23.3.3.相似三角形的性质
- 格式:ppt
- 大小:2.01 MB
- 文档页数:16
23.3.3《相似三角形的性质》教学设计海口市三江中学文秋茹课标要求了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.教学目标知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.教学重点相似三角形性质定理的理解与运用.教学难点探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.教学流程一、复习旧知:1、相似三角形有何特征?2、判定三角形相似的主要方法有那些?3、什么叫做相似多边形的相似比?二、情境引入有一块三角形的空地,现在为响应绿化工程的号召,开辟一块面积为120平方米的四边形ABCD的绿化地,经测量DE∥BC,BC=6米,CD=4米,你能求出去掉的三角形部分的面积吗?引出课题:要解决这个问题,我们必须在学习相似三角形的判定的基础上进一步研究相似三角形的性质三、探究归纳回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?相似三角形的对应角相等,对应边成比例.问题:相似三角形的其他几何量可能具有哪些性质?探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.图1图2问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?追问:对应高在哪两个三角形中,它们相似吗?如何证明? 解:∵△ABC ∽△A ′B ′C ′ ∴∠B =∠B ′∵△ABD 和△A ′B ′D ′都是直角三角形 ∴△ABD ∽△A ′B ′D ′∴==''''AD ABk A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢? 推广:相似三角形对应线段的比等于相似比.问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系? 结论:相似三角形的周长比等于相似比. 思考:相似三角形面积比与相似比有什么关系?如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.21212ABC A B C BC ADS BC ADk k k S B C A D B C A D ∆'''∆⋅==⋅=⋅=''''''''⋅结论:相似三角形面积比等于相似比的平方. 四、应用提高例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边 BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积.解:在△ABC 和△DEF 中, ∵AB =2DE ,AC =2DF ,1.2DE DF AB AC ∴== ∵∠A =∠D ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2∵△ABC 的边 BC 上的高是6,面积为125, ∴△DEF 的边 EF 上的高为163,2⨯= 面积为211253 5.2⨯=() 应用: 1.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BEA DB E =''''3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm变成了6cm,放缩比例是多少?这个三角形的面积发生了怎样的变化?五、体验收获说一说你的收获.相似三角形的性质:1.对应角相等,对应边成比例(对应边的比等于相似比)2.对应高线、对应中线、对应角平分线的比等于相似比3.对应周长比等于相似比4.对应面积比等于相似比的平方六、拓展提升1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?3cm2cm3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.七、课内检测1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()A.5倍B.15倍C.25倍D.30倍2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()A.1:1 B.1:2 C.1:4 D.1:23.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()A.40cm B.50 cm C.60 cm D.70 cm4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为_______.八、布置作业教材72页练习第1、2题.附:板书设计§ 27.2.2 相似三角形的性质一:相似三角形对应角相等,对应边成比例二:相似三角形的对应高线、对应中线、对应角平分线的比等于相似比三:相似三角形周长比等于相似比推广:相似三角形对应线段的比等于相例题板演区学生板演区。
初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。
相似三角形是指具有相同形状但大小不同的两个三角形。
在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。
一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。
