近景摄影测量的其它解析处理方法
- 格式:ppt
- 大小:1.41 MB
- 文档页数:2
使用近景摄影测量方法进行工程量测的技巧与注意事项摄影测量是一种通过摄影设备来测量物体尺寸、形状和位置的技术方法。
在工程领域中,使用摄影测量来进行工程量测可以提高效率和精度。
而近景摄影测量方法作为一种常用的技术手段,具有简便、快速等优点。
本文将介绍使用近景摄影测量方法进行工程量测的技巧与注意事项。
近景摄影测量方法利用高精度的数码相机和相关软件,通过对物体的多个视角进行摄影,并在计算机软件中进行图像处理和测量,从而得到工程量测的结果。
具体而言,可以通过相机的定标来获得摄影位置和姿态的参数。
然后,通过对不同角度、不同高度的照片进行标定和配准,得到物体的三维坐标和形状信息。
最后,可以通过计算机软件对得到的数据进行分析,得到所需的工程量测结果。
在使用近景摄影测量方法进行工程量测时,有些技巧和注意事项需要特别注意。
首先,摄影设备的选择非常重要,要选择具有高像素和快速对焦功能的数码相机,以确保图像的清晰度和准确性。
其次,摄影的环境也需要注意,在室内拍摄时要注意光线的均匀性和稳定性,避免出现反射和阴影等问题。
在室外拍摄时,要注意天气条件,选择光线良好的日子进行拍摄,以减少阴影和光线扭曲的影响。
另外,摄影点的布置也是一个重要的技巧。
在进行近景摄影测量时,通常需要选择合适的摄影点,以获得足够的视角和覆盖范围。
摄影点的距离和角度应该根据被测物体的大小和形状进行合理的选择。
同时,需要注意摄影点的位置要稳定,尽量避免因为地震或者其他原因导致摄影点的移动,以确保测量结果的准确性和稳定性。
此外,数据处理的方法也是关键。
在得到一系列的照片后,需要通过计算机软件对图像进行处理和分析。
首先,对图像进行标定和配准,以获得摄影位置和姿态的参数。
然后,通过三维重建算法对图像进行处理,得到物体的三维坐标和形状信息。
最后,可以采用点云处理和模型拟合等方法,对数据进行分析和测量,得到所需的工程量测结果。
当然,在使用近景摄影测量方法进行工程量测时,也需要注意一些潜在的问题。
近景摄影测量的步骤和注意事项导语:随着科技的发展和摄影技术的不断提高,近景摄影测量成为了测绘、工程建设等领域中不可或缺的一种测量手段。
近景摄影测量凭借其操作简便、成果精确等特点,逐渐取代传统的测量方法,成为测绘领域的主流技术,对于我们了解近景摄影测量的步骤和注意事项有着重要的意义。
第一部分:近景摄影测量的步骤1. 装置设备:首先,进行近景摄影测量需要准备一台高质量的数码相机,同时需要使用三脚架或其他稳定设备将相机固定在合适的位置。
此外,还需要使用测量标识物,以提供测量的参考对象。
2. 规划拍摄区域:在开始拍摄之前,需要对测量区域进行规划。
根据测量任务的要求,确定需要测量的区域,并制定拍摄路径和拍摄布局。
拍摄区域的规划对于后续数据处理和分析具有重要影响。
3. 进行拍摄:在确定好拍摄区域后,按照预定的路径和布局开始进行拍摄。
在拍摄过程中,需要注意保持相机的稳定,避免晃动或震动对图像质量的影响。
同时,要确保拍摄区域的光照条件良好,以确保拍摄到的图像质量较高。
4. 标定相机:在完成拍摄之后,需要进行相机的标定。
相机标定是指确定相机参数的过程,包括相机的焦距、畸变参数等。
相机标定可以通过特定的软件进行,也可以借助于一些测量仪器进行。
5. 图像处理:拍摄得到的图像需要经过图像处理的步骤,以达到测量的需求。
图像处理包括图像的配准、图像的校正、图像的分类等。
这些步骤可以通过使用专业的图像处理软件来完成。
6. 数据分析:在拍摄和图像处理完成后,得到的数据需要进行进一步的分析。
根据测量任务的要求,对数据进行分析,提取出需要的信息。
这个步骤可以借助于专业的测绘软件和分析工具来完成。
第二部分:近景摄影测量的注意事项1. 光照条件:光照条件对于近景摄影测量的成功与否具有重要影响。
在进行拍摄时,应尽量选择良好的光照条件,避免过暗或过亮的拍摄环境。
2. 校正畸变:相机镜头存在一定的畸变,这会影响到测量结果的准确性。
在进行图像处理时,应对图像进行畸变校正,以减小畸变对测量结果的影响。
近景摄影测量技术的原理与应用摄影术是人类记录和传达视觉信息的重要手段之一。
而近景摄影测量技术,则是通过摄影来实现对物体形态、尺寸等测量的一种方法。
它广泛应用于工程测量、建筑设计、文物保护等领域。
本文将介绍近景摄影测量技术的原理和应用。
近景摄影测量技术的原理是基于投影几何和相对定位原理。
在进行近景摄影测量时,需要摄影测量仪器和软件对摄影图像进行处理和分析。
首先,摄影测量仪器通过测量相机的内外方位元素,确定了摄影测量的几何参数。
其次,通过拍摄目标物体的多张照片,并用摄影测量软件进行特征点的匹配和图像配准,实现了照片的几何校正。
最后,通过测量图像上的特征点坐标,并进行三维坐标的计算和建模,即可得到目标物体的三维形态信息。
近景摄影测量技术的应用非常广泛。
首先,在工程测量领域,近景摄影测量可以用于工地勘察、施工监测和变形分析等工作。
例如,当测量建筑物的尺寸和形态时,可以使用近景摄影测量技术代替传统的测量方法,提高测量效率和精度。
其次,在建筑设计领域,近景摄影测量也被广泛应用于室内外环境的建模和渲染。
