南京航空航天大学结构力学课后习题集规范标准答案第1章
- 格式:doc
- 大小:18.17 MB
- 文档页数:15
习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)7- 327- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
lll7- 34Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m7- 36解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2a a2aa F P7- 38图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程7- 4011122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN10kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)8kN /m20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6检查下列刚架的M图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1图示抛物线三铰拱轴线方程xxllfy)(42-=,试求D截面的内力。
题5-1图5-2带拉杆拱,拱轴线方程xxllfy)(42-=,求截面K的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)P题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
题3-1图3-2 试不计算反力而绘出梁的M 图。
题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
题4-1图4-2 作图示刚架的M 图。
(b)(a)20kN40kN20kN/m40kN(b)5kN/m40kN(a)(c)(b)(a)题4-2图4-3 作图示三铰刚架的M 图。
题4-3图4-4 作图示刚架的M 图。
题4-4图4-5 已知结构的M 图,试绘出荷载。
P(e)(d)(a)(b)(c)/4kN(b)(a)(a)(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
题4-6图习题55-1 图示抛物线三铰拱轴线方程,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程,求截面K 的弯矩。
题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(e)(g)(h)P(d)(c)(a)(b)(f)x x l l fy )(42-=x x l lfy )(42-=C题6-1图6-2 用结点法计算图示桁架中各杆内力。
题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(b)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】「习题11】【习题12】【习题13】【习题14】【参考答衆】习题22-1〜2-14试对图示体系进行儿何组成分析,如果是只有多余联系的儿何不变体系,则应指出多余联系的数目。
d5∑° X 厂^τ"βH题2-2图ΓΛ题2-3图题2-5图题2-6图题2-1图H 2-9 图题2-10图题2-11图题2-12图题2-13图习题3试作图示多跨挣定梁的M及Q图。
(a) (b)题3-1图3-2试不计算反力而绘出梁的M图。
题3-2图习题44-1作图示刚架的M、Q、N图。
40fcN 40kN20kNm4-2作图示刚架的M图。
2OkN m SkN mSkXm 40fcN题4-1图4-3作图示三狡刚架的M图。
4-4作图示刚架的M图。
AEmJnIAr lD1题4-2图4-5己知结构的M图•试绘出荷载。
题4-4图3IOkNnlJ^1.5mC(a)题4-3日6erIB9 9题5-1图5-2带拉杆拱,拱轴线方程y= il(l-χ)χ,求截面K 的弯矩。
题5-2图5-3试求图示带拉杆的半圆三狡拱截面K 的内力・4-6检査F 列刚架的M 图,并予以改正。
题4-5图ω∙I ∣ULL∏ ∏ ⅛)题4-6图习题5图示抛物纟戈三铁拱轴线方程y = ff(l-x)x ,试求D 截面的内力。
IkNm15m [ 5m [ ICm 1=3OmC题5-3图习题6 6-1判定图示桁架中的零杆。
题6-1图6-2用结点法计算图示桁架中各杆内力。
(a) FGH月Λ4x4m=16m题6-2图6-3用截面法计算图示桁架中指定各杆的内力。
40kN题6-3图6-4试求图示组介结构中齐链杆的轴力并作受弯杆件的Q图。
2m ] 2m ]lm]lπ⅝] 2m [题6-4图6-5用适宜方法求桁架中指定杆内力。
