混相压力很高,组成原油的轻质组分C2-6含量很高,否则很难实现混相驱油。
由于受地层破裂压力等条件的限制,混相驱替只适用于°API重度比较高的轻质油藏,同时在浅层、深层、致密层、高渗透层、碳酸盐层、砂岩中都有过应用的经验,总结起来,CO2混相驱对开采下面几类油藏具有更重要的意义。
a. 水驱效果差的低渗透油藏;b. 水驱完全枯竭的砂岩油藏;c. 接近开采经济极限的深层、轻质油藏;d. 利用CO2重力稳定混相驱开采多盐丘油藏。
2、 CO2非混相驱CO2非混相驱的主要采油机理是降低原油的粘度,使原油体积膨胀,减小界面张力,对原油中轻烃汽化和油提。
当地层及其中流体的性质决定油藏不能采用混相驱时,利用CO2非混相驱的开采机理,也能达到提高原油采收率的目的,主要应用包括: a. 可用CO2来恢复枯竭油藏的压力。
浅析二氧化碳驱油技术机理及发展前景作者:施玉萍来源:《中国科技博览》2014年第36期[摘要]随着现代化市场的不断发展,石油的需求量不断增长,国内的老油田不断枯竭,油田的开采越来越难,这就要求人们从枯竭的油层中将原始地质储量中的原油开采出来,迫切期待着新型的提高采收率技术的产生和应用。
而在众多提高采收率技术中,二氧化碳驱油技术具有更广泛的应用前景和更明显的技术优势。
本文阐述了二氧化碳的驱油机理及方式、驱油效果的影响因素,介绍了CO2驱油的存在的问题,指出了CO2驱油技术在未来的发展方向和应用前景。
[关键词]二氧化碳驱油机理发展前景中图分类号:F407.67 文献标识码:B 文章编号:1009-914X(2014)36-0057-021 引言目前世界上大部分油田采用注水开发,面临着需要进一步提高采收率和水资源缺乏的问题。
对此,国外近年来大力开展二氧化碳驱油,提高采收率技术的研发和应用。
这项技术不仅能满足油田开发、的需求,还可以解决二氧化碳的封存问题,保护大气环境。
该技术不仅仅适用于常规油藏,还适用于低渗、特低渗透油藏,可以明显提高原油采收率。
将二氧化碳注入能量衰竭的油层,可提高油气田采收率,已成为世界许多国家石油开采业的共识。
2 二氧化碳物理化学性质及驱油技术机理2.1 CO2的物理化学性质(1)CO2具有良好的可压缩性和膨胀性,能有效补充地层能量保持油藏压力。
在能量释放时对原油具有良好的解堵、助排、驱替和气举等作用。
(2)CO2在一定温度、压力下易溶于地层原油中,具有一定的降黏,降低界面张力作用,能改善流度比,提高油相渗透率,改善井周围地层条件等。
(3)CO2容易达到超临界状态,当温度高于临界温度31.1℃和压力高于临界压力7.38MPa状态下,CO2就处于超临界状态。
此时CO2密度近于液体,而粘度近于气体,扩散系数介于气体和液体之间,是液体的几百倍,具有较强的溶解性。
2.2 CO2驱油技术机理该技术不论是在开发早期的低渗透油藏开发,还是晚期的高含水油田提高采收率方面,不论是砂岩油藏,还是碳酸盐岩油藏均能应用。
CO2混相驱和非混相驱的驱油机理姓名:学号:学院:专业:指导教师:2022年4月12日co2驱是把co2注入油层,依靠co2的膨胀、降粘等机理来提高原油采收率的技术。
随着人们对温室效应认识,将co2注入地层不仅能够提高原油采收率,还可以起到封存co2的作用,是三次采油方法中最具有潜力的采油技术。
co2混相驱我国低渗透、特低渗透油藏开发后,暴露出天然产能低、地层能量不足、地层压力快速下降等诸多矛盾。
受油藏地质条件的限制,注水补充能量受到很大限制,采收率较低。