具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。
二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。
2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。
3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。
例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。
三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。
即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。
2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。
即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。
3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。
即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。
23.3.3相似三角形的性质一、学情分析本班学生已经建立了学习小组,经历了很多合作学习的过程,所以学生参与有关性质探究活动的热情应该比较高,但是基于本班学生平常学习的状况,部分学生的逻辑推理能力和灵活运用所学知识解决实际问题的能力还有待提高,期待在小组学习中,通过互助学习解决这部分同学的困惑。
二、教案1、教材分析本节教学内容是本章的重要内容之一。
本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。
从知识的前后联系来看,相似三角形可看作是全等三角形的拓展,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。
另外相似三角形的性质还是研究相似多边形性质的基础,也是研究圆中线段关系的有效工具。
2、教学目标1.经历“直观感觉――尝试猜想――合情推理――知识应用”的活动过程,探索相似三角形的性质,并会用相似三角形的性质解决相应的数学问题。
2.通过运用相似三角形的性质解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力。
3.在探究中,开发、培养学生的逻辑推理能力,进一步发展学生的探究意识。
3、重点难点重点:探索并掌握相似三角形的性质,并进行简单运用难点:探索相似三角形性质的过程。
4、授课类型:新授课5、学法指导运用观察猜想、合作探究、总结归纳等方法来解决问题6、教学课时:1课时7、教学过程(详案)个人智慧展示一、知识引入相似三角形有何性质?想一想:在三角形中,除了边,角,还有哪些量?思考: 如果两个三角形相似,那么以上这些量之间有什么关系呢?设计意图:本环节采用开门见山,以旧知识引入本节课的当分猜想:当两三角形相似时,相应高、中线、角平分线的比与相似比有什么关系?设计意图:引导学生对全等三角形的对应边和对应线段的比的分析,通过分析发现规律,并由此猜想相似三角形的相应,相似比满足吗?相似三角形面积的比等于相似比的平方设计意图:对相似三角形面积之比的证明既需要运用三角形面积公式,又需要运用相似三角形对应高之比与对应边之比等于相似比的结论,使新旧知识有机地结合在一起,增强了学,分别等于多少?设计意图:提升运用的给出,作为课后思考,鼓励学生整合所学习的知识,也体现了分层教学,照顾学有余力的同学。
华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是;最小值是.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=x cm(x>0),四边形BCDP的面积为y cm2.求y关于x的函数关系式.14.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE ∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.15.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O 于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.16.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.17.腰长为6的等腰直角△ABC中,D是BC上的一动点(不与BC重合),过点D作AB,AC的垂线,垂足为E,F.(1)证明:△BDE∽△CDF;(2)设BD=x,四边形AEDF的面积为y,请写出y与x之间的函数关系式,并求出当x为何值时y最大?y的最大值是多少?18.已知:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1,延长CD交AE于K(1)求证:AE=CD,AE⊥CD.(2)类比:如图2所示,将(1)中的Rt△DBE绕点B逆时针旋转一个锐角,问(1)中线段AE,CD之间数量关系和位置关系还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展:在图2中,将“AB=BC,DB=EB”改为“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系怎样?