二次函数的存在性问题之菱形(含答案)
- 格式:docx
- 大小:788.60 KB
- 文档页数:30
二次函数中的菱形存在性问题
(1)求线段AB的长度;
(2)点P是第四象限内抛物线上的一动点,连接BC,点M
CP、MP求BPM
△面积的最大值及此时点P的坐标;
(3)将原抛物线沿射线CA方向平移,使平移后的抛物线图象恰好与
点(点A在点D左侧),点E为直线CD上一点,过点E作
称轴于点F,G为平面内任意一点,当以C,E,F,G为顶点的四边形是菱形时,请直
(1)求抛物线的解析式;
(2)过点A 作AF AD ⊥交对称轴于点F ,在直线AF 下方对称轴右侧的抛物线上有一动点P ,过点P 作PQ y ∥轴交直线AF 于点Q ,过点P 作PE DF ^交于点E ,求大值及此时点P 的坐标;
(3)将原抛物线沿着x 轴正方向平移,使得新抛物线经过原点,点M 是新抛物线上一点,点N 是平面直角坐标系内一点,是否存在以B 、C 、M 、N 为顶点的四边形是以角线的菱形,若存在,求所有符合条件的点N 的坐标.
(1)求该抛物线的解析式;
(2)点P 为直线BC 下方抛物线上的一动点,过P 作PE BC ⊥于点E ,过于点F ,交直线BC 于点G ,求PE PG +的最大值,以及此时点P 的坐标;
(3)将抛物线212
y x bx c =++沿射线CB 方向平移,平移后的图象经过点H
(1)求A,B两点坐标;
∥交抛物线于D,点E为直线AD上一动点,连接
(2)过点A作AD BC
BE,求四边形BPCE面积的最大值及此时点P的坐标;
(3)将抛物线沿射线CB方向平移5
个单位,M为平移后的抛物线的对称轴上一动点,
2
在平面直角坐标系中是否存在点N,使以点B,C,M,N为顶点的四边形为菱形?若存在,请直接写出所有符合条件的点N的坐标,若不存在,请说明理由.。
1.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)根据图象,直接写出不等式x2+bx+c>0的解集:x<1或x>3(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为:(2,﹣1)【分析】(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).代入抛物线的解析式列方程组,解出即可求b、c的值;(2)由图象得:即y>0时,x<1或x>3;(3)如图,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标.【解答】解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).把A、B两点的坐标代入得:,解得:,∴抛物线的函数表达式为y=x2﹣4x+3;(2)由图象得:不等式x2+bx+c>0,即y>0时,x<1或x>3;故答案为:x<1或x>3;(3)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标为(2,﹣1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,如图,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x2﹣4x+3的顶点坐标,即(2,﹣1),故答案是:(2,﹣1).【点评】本题考查了二次函数综合题.解题过程中用到的知识点有:待定系数法求二次函数的解析式,菱形的性质.解(1)题时,把点A、B的坐标代入抛物线解析式,列出关于系数b、c的方程组,通过解方程组来求它们的值,解(2)时运用数形结合的思想是关键,解(3)时,正确画图是关键.2.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB 的最小值;(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.【分析】(1)直线BC的解析式为y=﹣x+6,则B(6,0)、C(0,6),把B、C坐标代入二次函数表达式,解得:y=﹣x2+2x+6;(2)设M横坐标为t,则M到直线BC的距离为d==(﹣t2+3t);点B关于对称轴的对称点为A,则AM为MN+NB的最小值,即可求解;(3)OM所在直线方程为:y=x,当抛物线沿OM直线平移时,设顶点向右平移2m,则向上平移了5m,新顶点坐标为(2+2m,8+5m),则y′=﹣(x﹣2﹣2m)2+(8+5m),把点M(3,)代入上式,解得:m=,则H (9,0).①假设:平行四边形处于CF′HB′1位置时,该四边形为菱形,则B′1的y坐标为6,则其x坐标为9+2,而B′1C=9+2,B′1H=4,即:B′1C≠B′1H,CF′HB′1不是菱形;②假设:平行四边形处于CHB1F位置时,该四边形为菱形,则B1的横坐标为2OH=18.