光纤传感器基本原理
- 格式:pptx
- 大小:8.23 MB
- 文档页数:161
光纤传感器的工作原理
光纤传感器是一种对光强度十分敏感的新型传感器,它具有体积小、重量轻、耐环境性能好、测量范围大、非接触性强、使用省电等优点。
它是将一种特定的光学纤维绑成特定形状,然后集成到传感器系统中的一种传感器,光纤的内部反射的特性使其具有传输光信号的能力。
光纤传感器的基本原理就是光学纤维将环境中的外界信号转换成光信号,再通过光学纤维传递到测量终端,在终端处可以进行判断和处理,根据处理结果,通过电信号来控制外界装置,最终实现测试目标。
其传输特性本质上是把光变换成电,从而实现检测和测量,从而达到实现自动控制的目的。
光纤传感器的传感原理有分光原理、多模传感原理和非分光原理。
其中,分光传感原理是依靠多色拓扑不同的光纤把被检测物体表面的能量分解成不同波长的光信号,不同波长的光源在光纤上传播时,会被表面反射形成不同光强度的光信号;而多模传感原理则是由一根光纤传感器得到物体表面的温度、光、压力和其他物理量信号,通过光纤得到物体表面的反射特性,通过特定的滤波器提取出指定的物理信号;最后,非分光原理是把光纤上不同光强度的信号通过传感器转换为电信号,根据电信号的强弱来控制外部的装置,实现物理量的监控和控制。
总之,光纤传感器的传感原理既具有灵敏度又具有稳定性,是一种普遍应用于工业检测、检验和测量等领域中皆有广泛运用的特殊传感器。
光纤传感器的工作原理光纤传感器是一种利用光纤作为传感器的感应元件的传感器。
光纤传感器的工作原理是基于光的传输和光的特性,通过检测光的强度、光的相位或光的频率等参数的变化来实现测量和检测。
下面将详细介绍光纤传感器的工作原理。
1.光的传输光纤传感器是通过光纤将信号传输到目标位置进行测量和检测的。
光纤是一种将光信号传输的波导,其内部是由高折射率的纤芯和低折射率的包层组成。
光信号通过纤芯进行传输,并且受到光纤的折射规律的影响。
光纤传感器的传感元件一般位于光纤的入口或出口处,通过测量光的强度和光的特性来实现测量和检测。
2.测量原理光纤传感器的测量原理主要有光强度测量、光干涉测量和光散射测量等。
光强度测量是利用光传输时的衰减规律,通过检测光的强度来判断目标物理量的变化。
光干涉测量是利用光的干涉现象来测量目标物理量的变化,一般是通过光纤的长度或折射率的变化来实现测量。
光散射测量是利用光在传输过程中与介质的散射作用来测量目标物理量的变化,例如测量液体的浓度或测量气体的浓度等。
3.传感原理光纤传感器的传感原理主要有光纤布拉格光栅传感器、光纤共振传感器和光纤散射传感器等。
光纤布拉格光栅传感器是利用光栅的折射率周期性变化来测量目标物理量的变化,一般是通过测量光纤中被散射回来的光的特性来实现测量。
光纤共振传感器是利用光在光纤内部多次反射产生共振,通过测量共振波长的变化来实现测量。
光纤散射传感器是利用光在光纤中遇到杂散反射或杂散散射时产生的衰减、散射或反射来测量目标物理量的变化,一般是通过测量光的强度、光的频率或光的相位的变化来实现测量。
总体来说,光纤传感器的工作原理是通过光的传输和光的特性来实现测量和检测。
光纤传感器可以应用于各种领域,例如环境监测、医疗诊断、工业控制和航天航空等。
光纤传感器具有体积小、重量轻、灵敏度高、抗干扰性好等特点,已经成为现代传感器技术中不可或缺的一部分。
光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。
它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。
光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。
一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。
通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。
光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。
二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。
1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。
它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。
当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。
2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。
它通过纤芯中的光散射来判断外界物理量的变化。
光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。
通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。
3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。
它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。
通过测量光的强度变化,可以获得物理量的信息。
三、应用领域光纤传感器在诸多领域有着广泛的应用。
1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。
通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。
2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。
光纤传感器基本原理
光纤传感器基本原理是利用光纤的特殊性质,将光信号转换为电信号。
在光纤传感器中,光源发出的光经过光纤传播,在光纤的某一点与外界的物理量进行相互作用后,光信号发生变化。
传感器的探测部分是光纤的一段,在传感区域内,光信号的幅度、相位、频率等参数会随着被测量的物理量发生变化。
光纤传感器的工作原理基于光的干涉、散射、吸收等现象。
其中,基于光纤干涉原理的传感器是最常见的类型。
这类光纤传感器一般采用法布里-珀罗特(F-P)干涉仪的结构。
当光纤中
的光信号遇到传感器传感区域的物理量变化时,传感区域的折射率发生改变,导致传感区中的干涉光程差发生变化。
这一变化会通过反射回到光纤,进而对干涉光信号产生影响。
通过测量干涉光信号的变化,可以推断出传感区域中物理量的变化情况。
除了光纤干涉原理外,还有其他一些基于光纤散射和吸收的传感器原理。
光纤散射传感器是利用光在光纤中发生散射的特性,通过测量光的散射强度或相位变化来得到物理量的信息。
光纤吸收传感器则是利用光在光纤中被介质吸收的特性,通过测量吸收光信号的强度变化来推断物理量的变化。
光纤传感器具有体积小、响应速度快、抗电磁干扰强等优点,广泛应用于温度、压力、拉力、位移等物理量的测量领域。
随着技术的不断进步,光纤传感器的精度和可靠性也在不断提高,为工业自动化、医疗、环境监测等领域的应用提供了可靠的检测手段。
光纤传感器工作原理光纤传感器是一种利用光学原理进行测量的传感器。
相比传统的电信号传感器,光纤传感器具有更高的灵敏度、更大的频带宽度和更好的抗干扰性能,因此在工业、医疗、环境监测等领域得到广泛应用。