请直接写出线段AE,CD间的数量关系和位置关系.19.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:AP=PD;(2)若⊙O的半径为5,AF=7,求的值.20.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;(3)求CM长度.21.如图,在△ABC中,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.(1)求证:△ABD∽△AHG.(2)若4AB=5AC,且点H是AC的中点,求的值.22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5,(1)如图(1),若点P是弧AB的中点,求PB的长;(2)如图(2),过点P作PD⊥BC于点E,交AB于点D,若=,求PC的长.23.如图,△ABC为一锐角三角形,BC=12,BC边上的高AD=8.点Q,M在边BC上,P,N分别在边AB,AC上,且PNMQ为矩形.(1)设MN=x,用x表示PN的长度;(2)当MN长度为多少时,矩形PNMQ的面积最大,最大面积是多少?(3)当MN长度为多少时,△APN的面积等于△BPQ与△CMN之和?24.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s 的速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)t为何值时,△CPQ的面积等于△ABC面积的?(2)运动几秒时,△CPQ与△CBA相似?(3)在运动过程中,PQ的长度能否为1cm?试说明理由.25.如图,分别延长平行四边形ABCD的边CD、AB到E、F,使DE=BF=CD,连接EF,分别交AD,BC于G,H,连接CG,AH(1)求证:四边形AGCH为平行四边形;(2)求△DEG和△CGH的面积比.26.如图,△ABC中,D,E分别为BC,AB中点,连接EC,AD,且AD与EC交于点F,延长AD至点G使GD=AD,连结CG.(1)请在图中找出一对全等三角形,并证明.(2)若AB=x,EB:DF=3:2,试用含x的代数式表示线段AG的长.27.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F是线段AD上的三等分点,连接BE、CE、BF、CF,若,且BC=4a.(1)求四边形ABEC的面积;(2)写出与△CEF相似但不全等的三角形,并证明其中的一对.28.阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:AD的取值范围是.参考小军思考问题的方法,解决问题:如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC 于点D.求证:PA•CD=PC•BD.29.如图,△ABC中,BC=2AB,点D、E分别是BC、AC的中点,过点A作AF∥BC交线段DE的延长线于点F,取AF的中点G,联结DG,GD与AE交于点H.(1)求证:四边形ABDF是菱形;(2)求证:DH2=HE•HC.30.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?31.如本题图①,在△ABC中,已知∠ABC=∠ACB=α.过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.(1)求∠ACD的大小;(2)在线段CD的延长线上取一点F,以FD为角的一边作∠DFE=α,另一边交BD延长线于点E,若FD﹣kAD(如本题图②所示),试求的值(用含k 的代数式表示).32.如图,四边形ABCD是平行四边形,点E为DC延长线上一点,联结AE,交BC边于点F,联结BE.(1)求证:AB•AD=BF•ED;(2)若CD=CA,且∠DAE=90°,求证:四边形ABEC是菱形.33.如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4.(1)判断△ABE与△ADB是否相似,并说明理由;(2)求∠C的度数.34.如图,AD是△ABC的高,点Q、M在BC边上,点N在AC边上,点P在AB 边上,AD=60cm,BC=40cm,四边形PQMN是矩形.(1)求证:△APN∽△ABC;(2)若PQ:PN=3:2,求矩形PQMN的长和宽.35.如图,在直角三角形ABC中,∠C=90°,矩形DEFG的四个顶点都在△ABC 的边上,已知:AC=8,BC=6.(1)当四边形DEFG为正方形时,求EF的长;(2)△BEF与△FCG能全等吗?若能,请你求出EF的长;若不能,请说明理由;(3)△BEF与△ADG能全等吗?若能,请你求出EF的长;若不能,请说明理由.36.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是.(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.37.如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M 在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若AC=;,BD=2,求半圆的直径.38.在△ABC中,BC=2,BC边上的高AD=1,P是BC上任一点,PE∥AB交AC 于E,PF∥AC交AB于F.用x表示;(1)设BP=x,将S△PEF(2)当P在BC边上什么位置时,S值最大.39.