数学必修一第一单元知识点
- 格式:docx
- 大小:14.11 KB
- 文档页数:4
第一章 集合与函数的概念一、集合1、常用的一些数集表示方法:N 表示自然数集,N*或N +表示正整数集,Z 表示整数集, Q 表示有理数集,R 表示实数集.2、集合三大特性:确定性、互异性、无序性确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
无序性:集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示方法:列举法与描述法列举法:将集合中的元素一一列举出来(元素用逗号隔开,元素不论次序均放在大括号) 例:book 中的字母表示成集合 {b,o,o,k } {b,o,k }描述法:用确定的条件来表示某些对象是否属于这个集合。
例:book 中的字母表示成集合 A={X|X 是book 中的字母}全部奇数组成的组合 A={X ∈R|X =2K +1}中间的|不能省略,不要遗忘X ∈R 或者X ∈Z ,除非上下文明确表示4、集合相等只要集合中的元素完全相等,两个集合就相等。
5、集合的分类有限集:含有有限个元素的集合。
例:{1,8,9,3,5}无限集:含有无限个元素的集合。
例:{X ∈R|X >2}空集:不含有任何元素的集合。
记做 ∅≠{0}二、集合间的基本关系1、子集、真子集、集合相等子集:对于两个集合A 、B ,假如集合A 中的任一元素都是集合B 中的元素,则称集合A 为集合B 的子集。
记A ⊆B 或者B ⊇A 1)A 是B 的一部分,;(2)A 与B 是同一集合真子集:A ⊆B 且B 中至少一个元素不属于A 。
记A ⊂≠B B A A (B )集合相等:A=B,空集是任何集合的真子集。
已知集合A有n(n≥1)个元素,则它有2n个子集,它有2n−1个真子集,它有2n−1个非空子集,它有2n−2个非空真子集任何一个集合都是本身的子集∈、⊂、⊆等集合的运用2、集合的基本运算(交集、并集、补集)交集:A∩B {x|x∈A且x∈B }并集:A∪B {x|x∈A或x∈B }补集:C U A{x|x∈U且x∉A }二、函数1、函数表示:y=f(x), x∈Ax叫自变量,x的取值范围A叫做函数的定义域;与x的值对应的y叫做函数值(因变量),函数值的集合{f(x)|x∈A}叫做函数的值域定义域留意事项:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不行以等于零,(7)实际问题中的函数的定义域还要保证明际问题有意义.相同函数的推断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一样(两点必需同时具备)函数题目首先考虑定义域2、映射映射可以一对一,多对一,但是不行以多对一。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即x ∈B }. x ∈B}).C S A=},|{A x S x x ∉∈且韦恩 图 示AB图1AB图2性质 A A=A A Φ=Φ A B=B AA B ⊆AA B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
高一数学必修一第一章知识点总结范文及练习第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N某或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{某R|某-3>2},{某|某-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{某|某2=-5}二、集合间的基本关系1.“包含”关系—子集注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={某|某2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算交集并集补集类型定由所有属于A且义属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={某|某A,且由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={某|某A,或设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CSA,即某B}.某B}).S{某|某S,且某A}CA=韦AASBBA恩图图1图2示性AA=AAA=A(CuA)(CuB)AΦ=ΦAΦ=A=Cu(AB)AB=BAAB=BA(CuA)(CuB)质ABAABA=Cu(AB)ABBABBA(CuA)=UA(CuA)=Φ.例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=某2-2某+1,某R},N={某|某≥0},则M与N的关系是.4.设集合A=某1某2,B=某某a,若AB,则a的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人。
高一数学必修1第一章知识点总结高一数学必修1第一章主要包括三个部分:集合论、函数与映射、数列与数列的极限。
下面将对这三个部分进行总结。
一、集合论1. 集合的概念:集合是由一些确定的事物(称为元素)构成的整体。
2. 集合的表示方法:列举法、描述法和图示法。
3. 集合的运算:并集、交集、补集、差集、元素的判断和包含关系。
4. 集合的性质:幂集、集合的基数和集合的运算律。
二、函数与映射1. 函数的定义与表示:函数是一个对应关系,每个输入都有唯一的输出。
2. 映射的定义与表示:映射是一个集合到另一个集合的对应关系。
3. 函数的性质:定义域、值域、单调性、奇偶性、判定性质等。
4. 反函数与复合函数:反函数是一个函数的逆过程,复合函数是两个函数的结合。
三、数列与数列的极限1. 数列的概念:数列是按照一定规律排列的一组数。
2. 等差数列与等比数列:等差数列是指每一项与前一项之差都相等的数列,等比数列是指每一项与前一项之比都相等的数列。
3. 数列的通项公式与递推公式:通项公式是通过数列项的位置计算项的值,递推公式是通过前一项计算后一项的值。
4. 数列的极限:数列极限是数列中项的无限逼近某个数的过程,包括数列的有界性、极限存在与不存在以及数列极限的计算。
综上所述,高一数学必修1第一章主要是基础的数学知识点。
通过学习集合论、函数与映射以及数列与数列的极限,可以奠定后续数学学习的基础。