【解答】解:(1)直线BC的解析式为y=﹣x+6,则B(6,0)、C(0,6),把点B、C坐标代入二次函数表达式,解得:y=﹣x2+2x+6,此时,顶点坐标为(2,8),A(﹣2,0);(2)设M横坐标为t,则M到直线BC的距离为d==(﹣t2+3t),∴当t=3时,d最大,则M(3,),点B关于对称轴的对称点为A,则AM为MN+NB的最小值,AM==;∴点M的坐标及MN+NB的最小值分别为:(3,),;(3)OM所在直线方程为:y=x,当抛物线沿OM直线平移时,设顶点向右平移2m,则向上平移了5m,新顶点坐标为(2+2m,8+5m),则y′=﹣(x﹣2﹣2m)2+(8+5m),把点M(3,)代入上式,解得:m=,(m=0舍去),则H(9,0),△BOE绕点B逆时针旋转60°至△BO1E1,此时,直线BO1的k值为,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,直线B1H的k也为,则B1H所在的直线方程为:y=x﹣9,①假设:平行四边形处于CF′HB′1位置时,该四边形为菱形,则B′1的y坐标为6,则其x坐标为9+2,而B′1C=9+2,B′1H=4,即:B′1C≠B′1H,CF′HB′1不是菱形;②假设:平行四边形处于CHB1F位置时,该四边形为菱形,则B1的横坐标为2OH=18.故:存在,此时,点B1的横坐标为18.【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.3.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.【分析】(1)由题意得:A(0,4)、B(﹣2,0)、D(3,)、C(8,0)、E(6,4),则:过BE的直线为:y=x+1;(2)设:P横坐标为m,则P(m,﹣m2++4),H(m,m+1),则:PH=﹣m2++4﹣(m+1)=﹣(x﹣2)2+4,当x=2时,PH取得最大值,此时△PEB的面积也取得最大值;构造与y轴夹角为45度的直线OR,如图所示,过点G作OR的垂线交OR于点R,则:RG=,则:PF+FG+OG=PF+FG+GR,当F、G、R三点共线时,FG+GR有最小值,即可求解;(3)存在.当四边形为菱形,分在MNQ1S1的位置时、在MNQ2S2的位置时、在MNQ3S3的位置时三种情况分别求解.【解答】解:(1)由题意得:A(0,4)、B(﹣2,0)、D(3,)、C(8,0)、E(6,4),则:过BE的直线为:y=x+1;(2)延长PF交BE于点H,设:P横坐标为m,则P(m,﹣m2++4),H(m,m+1),则:PH=﹣m2++4﹣(m+1)=﹣(x﹣2)2+4,当x=2时,PH取得最大值,此时△PEB的面积也取得最大值,此时,P(2,6)、F(2,4),PF=2,构造与y轴夹角为45度的直线OR,如图所示,过点G作OR的垂线交OR于点R,则:RG=,∴PF+FG+OG=PF+FG+GR,当F、G、R三点共线时,FG+GR有最小值,在Rt△AGF中,AF=AG=2,则:GF=2,在Rt△ROG中,RO=RG,OG=2,则:RG=,FG+GR=2+=3,故:PF+FG+OG的最小值2+3;(3)存在.如图所示:△AFG绕点A按顺时方向旋转30°后得到△AF1G1,在Rt△G1AM中,AG1=2,∠AG1M=30°,则:AM=1,∴M(﹣1,4),点D向上平移个单位长度后能与点N重合,则:N(3,7),则:MN==5,当四边形为菱形,在MNQ1S1的位置时,MS1=MN=5,则点S1(﹣1,﹣1),当四边形为菱形,在MNQ2S2的位置时,MS2=MN=5,则点S2(﹣1,9),当四边形为菱形,在MNQ3S3的位置时,点S3与点M关于对称轴对称,则点S3(7,4),故:所求点S的坐标为:(﹣1,﹣1),(﹣1,9),(7,4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来求解.4.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.(3)在(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求s与t之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.【分析】(1)已知抛物线上A、B点的坐标以及抛物线的对称轴方程,可用待定系数法求出抛物线的解析式;(2)首先求出AB的长,将A、B的坐标向右平移AB个单位,即可得出C、D 的坐标,再代入抛物线的解析式中进行验证即可;(3)根据C、D的坐标,易求得直线CD的解析式;那么线段MN的长实际是直线CD与抛物线的函数值的差,可将x=t代入两个函数的解析式中,得出的两函数值的差即为s的表达式,由此可求出s、t的函数关系式,根据所得函数的性质即可求出m取最大值时,点M的坐标.【解答】解:(1)∵y=x2+bx+c的顶点在直线x=上,∴可设所求抛物线对应的函数关系式为y=(x﹣)2+m,∵点B(0,4)在此抛物线上,∴4=(0﹣)2+m,∴m=﹣,∴所求函数关系式为:y=(x﹣)2﹣=x2﹣x+4;(2)在Rt△ABO中,OA=3,OB=4,∴AB==5.∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∵A、B两点的坐标分别为(﹣3,0))、(0,4),∴C、D两点的坐标分别是(5,4)、(2,0);当x=5时,y=×52﹣×5+4=4,当x=2时,y=×22﹣×2+4=0,∴点C和点D在所求抛物线上;(3)设直线CD对应的函数关系式为y=kx+n,则,解得:;∴y=x﹣.∵MN∥y轴,M点的横坐标为t,∴N点的横坐标也为t;则y M=t2﹣t+4,y N=t﹣,∴s=y N﹣y M=(t﹣)﹣(t2﹣t+4)=﹣(t﹣)2+,∵﹣<0,=,此时y M=×()2﹣×+4=.∴当t=时,s最大此时点M的坐标为(,).【点评】此题是二次函数综合题,其中涉及到待定系数法求一次函数、二次函数的解析式,函数图象上点的坐标特征,菱形的性质,图象的平移变换,二次函数最值的求法等知识,难度适中.应用方程思想与数形结合是解题的关键.5.如图,抛物线y=ax2+x+c与x轴交于A,B两点,A点坐标为(﹣3,0),与y轴交于点C,点C坐标为(0.﹣6),连接BC,点C关于x轴的对称点D,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q,交直线BD于点M.(1)求二次函数解析式;(2)点P在x轴上运动,若﹣6≤m≤2时,求线段MQ长度的最大值.(3)点P在x轴上运动时,N为平面内一点,使得点B、C、M、N为顶点的四边形为菱形?如果存在,请直接写出点N坐标;不存在,说明理由.【分析】(1)把A点坐标为(﹣3,0)、点C坐标为(0,﹣6)代入二次函数表达式,解得:a=1,c=﹣6,故:二次函数解析式为y=x2+x﹣6;(2)点C关于x轴的对称点D(0,6),MQ=y M﹣y Q=﹣3m+6﹣(m2+m﹣6)=﹣(m+2)2+16,即可求解;(3)①当BC边为菱形的边时,N点应该在x轴,关于B点对称,即点N坐标为(﹣2,0);②当BC边为菱形的对角线时,作BC的垂直平分线MH,直线BD与直线MH交点即为M坐标为,即可求解.【解答】解:(1)把A点坐标为(﹣3,0)、点C坐标为(0,﹣6)代入二次函数表达式,解得:a=1,c=﹣6,故:二次函数解析式为y=x2+x﹣6;(2)点C关于x轴的对称点D(0,6),点B、D坐标所在的直线方程为:y=﹣3x+6,则:点M坐标为(m,﹣3m+6),点Q为(m,m2+m﹣6),∴MQ=y M﹣y Q=﹣3m+6﹣(m2+m﹣6)=﹣(m+2)2+16,在﹣6≤m≤2时,函数顶点处,取得最大值,即MQ的最大值为16;(3)①当BC边为菱形的边时,情况一:N点应该在x轴,关于B点对称,即点N坐标为(﹣2,0),情况二:BC、MB是菱形两条邻边,且BC=BM,则点N坐标为(2,﹣12),情况三:BC、CM为邻边时,则点N坐标为(7.2﹣3.6);②当BC边为菱形的对角线时,作BC的垂直平分线MH,则直线DB与MH的交点为M,M关于BC的对称点为N,H为BC的中点,∴H坐标为(1,﹣3),直线BD的方程为:y=﹣3x+6,直线MH的方程为:y=﹣x﹣,联立以上两个方程,解得:M坐标为(,﹣),同理得N坐标为(﹣,﹣),故:N坐标为(﹣,﹣)或(﹣2,0)或(7.2﹣3.6)或(2,﹣12);.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.如图1,抛物线y=ax2+bx+c经过点A(﹣4,0),B(1,0),C(0,3),点P在抛物线y=ax2+bx+c上,且在x轴的上方,点P的横坐标记为t.(1)求抛物线的解析式;(2)如图2,过点P作y轴的平行线交直线AC于点M,交x轴于点N,若MC 平分∠PMO,求t的值;(3)点D在直线AC上,点E在y轴上,且位于点C的上方,那么在抛物线上是否存在点P,使得以点C,D,E,P为顶点的四边形是菱形?若存在,请求出该菱形的面积;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x+4)(x﹣1),把(0,3)代入得到a=﹣;(2)由题意直线AC的解析式为y=x+3,因为P的横坐标为t,所以M(t,t+3),根据OM=OC=3,可得t2+(t+3)2=9,解方程即可解决问题;(3)分两种情形①当CE为对角线时,四边形CPED为菱形,如图3,则点P 和D关于y轴对称;②当CE为菱形的边时,四边形CEPD为菱形,如图4,则PD∥y轴,CD=PD,分别构建方程即可解决问题.【解答】解:(1)如图1,设抛物线的解析式为y=a(x+4)(x﹣1),把(0,3)代入得到a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+3.(2)如图2中,∵A(﹣4,0),C(0,3),∴直线AC的解析式为y=x+3,∵P的横坐标为t,∴M(t,t+3),∵CM平分∠PMO,∴∠CMO=∠CMP,∵PM∥OC,∴∠CMP=∠MCO,∴∠CMO=∠MCO,∴OM=OC=3,∴t2+(t+3)2=9,解得t=﹣或0(舍弃).∴t的值为﹣.