如图,已知在梯形ABCD中,AD∥BC,∠A=90°,AB=AD,点E在边AB上,且DE⊥CD,DF平分∠EDC,交BC于点F,联结CE、EF.(1)求证:DE=DC;(2)如果BE2=BF•BC,求证:∠BEF=∠CEF.40.如图,在Rt△ABC中,∠B=90°,AB=9cm,BC=2cm,点M,N分别从A,B 同时出发,M在AB边上沿AB方向以每秒2cm的速度匀速运动,N在BC边上沿BC方向以每秒1cm的速度匀速运动(当点N运动到点C时,两点同时停止运动).设运动时间为x秒,△MBN的面积为ycm2.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)求△MBN的面积的最大值.41.如图,在等腰三角形ABC中,AD⊥BC于点D,AD=3,DC=4,点M在线段AC上运动,ME⊥AD于点E,连结BE并延长交AC于点F,连结BM.设=m (0<m<1),△BEM的面积为S.(1)当m=时,求的值.(2)求S关于m(0<m<1)的函数解析式并求出S的最大值.(3)设=k,猜想k与m的数量关系并证明.42.以AB为直径作半圆O,AB=10,点C是该半圆上一动点,连接AC、BC,延长BC至点D,使DC=BC,过点D作DE⊥AB于点E,交AC于点F,在点C运动过程中:(1)如图1,当点E与点O重合时,连接OC,试判断△COB的形状,并证明你的结论;(2)如图2,当DE=8时,求线段EF的长.43.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB 的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(s)(0<t<4).根据上面的信息,解答下面的问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t 之间的函数表达式.44.如图,已知AB是⊙O的直径,点E在线段AB上,CD⊥AB于G,连接DE 交⊙O于F,连接CF交AB延长线于P.求证:OF2=OE•OP.45.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为,AC的长为.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.46.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=2,CD是斜边AB上的高,点E 为边AC上一点(点E不与点A、C重合),连接DE,作CF⊥DE,CF与边AB、线段DE分别交于点F,G;(1)求线段CD、AD的长;(2)设CE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.47.如图,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF ∥AD交BC于点F,且BF2=BD•BC,联结FG.(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形.48.在▱ABCD中,点E在BC边上,点F在BC边的延长线上,且BE=CF.(1)求证:MA=MF;(2)连接AF,分别交DE、CD于M、N,若∠B=∠AME,求证:ND•ME=AD•MN.49.如图,在梯形ABCD中,AB∥CD,AD=BC,E是CD的中点,BE交AC于F,过点F作FG∥AB,交AE于点G.(1)求证:AG=BF;(2)当AD2=CA•CF时,求证:AB•AD=AG•AC.50.已知:如图,在四边形ABCD中,AB∥CD,点E是对角线AC上一点,∠DEC=∠ABC,且CD2=CE•CA.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE=∠DCE,求证:四边形EFCD是菱形.华师大新版九年级上学期《23.3.3 相似三角形的性质》同步练习卷参考答案与试题解析一.解答题(共50小题)1.在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).(1)如图1,连结AE.先由DE=DF,得出∠DEF=∠DFE,由∠ADF+∠DEC=180°,【分析】得出∠ADF=∠DEB.由∠AFE=∠BDE,得出∠AFE+∠ADE=180°,那么A、D、E、F四点共圆,根据圆周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,则∠AEB=∠DEF=∠BAE,根据等角对等边得出AB=BE;(2)如图2,连结AE.由A、D、E、F四点共圆,得出∠ADF=∠AEF,由∠DAF=90°,得出∠DEF=90°,再证明∠DEB=∠AEF.又∠AFE=∠BDE,根据两角对应相等的两三角形相似得出△BDE∽△AFE,利用相似三角形对应边成比例得到=.在直角△DEF中,利用勾股定理求出EF==DF,然后将AF=m,DE=kDF代入,计算即可求解.【解答】解:(1)如图1,连结AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠DFE=∠BAE,∴AB=BE;(2)如图2,连结AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四点共圆,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB.∵∠ADF=∠AEF,∴∠DEB=∠AEF.在△BDE与△AFE中,,∴△BDE∽△AFE,∴=.