光纤传感器的工作原理基于光的传播和传感效应。
光纤传感器通常由光源、光纤、敏感元件和光电转换器组成。
在光纤传感器中,光源发出一束光经过光纤进行传播。
光纤是一种能够将光信号限制在光纤内部的细长光导波装置,通常由具有高折射率的芯和具有低折射率的包层构成。
光信号在光纤中的传播受到光纤材料的折射特性和光纤结构的影响。
在光纤传感器中,常用的敏感元件有光纤光栅和光纤干涉仪。
光纤光栅是用特殊的制备工艺在光纤的芯或包层中形成的周期性折射率变化的光学结构,可以实现对光的频率、幅度和相位等参数的敏感检测。
光纤干涉仪则利用光纤在传播过程中发生的干涉现象进行测量,通过改变光波在不同光纤路径中的相位差,可以获取被测物理量的信息。
光纤传感器中的敏感元件接收到通过光纤传播过来的光信号后,将其转换成与被测物理量相关的光学信号。
然后,光学信号通过光电转换器转换为电信号,经过放大、处理和解码等步骤后,最终得到与被测物理量相关的结果。
光纤传感器的工作原理可以通过以下几个方面来解释:1. 光纤传感器的基本原理是利用光的折射和传播规律。
当光束从一个介质传播到另一个介质时,由于光在不同介质中的折射率不同,光束的传播方向会发生偏折。
通过对光束的偏折进行测量,可以得到与被测物理量相关的信息。
2. 光纤传感器的工作过程涉及到光的干涉现象。
干涉是指两个或多个光波相互叠加形成的干涉图样。
在光纤传感器中,通过使光波在光纤中沿不同路径传播,利用不同路径上光波的相位差来实现测量。
当被测物理量发生变化时,导致光线的路径长度或相位发生变化,从而引起干涉图样的变化。
3. 光纤传感器的敏感元件可以是光纤光栅或光纤干涉仪。
光纤光栅是通过将光纤的芯或包层制作成具有周期性折射率变化的结构,利用光在光纤光栅中的反射和折射等效应进行测量。
光纤传感器基本原理光纤传感器是一种利用光纤作为传感元件的传感器,它通过光纤中的光信号的强度、频率或相位的变化来感知和测量环境参数的传感器装置。
光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,广泛应用于测量、通信、工业自动化等领域。
首先是光源部分:光源可以是激光器、LED等产生光信号的装置。
光源通过光纤传输光信号到目标位置,其中包括了传感器测量的环境参数。
然后是光纤部分:光纤是光信号传输的介质,通常由一根或多根光纤组成。
光纤可以是单模光纤或多模光纤,其核心材料通常是高纯度玻璃或塑料。
光信号通过光纤的内部反射来传输,通过改变光纤的长度、形状或者在光纤表面附加外界物质等方式,可以实现对环境参数的测量。
最后是光电检测器部分:光电检测器用于接收光信号并将其转化为电信号。
光电检测器可以是光电二极管、光电转换器等。
当光信号到达光电检测器时,光信号激发光电检测器产生电流变化,进而将光信号转化为电信号。
通过测量电信号的特征,如电流的强度、频率或相位的变化,可以获得环境参数的信息。
光纤传感器的工作原理有很多种,最常见的是基于光强度的测量。
当环境参数发生变化时(如温度、湿度、压力等),这些变化会导致光信号的强度发生变化。
光纤传感器通过测量光信号的强度变化来确定环境参数的变化情况。
另外一种常见的光纤传感器工作原理是基于光频率的测量。
当环境参数变化时,这些变化会引起光信号的频率移动。
通过测量光信号频率的变化,可以确定环境参数的变化情况。
还有一种光纤传感器工作原理是基于光相位的测量。
当环境参数变化时,这些变化会导致光信号的相位变化。
通过测量光信号相位的变化,可以确定环境参数的变化情况。
总之,光纤传感器利用光的传导性能来实现环境参数的测量和检测。
通过光源产生光信号,光信号经过光纤传输并最终转化为电信号。
根据光信号的强度、频率或相位的变化,可以获得环境参数的变化情况。
光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,在各个领域得到广泛应用。
光纤传感器的基本原理
光纤传感器通过光导纤维把输入变量转换成调制的光信号。
光纤传感器的测量原理有两种。
(1) 物性型光纤传感器原理
物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。
其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等转变时,其传光特性,如相位与光强,会发生变化的现象。
因此,假如能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。
这类传感器又被称为敏感元件型或功能型光纤传感器。
激光器的点光源光束集中为平行波,经分光器分为两路,一为基准光路,另一为测量光路。
外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。
图1 物性型光纤传感器工作原理示意图
(2) 结构型光纤传感器原理
结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。
其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。
图2 结构型光纤传感器工作原理示意图
(3) 拾光型光纤传感器原理
用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。
其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。
图3 拾光型光纤传感器工作原理示意图。
光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。
近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
优点:一。
灵敏度较高;二。
几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;三。
可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;四。
可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;五。
而且具有与光纤遥测技术的内在相容性。
光纤传感器应用:绝缘子污秽、磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的测量。
光纤传感器可以分为两大类:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。
一、功能型传感器功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。
光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。
优点:结构紧凑、灵敏度高。
缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等二、非功能型传感器非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。
光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。