通过对建筑物外立面的摄影,可以生成真实感十足的虚拟模型,帮助设计师进行设计和效果展示。
此外,文物保护和文化遗产的研究也是近景摄影测量的一个应用领域。
通过对文物的摄影和三维建模,可以实现对文物的数字化保护与研究。
近景摄影测量技术的优点在于非接触性和高效性。
它不需要接触物体表面,不会对目标物体造成破坏,适用于对脆弱物体的测量和保护。
同时,近景摄影测量也具有高度的智能化和自动化。
现代的摄影测量软件已经可以实现自动化的摄影数据处理和三维重建,大大提高了测量的效率和准确度。
此外,近景摄影测量技术还具有数据量大、信息丰富等特点,可以为其他相关领域的研究和应用提供丰富的数据支持。
然而,近景摄影测量技术也存在一些挑战和限制。
首先,由于近景摄影测量依赖于摄影条件的限制,如光照、角度等因素,因此在某些特殊场景下,如低光照环境或目标物体表面无特征点时,可能会存在困难。
近景摄影测量技术的原理与方法摄影测量技术是一种利用摄影镜头和摄影基地进行测量的方法。
它广泛应用于测绘、建筑、地质、航空、水利和农林等领域。
目前,近景摄影测量技术在工程测量中得到了越来越广泛的应用。
下面将从原理和方法两个方面来探讨近景摄影测量技术。
一、原理近景摄影测量技术的原理主要包括相对定向和绝对定向两个方面。
1. 相对定向相对定向是指通过在不同位置、不同方向上进行拍摄,将照片上的特征点通过观测量的方法确定相对于摄影基地的空间位置和方向。
这一过程主要涉及到几何学和成像原理。
首先,相机的光学系统会将三维空间中的点投影到二维照片上。
然后,在照片上选择一些特征点,通过观测其在不同照片中的位置变化,就可以确定这些点相对于摄影基地的空间位置和方向。
2. 绝对定向绝对定向是指通过在地面上布设一些控制点,利用这些控制点与照片上的同名点之间的空间关系来确定摄影基地的位置和方向。
为了实现绝对定向,可以使用全站仪、GPS等仪器来测量控制点的坐标。
然后,在照片上找出与这些控制点对应的同名点,并计算它们之间的像空间关系,从而实现摄影基地的定位。
二、方法近景摄影测量技术的方法包括影像预处理、像控制点测量、相对定向、绝对定向和数字表面模型(DSM)生成等步骤。
1. 影像预处理影像预处理是为了提高照片的质量,包括对照片进行几何校正、辐射校正和噪声去除等。
几何校正是通过对照片进行摄影几何校正,消除摄影机的摄影畸变,使得照片上的特征点能够准确地反映其在现实世界中的位置。
辐射校正是通过校正照片的辐射值,消除由于光照条件不同而导致的亮度差异。
噪声去除是通过采用滤波等方法,去除照片上的噪声点,提高照片的清晰度。
2. 像控制点测量像控制点测量是指在照片上标示出一些已知位置的控制点,并测量它们在照片上的像空间坐标。
为了提高像控制点的精度,可以使用高精度的测绘仪器进行测量,并结合地面控制点来进行验证。
3. 相对定向相对定向是通过在照片上选择一些特征点,并观测它们在不同照片中的位置变化,实现摄影基地的定位。
近景摄影测量原理近景摄影测量原理什么是近景摄影测量近景摄影测量是一种利用相机拍摄近距离物体的方法来测量其形状、尺寸和位置的技术。
它常用于建筑、工程、文物保护等领域,可以高效且准确地获取物体的三维信息。
摄影测量的基本原理摄影测量基于几何光学原理,通过相机拍摄的影像来还原物体的几何形态。
它的基本原理可以概括为以下几点:1.像素坐标系统摄影测量将相机传感器上的像素与物体的几何点相对应。
每个像素都有唯一的坐标,可以通过相机标定参数将其映射到物体空间中的三维坐标。
2.焦平面相机的像平面与镜头之间有一个均匀分布的焦平面。
焦平面以镜头中心为中心,平行于传感器,用于记录入射光线。
3.相机标定相机标定是摄影测量的基础,它通过测量相机的内外参数来建立像素与物体坐标之间的映射关系。
内参数包括焦距、主点位置等;外参数包括相机在物体坐标系中的位置和姿态。
4.立体视觉利用两个或多个相机同时拍摄同一物体的影像,可以通过立体视觉原理来推导出物体的三维坐标。
立体视觉基于两个影像的视差来还原物体的深度信息。
近景摄影测量流程近景摄影测量的流程可以简化为以下几个步骤:1.摄影计划在开始进行近景摄影测量之前,需要进行摄影计划,确定拍摄的位置、角度和距离等参数,以获得所需的影像内容。
2.相机标定利用相机标定板等工具,对摄影机进行标定,获取相机的内外参数,以建立像素与物体坐标之间的映射关系。
3.影像获取使用相机拍摄物体的多个影像,包括不同角度和距离的影像,以覆盖物体的全貌和细节。
4.立体匹配利用多个影像进行立体匹配,通过视差计算物体的三维坐标。
常用的方法有基于特征点匹配的立体视觉算法。
5.三维重建通过立体匹配得到的三维坐标,进行三维重建和点云生成,以获取物体的真实形态。
应用领域近景摄影测量技术在以下领域有广泛应用:•建筑和工程近景摄影测量可以在建筑和工程项目中用于生成数字模型、量测结构变形、检测施工质量等。
•文物保护近景摄影测量可以用于对文物进行三维数字化保护和虚拟展示,还原文物原貌并进行精细分析。
近景摄影测量技术介绍摄影测量是一种通过摄影设备来获取地面上物体位置、形状和尺寸等信息的测量方法。
近景摄影测量技术,顾名思义,是指在短距离范围内进行摄影测量的一种方法。
本文将对近景摄影测量技术进行介绍,包括其原理、应用范围以及发展趋势。