在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴==,∴BD=.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定与性质,四点共圆,圆周角定理,勾股定理等知识,有一定难度.连结AE,证明A、D、E、F四点共圆是解题的关键.2.如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长交AB于点E,连接BP并延长交AD于点F,交CD延长线于点G.(1)求证:PB=PD.(2)若DF:FA=1:2①请写出线段PF与线段PD之间满足的数量关系,并说明理由;②当△DGP是等腰三角形时,求tan∠DAB的值.【分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出,,进而得出即,即可得出答案;②由(1)证得△APB≌△APD,得到∠ABP=∠ADP,根据平行线的性质,得到∠G=∠ABP,(Ⅰ)若DG=PG根据△DGP∽△EBP,得DG=a,由勾股定理得到FH=,于是得到结论;(Ⅱ)若DG=DP,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,设AH=x,求得FH=,得到tan∠DAB= =.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB,∴∠DAP=∠BAP,在△APB和△APD中,,∴△APB≌△APD,∴PB=PD;(2)解:①∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∴△AFP∽△CBP,∴,∵,∴,∴,由(1)知PB=PD,∴,∴PF=PD.②由(1)证得△APB≌△APD,∴∠ABP=∠ADP,∵GC∥AB,∴∠G=∠ABP,∴∠ADP=∠G,∴∠GDP>∠G,∴PD≠PG.(Ⅰ),若DG=PG,∵DG∥AB,∴△DGP∽△EBP,∴PB=EB,由(2)知,设PF=2a,则PB=BE=PD=3a,PE=PF=2a,BF=5a,由△DGP∽△EBP,得DG=a,∴AB=AD=2DG=9a,∴AF=6a,如图1,作FH⊥AB于H,设AH=x,则(6a)2﹣x2=(5a)2﹣(9a﹣x)2,解得x=a,∴FH=,∴tan∠DAB=;(Ⅱ)若DG=DP,如图2,设DG=DP=3m,则PB=3m,PE=BE=PF=2m,AB=AD=2DG=6m,AF=4m,BF=5m,∴(4m)2﹣x2=(5m)2﹣(6m﹣x)2,解得x=m,∴FH=,∴tan∠DAB==.【点评】此题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,锐角三角函数,平行线的性质,菱形的性质,正确的作出辅助线是解题的关键.3.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.【分析】(1)根据圆周角定理求得AD⊥BC,根据等腰三角形三线合一的性质即可证得结论;(2)先求得∠E=∠C,根据等角对等边求得BD=DC=DE=3,进而求得AD=1,然后根据勾股定理求得AB,即可求得圆的半径;(3)根据题意得到AC=,BC=6,DC=3,然后根据割线定理即可求得EC,进而求得AE.【解答】(1)证明:∵AB是圆O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC;(2)解:∵AB=AC,∵∠B=∠E,∴∠E=∠C,∴BD=DC=DE=3,∵BD﹣AD=2,∴AD=1,在RT△ABD中,AB==,∴⊙O的半径为;(3)解:∵AB=AC=,BD=DC=3,∴BC=6,∵∠B=∠E,∠C=∠C,∴△EDC∽△BAC,∵AC•EC=DC•BC,∴•EC=3×6,∴EC=,∴AE=EC﹣AC=﹣=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理的应用以及割线定理的应用,熟练掌握性质定理是解题的关键.4.如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【分析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD 为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【解答】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【点评】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,【分析】由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.【解答】(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.【点评】本题考查了旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质;熟练掌握旋转的性质,并能进行推理论证是解决问题的关键.6.如图,在△ABC中,∠ACB=90°,AB=5,AC=4,过点C作直线MC使得∠BCM=∠BAC,求点B到直线MC的距离.【分析】利用勾股定理求出BC,过B向MC作垂线,利用三角形相似求BE.【解答】解:如图:在Rt△ABC中,BC==3,作BE⊥MC,垂足是E,∵∠ACB=∠BEC=90°,∴△ACB∽△BCE,∴,∴,∴BE=,∴点B到直线MC的距离.