题6-6图习题88-1试作图示悬臂梁的反力V B 、MB 及内力Q C 、MC 的影响线。
第 1 章绪论(无习题)第2 章平面体系的机动分析习题解答习题是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2)若平面体系的计算自由度W=0 ,则该体系一定为无多余约束的几何不变体系。
( )(3) 若平面体系的计算自由度 W< 0,则该体系为有多余约束的几何不变体系。
( )(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题(5) 图所示体系去掉二元体 CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )何可变体系。
( )何可变体系。
( )(c)习题填空(1) 习题(1) 图所示体系为___________ 体系。
习题(1) 图(2) 习题(2) 图所示体系为 ____________ 体系。
(6) 习题(6)(a) 图所示体系去掉二元体ABC后,成为习题(6) (b) 图,故原体系是几(7) 习题(6)(a) 图所示体系去掉二元体EDF后,成为习题(6) (c) 图,故原体系是几习题(5) 图B(a) (b)习题(6) 图习题 2-2(2) 图习题 (3) 图习题 对习题图所示各体系进行几何组成分析。
(3) 习题 (3) 图所示 4 个体系的多余约束数目分别为(4) 习题 (4) 图所示体系的多余约束个数为(5) 习题(5) (6) 习题(6) (7) 图所示体系的多余约束个数为习题 (5) 图图所示体系为体系,有个多余约束。
个多余约束。
习题 (7) 图所示体系为习题图(g) (h)第 3 章 静定梁与静定刚架习题解答习题 是非判断题(i) (j)(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
()(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( )(3) 多跨静定梁在附属部分受竖(k)向荷载作用时,必会引起基本部分的(l) 内力。
( )(4) 习题(4) 图所示多跨静定梁中, CDE 和 EF 部分均为附属部分。
结构力学课后习题答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN10kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)/20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lf y )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
结构力学1习题答案结构力学1习题答案结构力学是土木工程中非常重要的一门学科,它研究物体在外力作用下的变形和破坏规律。
在学习过程中,习题是帮助我们巩固知识和提高解题能力的重要途径。
下面将为大家提供一些结构力学1习题的答案,希望能对大家的学习有所帮助。
1. 一根长为L的悬臂梁,在其自重和集中力F的作用下,左端A有一个水平位移δ,求右端B的水平位移。
解答:由于是悬臂梁,右端B受到的力只有集中力F。
根据结构力学的基本原理,我们可以得到以下方程:F * L = k * δ其中,k是悬臂梁的刚度。
根据悬臂梁的刚度公式 k = 3EI / L^3,我们可以将上述方程改写为:F * L = 3EI * δ / L^3整理得到:δ = F * L^3 / 3EI所以,右端B的水平位移为δ = F * L^3 / 3EI。
2. 一根长度为L、截面积为A的均匀梁,在其自重和均匀分布载荷q的作用下,求梁的最大弯矩和最大挠度。
解答:首先求解最大弯矩。
根据梁的平衡条件,我们可以得到以下方程:M_max = q * L^2 / 8其中,M_max为最大弯矩。
根据梁的挠度公式δ = q * L^4 / (8EI),我们可以将上述方程改写为:M_max = δ * EI / L^2所以,梁的最大弯矩为 M_max = q * L^2 / 8,最大挠度为δ = q * L^4 / (8EI)。
3. 一根长度为L、截面积为A的均匀梁,在其自重和均匀分布载荷q的作用下,求梁的中点处的弯矩和挠度。
解答:由于是均匀分布载荷,梁在中点处的受力为 qL/2。
根据梁的平衡条件和挠度公式,我们可以得到以下方程:M_mid = q * L^2 / 8δ_mid = q * L^4 / (192EI)所以,梁在中点处的弯矩为 M_mid = q * L^2 / 8,挠度为δ_mid = q * L^4 / (192EI)。
4. 一根长度为L、截面积为A的均匀梁,在其自重和均匀分布载荷q的作用下,求梁的最大应力和最大挠度。
第一章 弹性力学基础(习题解答)1-1 上端悬挂、下端自由的等厚度薄板,其厚度为1,容重为ρ。
试求在自重作用下的位移分量表达式。