一、近景摄影测量技术的原理近景摄影测量技术的原理基于摄影测量的基本原理,主要包括影像采集、像点匹配和三维坐标计算三个过程。
首先,影像采集是指使用摄影设备(如照相机或无人机)对目标区域进行拍摄,获取目标区域的影像数据。
这些数据可以通过摄影机的光学镜头或传感器捕获,并转化为数字图像。
其中,近景摄影测量技术常常使用高分辨率的数字相机或者已经预先标定的无人机。
其次,像点匹配是指对采集到的影像进行处理,找到其中的特征点并将其进行匹配。
这个过程需要使用计算机算法来进行,例如特征提取和特征匹配。
通过像点匹配,可以精确地确定同一个物体在不同影像中的位置,为三维坐标计算奠定基础。
最后,三维坐标计算是将匹配的像点转化为真实世界中的三维坐标。
这一过程涉及到摄影测量中的数学和几何转换,通过计算并解算一系列的几何方程,可以确定目标物体在三维坐标系中的位置和形态。
二、近景摄影测量技术的应用范围近景摄影测量技术在诸多领域具有广泛的应用。
下面介绍其中几个典型的应用领域。
1. 地质勘探与矿产资源评估:近景摄影测量技术可以用于对地质构造和地表地貌等进行测量和分析,以提供地质和矿产资源评估的依据。
通过高分辨率的影像数据,可以准确获取地质构造的信息,并研究矿产资源的分布情况和潜力。
2. 建筑与文化遗产保护:近景摄影测量技术可以对建筑物和文化遗产进行高精度的测量和保护。
利用三维坐标计算,可以获取建筑物的尺寸和形态等信息,辅助建筑设计和文物保护工作。
3. 城市规划与土地管理:近景摄影测量技术可以用于城市规划和土地管理。
通过获取城市区域的影像数据和三维信息,可以进行土地利用规划、道路设计和建筑物布局等工作,提高土地利用效率和城市规划的科学性。
近景摄影测量技术的应用指南近景摄影测量技术是指利用计算机视觉和图像处理技术,对靠近摄像机的物体或场景进行测量和分析。
它广泛应用于建筑设计、文物保护、工程测量等领域。
本文将介绍近景摄影测量技术的基本原理和应用指南,希望能为读者提供有益的信息。
一、基本原理近景摄影测量技术的核心原理是基于图像间的几何关系和图像特征提取进行测量。
它利用摄像机的位置和姿态参数与照片中的物体在像素坐标系下的位置关系,通过三角测量和尺度标定,计算出物体的三维坐标。
近景摄影测量技术主要包括三个步骤:图像获取、图像处理和数据分析。
首先,需要通过摄像机获取一系列照片,确保照片中的物体有足够的细节和特征。
然后,将这些照片导入计算机,进行图像处理和特征提取。
最后,根据摄像机的内部参数和外部参数,结合物体在不同照片中的位置比较,计算出物体在三维空间中的位置坐标。
二、应用指南(一)建筑设计与文物保护近景摄影测量技术在建筑设计和文物保护中有着广泛的应用。
通过获取建筑物或文物的照片,并进行测量和分析,可以为设计师和保护者提供宝贵的参考数据。
例如,在建筑设计中,可以测量建筑物的尺寸、形状和位置,为后续的施工工作提供准确的基础。
而在文物保护中,可以通过对文物进行三维建模和仿真,推测出其原貌,并制定科学的保护方案。
(二)工程测量与土地调查近景摄影测量技术在工程测量和土地调查中也发挥着重要的作用。
它可以快速获取大量的测量数据,并且具有高精度和低成本的优势。
在工程测量中,可以对建筑物、道路、桥梁等进行测量和分析。
同时,在土地调查中,可以对地形地貌、水文特征等进行测量和分析。
这些数据可以用于工程设计、规划和环境保护等方面。
(三)无人机摄影测量近景摄影测量技术与无人机技术的结合,为测量工作带来了革命性的变化。
传统的测量工作需要人工进行,工作效率低下且存在安全隐患。
而无人机摄影测量技术可以实现全自动、高效率的测量工作。
通过搭载摄像机的无人机,可以快速获取照片,并进行三维重建和测量。
近景摄影测量总结第一篇:近景摄影测量总结1、近景摄影测量是摄影测量与遥感学科的一个分支它通过摄影手段以确定地形以外目标的外形和运动状态。
主要包括古文物古建筑摄影测量、工业摄影测量、生物医学摄影测量三个部分。
2、近景摄影测量与航空摄影测量的比较1、相同点基本原理相同模拟处理方法、解析处理方法、数字影像处理方法基本相同某些内业摄影测量仪器的使用。
2、不同点1)测量目的不同。
航空摄影测量以测制地形、地貌为主注重其绝对位置近景摄影测量以测定目标物的形状、大小和运动状态为目的并不注重目标物的绝对位置。
2)被测量目标物不同。
航空摄影测量目标物以地形、地貌为主近景摄影测量目标物各式各样、千差万别3)目标物纵深尺寸与摄影距离比的变化范围不同。
4)摄影方式不同。
航空摄影为近似竖直摄影方式近景摄影除正直摄影方式外还有交向摄影方式等。
5)影像获取设备不同。
6)控制方式不同。
航空摄影测量的控制方式以控制点为主且多为明显的地面点近景摄影测量除控制点方式外还有相对控制方式且常常使用人工标志。
7)近景摄影测量适合动态目标3、近景摄影测量技术的优点1、瞬间获取被测目标的大量几何和物理信息适合于测量点数众多的目标2、非接触测量手段可在恶劣条件下作业3、适合于动态目标测量。