【点评】本题考查了相似三角形的判定和性质,勾股定理作辅助线构造相似三角形是解题的关键.7.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)求证:△CDE∽△CAB;(2)求证:DE=BD;(2)如果BC=6,AB=5,求BE的长.【分析】(1)由圆内接四边形的性质得出∠CED=∠CBA,再由公共角相等,即可证出△CDE∽△CAB;(2)由等腰三角形的性质得出∠C=∠CBA,证出∠C=∠CED,得出DE=CD,再由圆周角定理和三线合一性质得出CD=BD,即可得出DE=BD;(3)由割线定理求出CE,由圆周角定理得出∠AEB=∠BEC=90°,根据勾股定理即可求出BE的长.【解答】(1)证明:连接AD,如图所示:∵四边形ABDE是⊙O的内接四边形,∴∠CED=∠CBA,又∵∠C=∠C,∴△CDE∽△CAB;(2)证明:∵AB=AC,∴∠C=∠CBA,∴∠C=∠CED,∴DE=CD,∵AB为⊙O的直径,∴∠ADB=90°,∴CD=BD,∴DE=BD;(3)解:由割线定理得:CE•AC=CD•BC,∵CD=BD=BC=3,AC=AB=5,∴CE===,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BEC=90°,∴BE===.【点评】本题考查了圆内接四边形的性质、相似三角形的判定、等腰三角形的性质、圆周角定理、割线定理、勾股定理;本题有一定难度,特别是(2)(3)中,需要运用圆周角定理、割线定理和勾股定理才能得出结果.8.如图1,已知矩形ABCD的对角线相交于点O,EF过点O分别交AB、CD于点E、F.(1)求证:△AOE≌△COF;(2)若AB=3,AD=4,点M在线段BC上运动,连接MO.①当MO⊥AC时,求BM的值;②当BM为多少时,△BMO是等腰三角形?(只写出结论,不要求写过程)【分析】(1)根据矩形的性质易证,OA=OC,AB∥CD,根据AB∥CD,得到∠EAO=∠FCO,满足ASA可证;(2)①先证△MOC∽△ACB,得MC:AC=OC:BC,计算MC,即可求出BM;②若△BMO是等腰三角形,则可能BM=OM,OB=BM,OB=OM,分类讨论即可.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,AB∥CD,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(AAS);(2)①解:如图1,∵MO⊥AC,∴∠MOC=90°,∵∠ABC=90°,∴∠MOC=∠ABC,又∵∠MCO=∠MCO,∴△MOC∽△ACB,∴MC:AC=OC:BC,∵AB=3,BC=4,∴AC=5,∴OC=2.5,∴MC:5=2.5:4,∴MC=,∴BM=;②如图2,△BMO是等腰三角形时,有三种情况:(Ⅰ)OB=OM,此时M与C重合,BM=4;(Ⅱ)OB=BM,BM=OB=BD=2.5;(Ⅲ)BM=OM,作MN⊥BD,∴BN=B0=;∵△BMN∽△BDC∴,∴BM===,∴BM=2.5或4或.【点评】本题主要考查了三角形全等的判定、相似三角形的判定与性质、等腰三角形的判定与性质,第3小题考查学生思维的全面性,恰当分类讨论是解决问题的关键.9.已知两个以O为顶点且不全等的直角三角形△AOB和△COD,其中∠ABO=∠DCO=30°.(1)如图1,设∠BOD=α(0°<α<60°),点E、F、M分别是AC、CD、DB的中点.连接FM、EM.请问:随着α的变化,试判断的值是否发生变化?若不变,请求出的值;若变化,请说明理由;(2)如图2,若BO=3,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O旋转的过程中,线段PN长度的最大值是4;最小值是.【分析】(1)连接AD、BC,由∠AOB=∠COD=90°∠ABO=∠DCO=30°,得到,∠AOD=∠BOC,推出△AOD∽△BOC,求得∠OAD=∠CBO,,证得AD⊥BC由于点E、F、M分别是AC、CD、DB的中点,根据三角形的中位线的性质得到EF∥AD,EF=AD,于是得到MF∥AD,MF=AD,在Rt△EFM中,=;(2)过O作OE⊥AB于E,由已知条件求出当P在点E处时,点P到O点的距离最近为,当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=4.【解答】解:(1)不变;=,如图1,连接AD、BC交于一点Q,AD交BO于P,∵∠AOB=∠COD=90°,∠ABO=∠DCO=30°,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴∠OAD=∠CBO,,∵∠APO=∠BPQ,∴∠BQP=∠AOB=90°,∴AD⊥BC,∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,EF=AD,∴MF∥BC,MF=BC,在Rt△EFM中,=;(2)如图2,过O作OE⊥AB于E,∵BO=3,∠ABO=30°,∴AO=,AB=,∴AB•OE=OA•OB,∴OE=,∴当P在点E处时,点P到O点的距离最近为,这时当旋转到OE与OD重合是,NP取最小值为:OP﹣ON=;如图4,当点P在点B处时,且当旋转到OB在DO的延长线时,NP取最大值OB+ON=3+1=4,∴线段PN长度的最小值为,最大值为4.故答案为:4,.【点评】此题考查了旋转的性质、相似三角形的判定与性质、直角三角形的判定和性质三角形的中位线的判定和性质、三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.10.