这些知识点在高中数学中会贯穿始终,为后续的学习打下坚实的基础。
因此,学生应该重视这些知识点的学习,理解其概念、运算法则,尽量多做相关习题,从而提高数学的综合素养和解题能力。
同时,也应注重数学的实际运用,将所学的数学知识应用到现实生活中,培养数学思维和解决问题的能力。
高一数学必修1第一章知识点归纳一:函数模型及其应用本节主要包括函数的模型、函数的应用等知识点。
主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的基本步骤是:(1)阅读并且理解题意.(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。
常见考法:本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。
多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。
误区提醒:1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
【典型例题】例1:(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数.y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.例2:某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。
第一章 集合与函数的概念(一)集合1.集合元素的特征:确定性、互异性、无序性.2.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;④如果B A ⊆,同时A B ⊆,那么A = B ;⑤如果C A C B B A ⊆⊆⊆,那么,.3. n 个元素的子集有2n 个;n 个元素的真子集有2n-1个; n 个元素的非空真子集有2n -2个.4.集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C5.主要性质和运算律(1)包含关系: ,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇ C(2)等价关系: U A B A B A A B B A B U ⊆⇔=⇔=⇔= C(3)集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:.)()()();()()(C A B A C B A C A B A C B A ==德摩根律:CU(A ∩B)= (CUA)∪(CUB) CU(A ∪B)= (CUA)∩(CUB)(二)函数及其表示1.函数(1)函数三要素:定义域,对应法则和值域。
(2)相同函数:定义域和对应法则二者完全相同的函数才是同一函数. 因为定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,则函数三要素完全相同,为同一函数。
2.反函数(1)反函数的定义设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=。
高中数学必修一知识点整理高中数学必修1知识点总结第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由一些确定、互异、无序的元素组成。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集。
1.1.2 集合间的基本关系集合间有子集、真子集和集合相等的关系。
子集表示A 中的任一元素都属于B,真子集表示A是B的子集且B中至少有一个元素不属于A,集合相等表示A和B互为子集。
1.1.3 集合的基本运算集合的基本运算有交集、并集和补集。
交集表示同时属于A和B的元素组成的集合,并集表示属于A或B的元素组成的集合,补集表示不属于A的元素组成的集合。
补充:含绝对值的不等式的解法是将其化为|x|a的形式进行求解。
含有ax+b的绝对值不等式可以化为|ax+b|c的形式进行求解。
注意:文章中没有明显的格式错误和有问题的段落,因此不需要删除和改写。
一元二次不等式的解法:一元二次不等式的判别式为 $\Delta = b^2-4ac$,根据判别式的大小关系可以得到不等式的解集。
对于二次函数 $y=ax^2+bx+c(a>0)$,它的图象是一个开口朝上的抛物线。
对于一元二次方程 $ax^2+bx+c=0(a>0)$,它的根可以通过公式 $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$ 求得,其中$\Delta=b^2-4ac$,当 $\Delta>0$ 时,方程有两个不相等的实根;当 $\Delta=0$ 时,方程有两个相等的实根;当$\Delta<0$ 时,方程没有实根。
对于一元二次不等式 $ax^2+bx+c>0(a>0)$,它的解集为$\{x|xx_2\}$,其中 $x_1$ 和 $x_2$ 分别是方程$ax^2+bx+c=0$ 的两个实根,且 $x_10)$ 时,它的解集为$\{x|x_10)$ 时,它的解集为 $\{x|x\neq-\frac{b}{2a}\}$。
数学高一必修一第一章知识点人教版高一数学必修一第一章知识点。
一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体正整数组成一个集合,每个正整数就是这个集合的元素。
- 集合中的元素具有确定性(给定一个元素和一个集合,能确定这个元素是否属于这个集合)、互异性(集合中的元素互不相同)、无序性(集合中元素的排列顺序不影响集合本身)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,{1,2,3}表示由1、2、3这三个元素组成的集合。
- 描述法:用集合所含元素的共同特征表示集合。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。
例如,{xx > 0,x∈ R}表示所有大于0的实数组成的集合。
- 区间表示法(主要用于表示数集):- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,a)={xx < a},(-∞,a]={xx≤slant a},(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,+∞)=R。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