4、近景摄影测量技术的不足1、技术含量高需较昂贵设备和高素质人员2、对所有测量目标并非最佳技术选择--当不能获得质量合格的影像--当待测量点数稀少5、近景摄影测量精度统计的方法衡量精度的基本指标是被测点的坐标中误差精度1、估算精度:摄影前按控制方式、条件等的理论估算精度2、内精度:影像处理时按方程组健康度直接计算3、外精度:用多余控制点或条件客观的精度检验6、影响近景摄影测量精度的因素1、像点坐标的质量影像获取设备的性能、像点坐标量测精度、系统误差的改正程度等2、摄影条件照明、标志、摄影方式、控制质量3、图像处理与摄影测量处理的能力、水平如人工量测与自动量测。
7、摄影测量常用坐标系大地坐标系、摄影测量物方坐标系、像空间辅助坐标系、像空间坐标系、像平面坐标系。
测绘技术中的近景摄影测量方法近景摄影测量方法是测绘技术中一种重要的测量手段,它通过使用相机捕捉地物的图像,结合测量数据,计算地物的位置、形状和尺寸。
本文将介绍近景摄影测量方法的原理、应用以及未来发展方向。
一、原理近景摄影测量方法依赖于相机与地物之间的几何关系。
当相机拍摄地物图像时,相机光轴与地物交点确定了相机中心,而图像上的地物点与相机中心之间的距离则反映了地物的深度信息。
通过对相机光轴与地物交点的测量,以及对图像上地物点的测量,可以推导出地物的三维坐标。
在具体实施中,首先需要建立相机的内部和外部参数模型。
内部参数模型包括焦距、主点位置等相机内部参数,外部参数模型包括相机姿态和位置等相机外部参数。
然后,在地面上选择一些已知点,通过测量这些已知点在图像上的位置,以及相机和已知点之间的距离,就可以计算出相机的内外参数。
二、应用近景摄影测量方法在测绘领域有着广泛的应用。
首先,它可以用于地形测量。
通过拍摄地面图像,结合高程数据,可以实现对地形的准确测量。
这对于城市规划、环境保护等领域具有重要意义。
其次,近景摄影测量方法可以用于建筑测绘。
通过拍摄建筑物的图像,可以测量建筑物的尺寸、形状等参数。
这对于房地产开发、建筑设计等有着重要的作用。
此外,近景摄影测量方法还可以用于文物保护。
通过拍摄文物的图像,可以实现对文物的三维重建,包括形状、纹理等信息。
这对于文物保护、文物研究等具有重要的价值。
三、未来发展方向近景摄影测量方法在近年来得到了快速的发展,但仍然存在一些挑战和改进的空间。
首先,精度问题是一个需要解决的关键问题。
随着测量需求的增加,对于测量精度的要求也越来越高。
因此,需要研究更精确的参数估计方法,以提高近景摄影测量方法的精度。
其次,数据处理的效率也是一个需要改进的方面。
近景摄影测量方法产生的数据量庞大,需要进行大规模的数据处理。
因此,需要研究高效的数据处理算法,以提高数据处理的速度和效率。
此外,近景摄影测量方法还可以与其他测量技术结合,以实现更全面的测量。
近景摄影测量的原理及其在工程测量中的应用摄影测量是指利用照相机对地面目标进行影像获取和处理,通过测量影像中的对象形状、位置和尺寸等参数,从而获得目标的三维空间坐标和形状信息的方法。
近景摄影测量主要适用于小范围的工程测量任务,如建筑物、道路、桥梁、隧道等的设计、监测和评估等方面。
近景摄影测量的原理基于几何光学和影像处理的技术。
当光线从目标上折射或反射进入照相机镜头时,形成的影像可以通过相机的感光元件(如CCD)记录下来。
影像中的像素点位置和灰度值可以反映目标的形状和纹理特征。
通过对不同视角拍摄的影像进行匹配和分析,可以实现对目标三维空间坐标的计算和测量。
在近景摄影测量中,首先需要对摄影设备进行校准,包括相机的内外参数的测定和标定。
内参数包括焦距、主点位置和畸变等参数,外参数包括相机在空间中的位置和姿态。
校准后,可以采用多张影像拍摄同一目标的方式,通过影像匹配和几何关系恢复的方法,确定目标的三维坐标和形状信息。
近景摄影测量在工程测量中具有广泛的应用。
其中之一是建筑物测量。
传统的测量方法需要在施工过程中使用测量仪器对建筑物进行测量,工作量大且容易受到环境条件的限制。
而采用近景摄影测量可以在建筑物建成后,对其进行全面的测量和评估。
通过拍摄建筑物的影像并进行测量,可以获取建筑物的三维模型、立面图、平面图等信息,同时还可以对建筑物的变形和损坏进行监测和评估。
另外,近景摄影测量在道路和桥梁测量中也有重要的应用。
传统的道路和桥梁测量通常需要在现场布设测量控制点,并使用全站仪等仪器进行测量。
这种方法的精度高,但是工作量大且费时费力。
而采用近景摄影测量可以通过对道路和桥梁的影像进行处理,获取其形状和尺寸等信息。
这种方法不仅可以减轻测量人员的工作负担,还可以提高测量效率和精度。
此外,近景摄影测量还可以用于监测工程的变形和沉降等问题。
通过定期拍摄工程地点的影像,并进行形状和位置的测量比较,可以及时发现工程的变形和沉降等问题,并采取相应的措施进行修复和改进。