两个全等的Rt△ABC和Rt△ADE中,∠ABC=∠ADE=90°,M、N分别是BD、CE的中点,连接MN,(1)若AB=ED,且B、A、D 三点在一条直线上(如图1),猜想MN与BD的关系,并加以证明;(2)若AB=AD,sin∠BAC=,且B、A、D 三点不在一条直线上(如图2),求的值.【分析】(1)如图1,连接BN并延长,与DE的延长线相交于点F,由∠ABC+∠ADE=180°,得到BC∥DE,得到∠CBN=∠EFN,∠BCN=∠FEN,证出△CBN ≌△EFN,得到BN=FN,EF=CB=AD,于是得到DF=DE+EF=AB+BC=AB+AD=BD,根据三角形的中位线的性质即可得到结论;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,证得△DEF∽△DAB,得到.由sin∠BAC=,得到tan∠BAC=,即DF=BD,得到MN=DF=BD即可得到结论.【解答】解:(1)MN⊥BD,MN=BD;如图1,连接BN并延长,与DE的延长线相交于点F,∵∠ABC+∠ADE=180°,∴BC∥DE,∴∠CBN=∠EFN,∠BCN=∠FEN,∵CN=EN,在△CBN与△EFN中,,∴△CBN≌△EFN,∴BN=FN,EF=CB=AD,∴DF=DE+EF=AB+BC=AB+AD=BD,又∵BM=MD,∴MN=DF=BD,MN∥DF,∴∠BMN=∠BDE=90°,∴MN⊥BD;(2)过点E做BC的平行线,与BN的延长线相交于点F,连接DF,由(1)可知,△CBN≌△EFN,MN=DF,∴EF=CB=DE,∠BCE=∠CEF,∵∠ABC+∠ADE=180°,∴∠BAD+∠BCE+∠CED=540°﹣180°=360°,∵∠DEF+∠CEF+∠CED=360°,∴∠BAD=∠DEF,∵,∴△DEF∽△DAB,∴.∵sin∠BAC=,∴tan∠BAC=,即DF=BD,∴MN=DF=BD.即.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,梯形的中位线的性质,正确的作出辅助线是解题的关键.11.如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS 即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.【点评】此题考查了全等三角形的判定与性质,相似三角形的判定与性质,以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.12.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,【分析】然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.13.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm ,BC=9cm ,P 是射线DE 上的动点.设DP=x cm (x >0),四边形BCDP 的面积为y cm 2.求y 关于x 的函数关系式.【分析】(1)先利用等角的余角相等得到∠B=∠DAC ,则可判断Rt △DFA ∽Rt △ACB ,根据相似三角形的性质得AB•AF=BC•AD ,然后利用AD=CD 代换即可得到结论;(2)连结PC ,如图,先在Rt △ACB 中利用勾股定理计算出AC=12,再利用等腰三角形的性质AF=FC=AC=6,接着证明DE ∥BC ,则P 点到BC 的距离等于CF ,然后根据三角形面积公式和y=S △CPD +S △BCP 即可得到y 与x 的函数解析式.【解答】(1)证明:∵∠DAB=∠ACB=90°,∴∠DAC +∠BAC=90°,∠BAC +∠B=90°,∴∠B=∠DAC ,∵DF ⊥AC ,∴∠DFC=90°,∴Rt △DFA ∽Rt △ACB ,∴=,即AB•AF=BC•AD ,而AD=CD ,∴AB•AF=CB•CD ;(2)解:连结PC ,如图,在Rt △ACB 中,∵AB=15,BC=9,∴AC==12,∵DF ⊥AC ,DA=DC ,∴AF=FC=AC=6,∵∠DFC=∠ACB=90°,∴DE ∥BC ,∴P 点到BC 的距离等于CF ,∴y=S △CPD +S △BCP=•x•6+•9•6=3x +27(x >0).【点评】本题考查了相似三角形的判断与性质:在判定两个三角形相似时,合理利用直角的作用.也考查了利用三角形面积公式列函数关系式.把四边形的面积化为两三角形面积的和是求函数关系式的关键.14.如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点.过点B 作BE ∥AD ,交⊙O 于点E ,连接ED(1)求证:ED ∥AC ;(2)若BD=2CD ,设△EBD 的面积为S 1,△ADC 的面积为S 2,且S 12﹣16S 2+4=0,求△ABC 的面积.【分析】(1)由AD 是△ABC 的角平分线,得到∠BAD=∠DAC ,由于∠E=∠BAD ,等量代换得到∠E=∠DAC ,根据平行线的性质和判定即可得到结果;(2)由BE ∥AD ,得到∠EBD=∠ADC ,由于∠E=∠DAC ,得到△EBD ∽△ADC ,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD=∠DAC ,∵∠E=∠BAD ,。