解:如图1-1建立坐标系.利用x σ沿y 方向均匀分布及x 方向的力平衡条件0=∑x 可得,⎪⎩⎪⎨⎧==-= x l xyy x 00)(τσρσ 又因为1()()x y u u l x x E Eρσσ∂=-=-∂ )()(1x l Eu u E y vx y --=-=∂∂ρσσ 积分得)()21(12y f x lx u +-=Eρ)()(2x f y x l uv +--=Eρ又由对称性 0)(020=⇒==x f v y 由 2110()2xy u v f y uy y x Eτρ∂∂=+=⇒=-∂∂ 综上所述有2221)21(uy Ex lx u ρρ--=Ey x l uv )(--=Eρ(方法二:只分析出x σ,再求应力函数,然后求其他。
)1-2 写出图1-2所示平面问题的应力边界条件。
解:上表面为力边界,100=,=,=,m l q lxl X --=Y 。
代入x xy xy y l m Xl m Yσττσ⎧+=⎪⎨+=⎪⎩ 中得到上表面的边界条件为00=--=xy y x q lxl τσσ;=; 下表面为自由边,边界条件为000==xy y x τσσ;=;侧面为位移边界。
1-3 矩形板厚为1。
试用应力函数22A xy ϕ=求解。
(并画出面力分布图)解:应力函数22A xy ϕ=满足应力函数表示的变形协调方程,可以作为解。
在无体力的情况下,矩形板的应力为22x Ax yϕσ∂==∂220y xϕσ∂==∂2xyAy x yϕτ∂=-=-∂∂根据应力边界条件公式x xy xy y l m X l m Yσττσ+=+=各边的应力边界为a d 边: 0,1l m == 20A X Ay h Y ⎧=-=-⎪⎨⎪=⎩ c b 边: 0,1l m ==- 20A X Ay h Y ⎧==-⎪⎨⎪=⎩a b 边: 1,0l m =-= 0X Y Ay ⎧=⎪⎨=⎪⎩c d 边: 1,0l m == X Ax AlY Ay⎧==⎪⎨=-⎪⎩根据以上各边的应力边界条件,可画出矩形板的面力分布图如图1-3a 。
1-4 如图1-4设三角形悬臂梁只受重力作用,梁容重为ρ。
试用完全三次多项式的应力函数求解其应力分量。
解:设完全三次多项式应力函数为3223Ax Bx y Cxy Dy ϕ=+++ (1)显然应力函数满足变形协调方程40ϕ∇=则应力分量:2226x Xx Cx Dy yϕσ∂=-=+∂ (2)2262y Yy Ax By y xϕσρ∂=-=+-∂ (3)222xyBx Cy x yϕτ∂=-=--∂∂ (4)利用边界条件来确定应力函数中的系数根据上表面的边界条件,当0y =时00()0,()0y y xy y στ====代入(3)、(4)得0A =; 0B =根据斜边的边界条件,当tan y x α=⋅时,面力0X Y ==,即x xy xy y l m X l m Y σττσ⎧+==⎪⎨+==⎪⎩ (5)其中:cos(,)cos(90)sin cos(,)cos l N x m N y ααα︒==+=-==代入(5)得sin (26tan )cos (2tan )0Cx Dx Cx αααα-++-= (6)cos (tan )sin (2tan )0x Cx αρααα---= (7)联立(6)、(7)得到tan 2C c ρα=⋅2tan 3D c ρα=⋅-将各系数代入应力分量表达式中,得到应力各分量为2tan 2tan tan x y xy x c y c y y c σραρασρτρα=⋅-⋅=-=-⋅1-5 对图1-5所示简支梁,试验证应力函数Fxy Ex Dxy y Cx xy B y Ax +++++=333533ϕ成立,并求解各系数和应力分量。
解:由Fxy Ex Dxy y Cx xy B y Ax +++++=333533ϕ可知:)1(0530244224444B A yy x x =+⇒=∂∂+∂∂∂+∂∂=∇ϕϕϕϕ应力分量:F Dy Cx By y Ax y xEx Cxy Axy x Dxy Bxy y Ax y xy y x (*)335966662062242223223322⎪⎪⎪⎩⎪⎪⎪⎨⎧-----=∂∂∂-=++=∂∂=++=∂∂=ϕτϕσϕσ 利用边界条件来确定待定系数上表面2h y =: )2(6343030 lq E hC A h q lx y -=++⇒-=σ F Dh Cx Bh x Ah xy -----==22422433165490τ ⎪⎩⎪⎨⎧=++=+⇒)4(043165)3(0349242F D h B hC A h下表面2hy -=:)5(0634303 E hC A h y =+--⇒=σ弯矩:)6(0220)(2222D B h A l ydy Mlx hh x lx =++⇒===-=⎰σ联立(1)~(6)可解得l h q h l q l q h l q lh q D lh q lhq lh q A 8041231045300030003030---=--==;=;;=;=;F E C B代入(*)式可得各应力分量()()222232332222223232;103243420x y xy q xy h x y l lh q xh y h lhq h h y x y l lh σστ︒︒︒⎛⎫=--+ ⎪⎝⎭=--⎛⎫=---+ ⎪⎝⎭34y ;1-6图1-6所示悬臂梁受自重作用,试用应力函数22335Ax y Bx y Cy Dy ϕ=+++求解。