从国外三次采油技术的发展趋势来看,气驱尤其是CO2混相驱将是我国提高低渗透油藏采收率最有前景的方法。
1.二氧化碳的基本性质在标准条件下,也即在0.1mpa压力、273.2k(绝对温度)下二氧化碳是气体状态,气态二氧化碳密度d=0.08-0.1千克/立方米,气态二氧化碳粘度为0.02~0.08毫帕秒,液态二氧化碳密度d=0.5-0.9千克/立方米,液态二氧化碳粘度为0.05-0.1毫帕秒,但在高压低温条件下液态与气态二氧化碳的密度相近,为0.6-0.8吨/立方米。
压力和温度可以明显地控制二氧化碳的相态。
当温度超过临界温度时,压力对二氧化碳的相态几乎没有影响,即二氧化碳在任何压力下都呈现气体状态。
因此,在地层温度较高的油层中采用二氧化碳驱油。
二氧化碳通常处于气态,与注入压力和地层压力无关。
二氧化碳在水中溶解性质要比气体烃类好得多,地层条件下在水中溶解度为30-60立方米/立方米,而质量比浓度可以达到3-5%,其水中溶解度受压力、温度、地层水矿化度的影响,二氧化碳在水中溶解度随压力增加而增加,随温度增加而降低,随地层水矿化度增加而降低。
二氧化碳溶解在水中形成“碳酸水”,这会增加水的粘度。
地层中存在二氧化碳,但泥岩膨胀减弱。
二氧化碳在油中溶解度远高于在水中的溶解度,大约是水中溶解度的4-10倍,当二氧化碳水溶液与原油接触时,由于其与油、水溶解度的差异,二氧化碳能够从水中转移到油中,在转移过程中水中二氧化碳与油相界面张力很低,驱替过程很类似于混相驱。
For personal use only in study and research; not forcommercial use二氧化碳驱油技术及比较一、CO2-EOR在油田中的应用近几年来,CO2-EOR技术发展迅速。
研究表明,将CO2注入油层,不仅能大幅提高采收率,而且可达到CO2减排的目的,满足环保和油藏高效开发的双重要求。
由于技术的进步和温室效应的存在,CO2-EOR越来越受到重视,包括我国在内的很多国家都开展了现场实验。
目前,CO2-EOR已成为美国提高石油采收率的主导技术,2004年美国CO2-EOR增加的原油产量占全国提高采收率项目总产量的31%。
1.1 CO2提高采收率机理CO2-EOR主要有以下几个方面的作用:(1)使原油体积膨胀CO2注入油藏后,可在原油中充分溶解,一般可使体积增加10% ~100%。
其结果不但增加地层的弹性能量,还大大减少了原油流动过程中的阻力,从而提高驱油效率。
(2)降低原油黏度CO2溶于原油后,一般可降低到原黏度的0. 1~0. 01。
原油初始黏度越高,黏度降低幅度越大。
黏度降低,有利于原油流动能力,提高产油量。
(3)改善油水流度比CO2溶于原油和水,其黏度增加20%~ 30%,流度降低;原油碳酸化后,其黏度降低30%~80%,流度增加。
其综合作用的结果,使油水流度比趋于接近,水驱波及体积扩大,有利于原油采出。
(4)降低界面张力CO2极易溶解于原油,其结果大大降低了油水界面张力,有利于原油流动,从而提高了原油采收率。
CO2与原油混相后其界面张力降为0,理论上可使采收率达到100%。
(5)萃取原油中轻烃CO2注入油藏后,部分CO2未溶解于油水中的CO2能萃取原油中的轻烃,使原油相对密度降低,黏度降低,从而提高原油流动性能,有利于开采。
(6)溶解气驱作用随着油井生产井附近的地层压力下降,地层原油中溶解的CO2逸出,逸出的CO2 气体驱动原油流入井筒,形成内部溶解气驱。