(3)设P(t,﹣t2﹣t+3),①当CE为对角线时,四边形CPED为菱形,如图3,则点P和D关于y轴对称,∴D(﹣t,﹣t2﹣t+3),把D(﹣t,﹣t2﹣t+3)代入y=x+3得﹣t+3=﹣t2﹣t+3,解得t1=0(舍去),t2=﹣2,此时PD=4,CE=3,此时,菱形的面积=PD•CE=6;②当CE为菱形的边时,四边形CEPD为菱形,如图4,则PD∥y轴,CD=PD,∴D(t,t+3),∴PD=﹣t2﹣t+3﹣(t+3)=﹣t2﹣3t,而CD2=t2+(t+3﹣3)2=t2,即CD=﹣t,∴﹣t2﹣3t=﹣t,解得t1=0(舍去),t2=﹣,∴PD=,此时菱形的面积=×=.综上所述,菱形的面积是6或.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用待定系数法求函数解析式;会利用相似比计算线段的长;理解坐标与图形性质,记住两点间的距离公式;会运用分类讨论的思想解决数学问题.7.如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F 为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解答】解:(1)∵抛物线y=ax2+bx+过点A(1,0),B(5,0),∴0=a+b+0=25a+5b+∴a=,b=﹣3∴解析式y=x2﹣3x+(2)当y=0,则0=x2﹣3x+∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,﹣2),AB=4∵抛物线与y轴相交于点C.∴C(0,)如图1①如AB为菱形的边,则EF∥AB,EF=AB=4,且E的横坐标为3∴F的横坐标为7或﹣1∵AE=AB=4,AM=2,EM⊥AB∴EM=2∴F(7,2),或(﹣1,2)∴当x=7,y=×49﹣7×3+=6∴点F到二次函数图象的垂直距离6﹣2②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2∴F(3,﹣2)∴点F到二次函数图象的垂直距离﹣2+2(3)当F(3,﹣2)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN 位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2∴AP=6在Rt△ANP中,AN==4∴AQ+BQ+FQ的和最短值为4.【点评】本题考查了二次函数的综合题,待定系数法,菱形的性质,勾股定理等有关知识,关键是构造三角形转化BQ,和BQ的长.。
二次函数中的梯形、菱形存在性问题学生版二次函数在数学中起着重要的作用。
学生在研究二次函数时,常常会遇到与梯形和菱形相关的问题。
本文将讨论二次函数中梯形和菱形的存在性问题。
梯形的存在性问题一个梯形是由两个平行线段和连接它们的两个非平行线段组成的四边形。
在二次函数中,存在一个梯形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个梯形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足梯形的定义。
在解决梯形的存在性问题时,我们可以利用二次函数的性质。
首先,如果一个函数的二次项系数为正,则函数图像是开口向上的抛物线。
这意味着我们可以通过选择x坐标值,使得对应的y坐标值形成一个梯形。
然而,如果二次项系数为负,则函数图像是开口向下的抛物线。
在这种情况下,我们无法找到一组值构成一个梯形。
菱形的存在性问题一个菱形是一个具有四个相等边长且相邻两边互相垂直的四边形。
在二次函数中,存在一个菱形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个菱形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足菱形的定义。
解决菱形的存在性问题与解决梯形的问题类似。
如果二次函数图像是对称的,即以y轴或x轴为对称轴,则可以找到一组值构成一个菱形。
这是因为对称性保证了相邻两边互相垂直,并且相等边长可以通过选择x或y坐标值来实现。
总的来说,在二次函数中,梯形和菱形的存在性问题取决于函数的性质。
通过了解二次函数的开口方向和对称性,我们可以判断是否存在满足梯形和菱形定义的点集。
考向3.9 二次函数-存在性问题例1、(2021·湖南湘潭·中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点. (1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.