并将所得应力分量与材料力学的结果进行比较。
解:应力函数必须满足变形协调条件,满足40ϕ∇=即444422420x x y yϕϕϕ∂∂∂++=∂∂∂∂ 将应力函数代入上式,得50B D += (1)应力分量22326620x Bx y Cy Dy yϕσ∂==++∂23222y Yy Ay By y xϕσρ∂=-=+-∂2226xyAx Bxy x yϕτ∂=-=--∂∂利用边界条件确定待定系数当2hy =±时,22()0()0y h y xy h y στ=±=±==得到23202A Bh += (2)2142A Bh ρ+= (3)联立方程(1)、(2)、(3)可解得4A ρ=2B h ρ=25D hρ=-在待定系数中,C 还没有求出。
现根据0x =截面上的条件来求C 值;因为0()0x x σ=≠,应用圣维南原理得202()0h h x x dy σ=-⎰=因为被积函数是y 的奇次函数,积分必恒等于零,此积分等式一定成立。
此外,尚需满足202()0h h x x ydy σ=-=⎰即322(620)0h h Cy Dy ydy -+=⎰得到352222240h h h h CyDy--+=2210h C D ρ=-=将各个系数代入应力分量表达式,得22226320153x y x y y h h ρσρ⎛⎫=+- ⎪⎝⎭ 22412y y y h ρσ⎛⎫=-- ⎪⎝⎭223412xy y x h τρ⎛⎫=- ⎪⎝⎭材料力学的解答:设载荷q h ρ=,故在某一截面上的弯矩为21()2M x hx ρ=剪力为Q hx ρ=由此得226x M x y y J hρσ==0y σ=(假设纤维间不存在挤压)22232124341212xy h hx y QS y x h Jb h ρτρ⎛⎫⋅- ⎪⎛⎫⎝⎭===- ⎪⎝⎭ 现将弹性力学的解答化为下列形式以便于材料力学解答进行比较:22320153x M y y y J h σρ⎛⎫=+- ⎪⎝⎭(与材料力学解不同) 22412y y y h ρσ⎛⎫=-- ⎪⎝⎭(与材料力学解不同)xy QSJbτ=(与材料力学解一致)1-7 用图1-7所示45︒应变花测得650010x ε-=⨯,680010y ε-=⨯,64530010ε︒-=⨯试求:(1)xy γ; (2)1ε和2ε,及主方向。
解:(1)根据材料力学公式cos 2sin 2222x yx yxyαεεεεγεαα+-=+-将45α︒=,x ε,y ε,45ε︒的值带入上式。
可得645270010xy x y γεεε-︒=+-=⨯(2)主应变的计算公式122x yεεεε+⎧⎫=±⎨⎬⎩⎭可得61103010ε-=⨯,6227010ε-=⨯利用公式tan 2xyx yγθεε=-- 则17arctan 23θ=得到156.6θ︒=-,233.4θ︒=1-8 如图1-8,已知平面圆环的应力为212,0,0rA r r πτσσθθ===试检查这组 应力存在的可能性。
并阐明其边界条件。
(体力不计)解:方法(一) 因为212,0,0r A r r πτσσθθ===,由022=∂∂=r ϕσθ积分得:设)()(21θθϕf r f +=由0)()()(112''2''11222=++=∂∂+∂∂=rf r f r f r r r r θθθθϕϕσ⎩⎨⎧==+⇒f f f 0)(0)()(''2''11θθθ 由2'2212)(1)1(r A f rr r r πθθϕτθ==∂∂∂∂-= 于是可得 c Af b a f +=+=θπθθθθ2)()cos sin ()(21; 即),,(2)cos sin (为任意常数;c b a c Ar b a +++=θπθθϕ 将ϕ代入变形协调方程检验可知ϕ满足变形协调条件。
因此为212,0,0rA r r πτσσθθ===可以存在。
边界条件为:212,0,0a A a r r r πτσσθθ====时,212,0,0bA b r r r πτσσθθ====时, 1-8 题方法(二)将212,0,0rA r r πτσσθθ===代入平衡方程 ⎪⎩⎪⎨⎧=++∂∂+∂∂=+-+∂∂+∂∂K r r r K r r r r r r r r r 02101θθθθθθττθσσσθτσ 中检验⎪⎩⎪⎨⎧=+-=++ r A r A 0110000033ππ 成立;由物理方程可得,将21)1()1(2,0)(1,0)(1rE u A E u u E u E r r r r r πτγσσεσσεθθθθθ-=+==-==-= 代入变形协调方程θθγθθεθεr r r r rr r r r r r )11()11()2(2222222∂∂∂+∂∂=∂∂-∂∂+∂∂+∂∂ 中检验,显然成立,因此这组应力可以存在。