第六章基于共线条件方程 的近景像片处理方法§6.1 概述一、近景摄影测量的三种处理方法1、模拟法近景摄影测量2、解析法近景摄影测量3、数字近景摄影测量其中解析法近景摄影测量按处理方法的原理 又可分为:a.基于共线条件方程的解析处理方法b.基于共面条件方程的解析处理方法c.基于直接线性变换的解析处理方法d.基于其它原理的解析处理方法二、基于共线条件方程的解析处理方法1. 空间后方交会解法(单像空间后方交会 解法、多片空间后方交会解法)2.多片空间前方交会解法3.空间后方交会前方交会解法4.光线束解法5.直接线性变换解法§6.2 共线条件方程的像点误差方程一般式ï ï îï ï í ì - + - + - - + - + - - = D + - - + - + - - + - + - - = D + - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 2 2 2 0 3 3 3 1 1 1 0 S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x x 其中:(x,y ) 为像点在选定的某像片坐标系中 的像点坐标;(x 0,y 0) 为像主点的坐标;一、共线条件方程分析(Δx, Δy ) 为系统误差改正数;a i 、b i 、c i (i=1,2,3)是方向余弦,是外方位 角元素的函数;X S 、 Y S 、 Z S 是摄站在物方空间坐标系中的 坐标,是外方位直线元素;X 、 Y 、 Z 是物点在物方空间坐标系中的坐 标。
f 为摄影机主距;ï ï îï í - + - + - - + - + - - = D + - - + - + - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 2 2 2 0 3 3 3 S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y y Z Z c Y Y b X X a分析共线条件方程,可知1、可解算内方位元素(x 0,y 0, f )2、可解算外方位元素(X S,Y S, Z S, f,w,k )空间后方交会、光线束法;直接线性变换空间后方交会、光线束法;直接线性变换ï ï îï í - + - + - - + - + - - = D + - - + - + - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 2 2 2 0 3 3 3 S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y y Z Z c Y Y b X X a5、可解算像点坐标(x ,y )4、可解算系统误差参数,如畸变系数用于逆反摄影测量;生成模拟数据空间后方方交会、光线束法;直接线性变换3、可解算物方空间坐标(X ,Y , Z )空间前方方交会、光线束法;直接线性变换ï ï îï í - + - + - - + - + - - = D + - - + - + - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 2 2 2 0 3 3 3 S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y y Z Z c Y Y b X X a2、共线条件方程像点坐标误差方程一般式ï ï îï ï í ì - + - + - - + - + - - = - - + - + - - + - + - - = - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 3 3 3 2 2 2 0 3 3 3 1 1 1 0 S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x xï ï î ï ï í ì + - + - + - - + - + - - = + - + - + - - + - + - - = 0 3 3 3 2 2 2 0 3 3 3 1 1 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( y Z Z c Y Y b X X a Z Z c Y Y b X X a f y x Z Z c Y Y b X X a Z Z c Y Y b X X a f x S S S S S S S S S S S Sï ï îï ï íì + - = + - = 0 0 yZ Y f y x Z Xf x 其中 X Y Z为物点在像空间坐标系中 的坐标ï ï îï ï íì + - = + - = 0 0 ) ( ) ( y Z Y f y x Z X f x 令ï ï îï í+ - + - + - - + - + - - = - + - + - 03 3 3 2 2 2 3 3 3 ) ( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( y Z Z c Y Y b X X a Z Z c Y Y b X X a f y Z Z c Y Y b X X a S S S S S S S S Sî íì = = ) ( ) ( yy xx îí ì + = + + = + ) ( ) (y d v y x d v x y y x x 观测中有误差平差中存在多余观测值 非线性方程,平差计 算为迭代求解î íì = = ) ( ) ( yy xx ï ï îï í+ - + - + - - + - + - - = - + - + - 03 3 3 2 2 2 3 3 3 ) ( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( y Z Z c Y Y b X X a Z Z c Y Y b X X a f y Z