流体力学第3章 流体运动学
- 格式:ppt
- 大小:605.00 KB
- 文档页数:28
第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。
第3章流体运动学选择题:.2dr v【3.1】用欧拉法表示流体质点的加速度a等于:(a)dt2;(b)t;(c)(v )v;v(V )v(d)t odv va —— v解:用欧拉法表示的流体质点的加速度为dt t v(d)【3.2】恒定流是:(a)流动随时间按一定规律变化;(b)各空间点上的运动要素不随时间变化;(c)各过流断面的速度分布相同;(d )迁移加速度为零。
解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若流体质点的所有物理量皆不随时间而变化的流动•(b)【3.3】一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c)运动参数是一个空间坐标和时间变量的函数;(d)运动参数不随时间变化的流动。
解:一维流动指流动参数可简化成一个空间坐标的函数。
(c)【3.4】均匀流是:(a)当地加速度为零;(b )迁移加速度为零;(c)向心加速度为零;(d)合加速度为零。
解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动(b)【3.5】无旋运动限于:(a)流线是直线的流动;(b)迹线是直线的流动;(c)微团无旋转的流动;(d )恒定流动。
解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。
(d )【3.6 ]变直径管,直径d i 320mm, d2 160mm,流速V i 1.5m/s。
V2 为:(a )3m/s ; ( b) 4m/s ; ( c)6m/s ; ( d ) 9m/s。
V| — d;V2— d;解:按连续性方程,4 4 ,故V V虫1.5 320 6m/sd2160【3.7】平面流动具有流函数的条件是:(a)理想流体;(b)无旋流动;(c)具有流速势;(d)满足连续性。
解:平面流动只要满足连续方程,则流函数是存在的。
(d)【3.8】恒定流动中,流体质点的加速度:(a)等于零;(b)等于常数;(c)随时间变化而变化;(d)与时间无关。
流体力学第三章流体运动学与动力学基础第三章流体运动学与动力学基础主要内容 ? 基本概念 ? 欧拉运动微分方程 ? 连续性方程——质量守恒* ?伯努利方程——能量守恒** 重点 ? 动量方程——动量守恒** 难点 ? 方程的应用第一节研究流体运动的两种方法? 流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
? 空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t) y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。
5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerianmethod1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x,y,z)称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。