3.相似三角形的性质1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)一、情境导入 两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、A ′D ′之间有什么关系?二、合作探究探究点一: 相似三角形的性质【类型一】 利用相似比求三角形的周长和面积如图所示,平行四边形ABCD 中,E 是BC 边上一点,且BE =EC ,BD 、AE 相交于F 点.(1)求△BEF 与△AFD 的周长之比; (2)若S △BEF =6cm 2,求S △AFD .解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解. 解:(1)∵在平行四边形ABCD 中,AD ∥BC ,且AD =BC ,∴△BEF ∽△AFD .又∵BE =12BC ,∴BE AD =BF DF =EF AF =12,∴△BEF 与△AFD 的周长之比为BE +BF +EF AD +DF +AF =12; (2)由(1)可知△BEF ∽△DAF ,且相似比为12,∴S △BEF S △AFD =(12)2,∴S △AFD =4S △BEF =4×6=24cm 2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.【类型二】 利用相似三角形的周长或面积比求相似比若△ABC ∽△A ′B ′C ′,其面积比为1∶2,则△ABC 与△A ′B ′C ′的相似比为( )A .1∶2 B.2∶2 C .1∶4 D.2∶1解析:∵△ABC∽△A′B′C′,其面积比为1∶2,∴△ABC与△A′B′C′的相似比为1∶2=2∶2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方.【类型三】利用相似三角形的性质和判定进行计算如图所示,在锐角三角形ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别为18和8,DE=3,求AC边上的高.解析:求AC边上的高,先将高线作出,由△ABC的面积为18,求出AC的长,即可求出AC边上的高.解:过点B作BF⊥AC,垂足为点F.∵AD⊥BC, CE⊥AB,∴Rt△ADB∽Rt△CEB,∴BDBE=ABCB,即BDAB=BECB,且∠ABC=∠DBE,∴△EBD∽△CBA, ∴S△BEDS△BCA=(DEAC)2=818.又∵DE=3,∴AC=4.5.∵S△ABC=12AC·BF=18, ∴BF=8.方法总结:解决此类问题,可利用相似三角形周长的比等于相似比、面积比等于相似比的平方来解答.【类型四】利用相似三角形线段的比等于相似比解决问题如图所示,PN∥BC,AD⊥BC交PN于E,交BC于D.(1)若AP∶PB=1∶2,S△ABC=18,求S△APN;(2)若S△APN∶S四边形PBCN=1∶2,求AEAD的值.解析:(1)由相似三角形面积比等于对应边的平方比即可求解;(2)由△APN与四边形PBCN的面积比可得△APN与△ABC的面积比,进而可得其对应边的比.解:(1)因为PN∥BC,所以∠APN=∠B,∠ANP=∠C,△APN∽△ABC,所以S△APNS△ABC=(APAB)2.因为AP∶PB=1∶2,所以AP∶AB=1∶3.又因为S△ABC=18,所以S△APNS△ABC=(13)2=19,所以S△APN=2;(2)因为PN∥BC,所以∠APE=∠B,∠AEP=∠ADB,所以△APE∽△ABD,所以APAB=AEAD,S△APNS△ABC=(APAB)2=(AEAD)2.因为S△APN∶S四边形PBCN=1∶2,所以S△APNS△ABC=13=(AEAD)2,所以AEAD=13=33.方法总结:利用相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.【类型五】利用相似三角形的性质解决动点问题如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C 不重合),Q点在BC上.(1)当△PQC的面积是四边形P ABQ面积的13时,求CP的长;(2)当△PQC的周长与四边形P ABQ的周长相等时,求CP的长.解析:(1)由于PQ∥AB,故△PQC∽△ABC,当△PQC的面积是四边形P ABQ面积的13时,△CPQ与△CAB的面积比为1∶4,根据相似三角形的面积比等于相似比的平方,可求出CP 的长;(2)由于△PQC∽△ABC,根据相似三角形的性质,可用CP表示出PQ和CQ的长,进而可表示出AP、BQ的长.根据△CPQ和四边形P ABQ的周长相等,可将相关的各边相加,即可求出CP的长.解:(1)∵PQ∥AB,∴△PQC∽△ABC,∵S△PQC=13S四边形P ABQ,∴S△PQC∶S△ABC=1∶4,∵14=12,∴CP=12CA=2;(2)∵△PQC∽△ABC,∴CPCA=CQCB=PQAB,∴CP4=CQ3,∴CQ=34CP.同理可知PQ=54CP,∴C△PCQ=CP+PQ+CQ=CP+54CP+34CP=3CP,C四边形P ABQ=P A+AB+BQ+PQ=(4-CP)+AB+(3-CQ)+PQ=4-CP+5+3-34CP+54CP=12-12CP,∴12-12CP=3CP,∴72CP=12,∴CP=247.方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键.三、板书设计1.相似三角形的对应角相等,对应边的比相等;2.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;3.相似三角形的面积的比等于相似比的平方.本节教学过程中,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等.同学们讨论非常激烈,本节课堂教学取得了明显的效果.。