Z c Y Y b X X a S S S S S S S S Sîí ì - - = - -= )] ( [ )] ( [ y y d v x x d v y y x x ú û ù ê ë é - - -ú ú ú ú úú ú ú ú ú ú ú ú ûù ê ê ê ê ê ê ê ê ê ê ê ê ê ë éD D D D D D D D D ú ú ú ú û ù ê ê ê ê ë é ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ = ú ûù ê ë é ) ( ) ( 0 0 0 0 y y x x y x f Z Y X y y Z y Y y X y y x Z xY xX x v v S S S SSS S S S y xM L L k w jï ï îï ï íì + - + - + - - + - + - - = + - + - + - - + - + - - = 03 3 3 2 2 2 0 3 3 3 1 1 1 ) ( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) ( ) ( ) ( y Z Z c Y Y b X X a Z Z c Y Y b X X a f y x Z Z c Y Y b X X a Z Z c Y Y b X X a f x S S S S S S S S S S S Sú û ù ê ë é - - -ú ú ú û ù ê ê ê ë é D D D ú ú ú ú ûùê ê ê ê ëé¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ + ú ú ú û ùê ê ê ë é D D D ú ú ú ûù ê ê ê ë é ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ +ú ú ú ú ú ú ú ú ûùê ê ê ê ê ê ê ê ë é D D D D D D ú ú ú ú ûù ê êê ê ëé ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶= ú û ù ê ë é ) ( ) ( 0 0 0 00 0 y y x x y x f y y x y f y y x x xf x Z Y X Z y Yy X y Z x Y xX x Z Y X y y y Z y Y y X y x xxZ x Y x X x v v S S S S S S S S S y x k w j k wj k w jú û ù ê ë é - - -ú ú ú ûù ê ê ê ë é D D Dú û ù ê ë é+ ú ú ú û ù ê ê ê ë é D D D ú û ù ê ë é - - - - - - +ú ú ú ú ú ú ú ú ûù ê ê ê ê ê ê ê ê ë é D D D D D D ú û ù ê ë é= ú û ù ê ë é ) ( ) ( 0 0 29 28 27 19 18 17 23 22 21 13 12 11 26 25 24 23 22 21 16 15 14 13 12 11 y y x x y x f a a a a a a Z Y X a a a a a a Z Y X a a a a a a a a a a a a v v SS S y x k wj V At B X 1CX 2LLCX BX At V - + + = 2 1 其中[ ]Tyx v v V = 为像点坐标观测值改正数向量[ ]TSS S Z Y X t k w j D D D D D D = 为外方位元素改正 数向量ú û ù ê ëé = 26 25 24 23 22 21 16 15 14 13 12 11 a a a a a a a a a a a a A 为外方位元素改正数向量系数矩阵[ ]TZ Y X X D D D = 1 为物方空间坐标改正数向量 ú û ù ê ëé - - - - - - = 23 22 21 13 12 11 a a a a a a B 为物方空间坐标改正数向量系数矩阵[ ] Ty x f X 0 02 D D D = 为内方位元素改正数向量 ú ûùêë é = 29 222719 18 17a a a a a a C 为内方位元素改正数向量系 数矩阵LCX BX At V - + + = 2 1), ( y x[ ] Ty y x x L )( ) ( - - = 为常数项向量LCX BX At V - + + = 2 1 ï ï îï ï íì + - - - - - - - - - - - = + - - - - - - - - - - - = 03 3 3 2 2 2 0 3 3 3 1 1 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) ( ) ( ) ( ) ( ) ( y Z Z c Y Y b X X a Z Z c Y Y b X X a f y x Z Z c Y Y b X X a Z Z c Y Y b X X a f x S S S S S S S S S S S S 为像点坐标观测值[ ] )( ), ( y x 为迭代中计算的像点坐标近似值LDX CX BX At V ad - + + + = 2 1 如考虑各类系统误差改正,则误差方程一般 式为其中D 、X ad与选择的数学模型有关。