规定:空集varnothing是任何集合的子集,即varnothing⊆ A。
- 真子集:如果A⊆ B,且存在元素x∈ B,但x∉ A,那么集合A称为集合B 的真子集,记作A⊂neqq B(或B⊃neqq A)。
空集是任何非空集合的真子集。
- 集合相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的基本运算。
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
第一章集合一、集合的概念一般地,指定的某些对象的全体称为集合。
二、集合的元素<一>元素的概念集合中的每个对象叫做这个集合的元素。
<二>集合的中元素的三个特性:1.确定性2.互异性3.无序性三、集合的表示:<一>用大写字母表示集合:A,B…<二>集合的表示方法:1、列举法:将集合中的元素一一列举出来,写在大括号内表示集合的方法。
如 {a,b,c……}2、描述法:集合中元素的公共属性描述出来,写在大括号内表示集合的方法,{}3Rx∈x-2>3、维恩图:用一条封闭曲线的内部表示集合的方法.四、集合的分类:<一>有限集:含有有限个元素的集合<二>无限集:含有无限个元素的集合<三>空集:不含任何元素的集合Φ五、元素与集合的关系:a∈A;读作:a属于A;Aa∉读作:a不属于A注意:常用数集及其记法:非负整数集:(即自然数集)N ;正整数集: N*或 N+;整数集:Z;有理数集:Q;实数集:R六、集合间的基本关系<一>“包含”关系——子集定义:如果集合A的任何一个元素都是集合B的元素,我们说A⊆(或这两个集合有包含关系,称集合A是集合B的子集。
记作:BB⊇A)注意:BA⊆有两种可能1、A是B的一部分;2、A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A<二>“包含”关系——真子集如果集合BA⊆,但存在元素x B且x∉A,则集合A是集合B的真子集,记作A B(或B A)<三>“相等”关系:A=B “元素相同则两集合相等”,如果A B 同时 B A 那么A=B 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
<四>集合的性质(1)任何一个集合是它本身的子集,A A(2)如果 A B, B C ,那么 A C(3)如果A B且B C,那么A C(4)有n个元素的集合,含有2n个子集,2n-1个真子集七、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’)由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’)全集:一般,若一个集合含有我们所研究问题中的所有元素,我们就称这个集合为全集,记作:U设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,韦恩图示A B 图1A B 图2性质 A ∩ A=AA ∩Φ=ΦA ∩B=B AA ∩B⊆A A ∩B⊆B A U A=AA U Φ=AA U B=B U AA U B⊇AA U B⊇BAACCUU=)(AU(CuA)=UA∩(CuA)=Φ.SA。
数学必修一第一单元知识点
数学必修一第一单元知识点集锦
函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对
应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确
定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个
函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做
函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合
xA叫做函数的值域.
注意:如果只给出解析式y=f(x),而没有指明它的定义域,则
函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.
2.定义域补充
能使函数式有意义的实数x的集合称为函数的定义域,高中地理,求函数的定义域时列不等式组的主要依据是:
(1)分式的`分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零
构成函数的三要素:定义域、对应关系和值域
再注意:
(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
值域补充
3.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数
y=f(x),(xA)的图象.
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.
(2)画法
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.
B、图象变换法(请参考必修4三角函数)
常用变换方法有三种,即平移变换、伸缩变换和对称变换
(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。
记作f:AB给定一个集合A到B的映射,如果aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有方向性,即强调从集合A 到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:AB来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A 中都有原象。
6.常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.
注意:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值
补充一:分段函数(参见课本P24-25)
在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)
分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=f(u),(uM),u=g(x),(xA),则y=f[g(x)]=F(x),(xA)称为f、g的复合函数。