收稿日期:2005-01-31中图分类号:P223文献标识码:B文章编号:1672-4623(2006)01-0031-03地理空间信息GEOSPATIALINFORMATION近景摄影测量可视化摄影与处理管理朱丽娜,张剑清,詹总谦(武汉大学遥感信息工程学院,湖北武汉430079)摘要:近景摄影中的场景较为复杂,通常不能采用常规航空摄影测量中的摄影方式,而是以单摄站旋转拍摄、多光束交会的方式进行。
这种方式增加了摄影测量后续处理的难度,尤其是模型选取以及空三处理。
介绍了一种简单实用的方法,通过机助的可视化界面建立摄影方案图,实现检索功能,简化数字近景摄影测量后续处理。
关键词:近景摄影测量;摄影方案图;全景影像;立体像对VisiblePhotographandProcessManagementforClose-rangePhotogrammetryZHULina,ZHANGJianqing,ZHANZongqian(SchoolofRemoteSensingandInformationEngineering,WuhanUniversity,Wuhan430079,China)Abstract:Scenesinclose-rangephotogrammetryarecomplex,commonphotographmethodsarenotsuithere.Weemployrotatingstationtotakephotosandmakemulti-rayintersecting.Thismethodaddsmoredifficultytolaterprocess,especiallyforselectingmodelsandspacetrianglehandling.Thispaperintroducesasimplebutpracticalinterfacetobuilddraftindex,theresultistosimplifylatertask.Keywords:close-rangephotogrammetry;photographplanchart;panoramaimage;stereophoto近景摄影测量是利用近距离摄影取得的影像信息,研究物体大小形状和时空位置的一门新技术。
近景摄影测量技术原理与实践近年来,随着摄影技术的不断发展,近景摄影测量技术逐渐受到人们的关注和应用。
它以摄影为手段,通过对近景影像进行测量和分析,可以获取物体的三维空间坐标和几何形状等关键信息。
本文将介绍近景摄影测量技术的原理与实践,并探讨其在工程、建筑、文化遗产保护等领域中的应用。
一、近景摄影测量技术的原理近景摄影测量技术的原理主要基于成像原理和几何测量原理。
首先,摄影机在拍摄物体时,光线经过镜头成像到影像平面上,形成二维的影像。
然后,通过对影像进行处理和解析,可以获取到物体的三维信息。
成像原理是近景摄影测量技术的基础,它关注的是摄影机、镜头和影像平面之间的关系。
在近景摄影测量中,为了获得准确的影像数据,需要使用高分辨率的相机和适当的镜头。
同时,摄影机的内部参数也是十分重要的,包括焦距、感光元件尺寸等。
只有准确把握这些参数,才能保证影像的准确性。
几何测量原理也是实现近景摄影测量的关键。
在获取到影像数据之后,需要进行几何校正和测量处理。
几何校正主要包括畸变校正、外方位元素的解算和内方位元素的解算等。
通过这些校正和解算步骤,可以消除影像中的畸变和误差,得到精确的影像配准结果。
二、近景摄影测量技术的实践近景摄影测量技术的实践主要包括影像获取、几何校正和数据处理等步骤。
影像获取是整个过程的第一步,需要在特定的条件下进行拍摄。
一般来说,需要选择合适的天气、光照和拍摄角度等因素,以获得清晰、准确的影像数据。
同时,在拍摄过程中,还需要注意避免因风吹动等原因导致影像模糊。
几何校正是实现近景摄影测量的重要环节。
畸变校正是其中的关键步骤,它可以消除由于镜头畸变带来的影像失真。
常用的畸变校正方法有基于校正板的方法和基于数学模型的方法等。
在进行几何校正之后,还需要根据已知控制点的坐标来解算影像的外方位元素和内方位元素。
通过这些步骤,可以将影像与真实世界建立起准确的对应关系。
数据处理是整个近景摄影测量过程的最后一步。
在几何校正之后,需要对影像进行配准和测量处理。
1、近景摄影测量的定义、精度分类以及影响精度的因素定义:通过摄影手段以确定(地形以外)目标的外形和运动状态的学科分支称为近景摄影测量。
估算精度——是在现场工作之前,在近景摄影测量网的设计阶段,根据摄影、控制、网形、设备和一些设计参数的具体情况,按照理论的精度估算式获得。
内精度——是在摄影测量的数据处理阶段,按解算未知数的方程组的健康程度,直接计算而得。
① 内精度容易获取;② 内精度一般只与摄影测量的网形有关,它不能够客观反映测量成果的质量,大多数情况下其精度好于实际精度。
外精度——能给出客观精度的指标方法。
一般需要较大量的多余控制。
影响精度的因素1、摄影设备的性能2、摄影方式3、控制的质量4、被测物体照明状态、标志使用等5、后续处理的软件性能2、近景摄影测量应用领域(1)古建筑与古文物摄影测量(2)生物医学摄影测量(3)工业摄影测量3、近景摄影测量常用坐标系物方空间坐标系D-XYZ像空间坐标系S-xyz辅助空间坐标系S-XYZ像平面坐标系o-xy4、内、外方位元素像片的内外方位元素是确定像片(及光束)在物方空间坐标系D-XYZ 中的位置与朝向的要素。
像片内方位元素是恢复摄影时光束形状的要素;像片外方位元素时确定此光束在物方空间坐标系中位置与朝向的要素。
内方位元素由像主点在此框标坐标系内的坐标(x,y),以及主距f 构成。
- f -焦距,主光轴的长度- x0、 y0-主点在像面上的位置。
外方位元素有六个:三个外方位直线元素和三个外方位角元素三直线元素:在曝光瞬间投影中心S 在地面选定的空间直角坐标系(物方空间坐标系)中的坐标,常用(Xs ,Ys ,Zs ) 表示。
三个角元素:它是描述像片在摄影瞬间空间姿态的要素,其中两个角元素用以确定主光轴在物方空间的方向,另一个确定像片在像片面内的方位。
(κωϕ,,)ϕ表示航向角,也称偏角。
摄影方向So在ZSX平面上的投影同ZS轴之间的夹角。
ω表示旁向倾角,也称倾角。
近景摄影测量1.近景摄影测量(Close-range Photogrammetry)是摄影测量与遥感(Photogrammetry & Remote Sensing)学科的一个分支,它通过摄影手段以确定(地形以外)目标的外形和运动状态。
主要包括古文物古建筑摄影测量、工业摄影测量和生物医学摄影测量三个部分2. 近景摄影测量与航空摄影测量的比较相同点:基本原理相同;模拟处理方法、解析处理方法、数字影像处理方法相同;某些内业摄影测量仪器的使用。
不同点:1)被测量目标物不同。
航空摄影测量目标物以地形、地貌为主;近景摄影测量目标物各式各样、千差万别,大到寺庙、飞机、海轮,中到汽车、脚印,小到青蛙、手腕骨、弹壳撞击孔甚至花粉。
2)测量目的不同。
航空摄影测量以测制地形、地貌为主,注重其绝对位置;近景摄影测量以测定目标物的形状、大小和运动状态为目的,并不注重目标物的绝对位置3)目标物纵深尺寸与摄影距离比不同。
4)摄影方式不同。
航空摄影为近似竖直摄影方式;近景摄影除正直摄影方式外,还有交向摄影方式(包括多重交向摄影方式)5)影像获取设备不同。
航空摄影以航摄仪为主;近景摄影除各种量测摄影机外,还有各类非量测摄影机,如X光机、普通相机、CCD相机等6)控制方式不同。
航空摄影测量控制以绝对控制点方式为主,且多为明显地物、地貌点;近景摄影测量除控制点方式外,还有相对控制方式,常使用人工标志7)近景摄影测量适合动态目标。
3. 现有三维测量技术:1)基于测距测角的工程测量;2)基于全球定位系统GNSS的方法;3)三坐标量测仪;4)光截面摄影测量技术;5)基于磁力场的三维坐标测量技术;6)基于三维激光扫描技术的方法;7)基于光干涉原理的测量技术;8)全息技术;4. 近景摄影测量技术的优点:1)瞬间获取被测目标的大量几何和物理信息,适合于测量点数众多的目标;2)非接触测量手段,可在恶劣条件下作业;3)适合于动态目标测量。
近景摄影测绘技术的操作步骤近景摄影测绘技术是一种利用摄影测量原理和方法,通过摄影设备对近距离拍摄的对象进行精确测量和三维建模的技术。
它在土地测绘、建筑设计、古建筑保护、文物修复等领域具有重要应用价值。
下面将介绍近景摄影测绘技术的操作步骤。
第一步:确定测区范围和目标在进行近景摄影测绘之前,首先需要明确测区的范围和目标。
测区可以是一个建筑物、一个景区或一片农田等。
根据测区的特点,确定摄影设备的位置、角度和拍摄方式,并确保目标物体完整、清晰可见。
第二步:选择合适的摄影设备近景摄影测绘要求摄影设备的像素高、焦距长、所采集的图像具有良好的清晰度和色彩还原能力。
常用的设备包括数码相机、单反相机、无人机等。
根据具体测区的需求选择合适的设备,并确保设备能够满足测绘精度的要求。
第三步:拍摄控制点为了进行精确的摄影测绘,需要在测区内设置若干控制点。
这些控制点可以是人工标志、地面点或其他已知位置的点。
通过拍摄这些控制点,并记录其在测区坐标系中的位置,可以用于后期图像处理与坐标计算。
第四步:拍摄图像在控制点布设完毕后,开始进行摄影测绘工作。
根据测区情况,选择合适的拍摄方式(垂直拍摄、斜角拍摄等),并按照一定的拍摄覆盖率进行图像采集。
拍摄时要注意光线条件,避免出现明暗不均或过曝的情况。
第五步:图像处理与特征提取获得图像后,需要进行图像处理与特征提取工作。
这一步骤包括镜头畸变校正、图像配准、影像融合等操作。
通过这些处理,可以提取出对象的特征点及其坐标、方位角等信息。
第六步:三维建模与精度改正在获得特征点信息后,可以利用摄影测量的原理进行三维建模。
根据不同的建模需求,可以选择不同的建模方法,如三角测量法、光束法、立体重建法等。
同时,还需要对测区进行精度改正,纠正因地面高程、轨迹误差等因素带来的误差。
第七步:数据分析与应用根据建模结果,可以进行数据分析与应用工作。
例如,可以计算对象的尺寸、体积、表面积等信息,并针对应用需求进行分析。