解:(1)对于33y x =:当x =0时,3y = 当y =0时,3303x -=,妥得,x =3 ∴A (3,0),B (0,3- 把A (3,0),B (0,3-23y bx c ++得: 33+3+=03b c c ⎧⎪⎨=-⎪⎩解得,233b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:23233y =-(2)抛物线的对称轴为直线23312323b x a -=-=-=⨯故设P (1,p ),Q (m ,n ) ①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直, ∴∴BC 与对称轴垂直,且BC //x 轴 ∵在菱形BQCP 中,BC ⊥PQ ∴PQ ⊥x 轴 ∵点P 在x =1上, ∴点Q 也在x =1上, 当x =1时,232343113=333y =⨯-⨯--∴Q (1,433-); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,∴BC //PQ ,且BC =PQ ∵BC //x 轴,∴令3y =23233=3y解得,120,2x x == ∴(2,3)C - ∴PQ =BC =2 ∵22(3)12+= ∴PB =BC =2 ∴迠P 在x 轴上, ∴P (1,0) ∴Q (3,0);若点Q 在点P 的左侧,如图,同理可得,Q (-1,0) 综上所述,Q 点坐标为(1,433-)或(3,0)或(-1,0)1、存在性问题的解题思路:假设存在,推理论证,得出结论;2、解決线段存在性问题的方法:将军饮马问题、垂线段问题、三角形三边关系、函数最值等;3、本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力.同时注意用分类讨论思想解决问题。
菱形的存在性1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.菱形的存在性1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x﹣3.(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b.得,解得,∴y=﹣x﹣3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,﹣m﹣3),N(m,m2+2m﹣3),∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,∴当m=﹣时,MN有最大值.②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=﹣m2﹣3m,MC=﹣m,∴﹣m2﹣3m=﹣m,解得m=﹣3+或0(舍弃)∴MN=3﹣2,∴CQ=MN=3﹣2,∴OQ=3+1,∴Q(0,﹣3﹣1).如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m=﹣m,解得m=﹣3﹣或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ﹣OC=3﹣1,∴Q(0,3﹣1).2.如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B,点C,∴点B(3,0),点C(0,3),∵抛物线y=x2+bx+c经过B,C两点,∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,连接AM,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,∵点A与点B关于对称轴对称,∴AM=BM,点A(1,0),∵点C(0,3),点A(1,0),点B(3,0),∴OA=1,OC=3,OB=3,∵四边形COAM周长=OC+OA+AM+CM,∴四边形COAM周长=4+BM+CM,∴当点B,点M,点C三点共线时,BM+CM有最小值为BC的长,∴四边形COAM周长的最小值=4+BC,∵BC===3,∴四边形COAM周长的最小值=4+3;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点P(2,﹣1),又∵点C(0,3),∴PC==2,设点M(2,t),∴MC==,MP=|t+1|,∵以C,P,M,N为顶点的四边形为菱形,∴△CPM是等腰三角形,若MC=MP,则=|t+1|,∴t=,∴点M(2,);若MP=PC,则2=|t+1|,∴t1=﹣1+2,t2=﹣1﹣2,∴点M(2,﹣1+2)或(2,﹣1﹣2);若MC=PC,则=2,综上所述:点M的坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2).3.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)4.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.【解答】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG垂直平分CD∴点E的纵坐标y==1,将y=1代入y=x+3,得x=﹣2.∵EG关于y轴对称,∴点G的坐标为(2,1);②如图2,当四边形CDEG为菱形时,以点D为圆心,DC的长为半径作圆,交AD于点E,可得DC=DE,构造菱形CDEG点D的坐标为(0,3)∴DE==∵DE=DC=4,∴=4,解得n1=﹣2,n2=2.∴点E的坐标为(﹣2,﹣2+3)或(2,2+3)将点E向下平移4个单位长度可得点G,点G的坐标为(﹣2,﹣2﹣1)(如图2)或(2,2﹣1)(如图3)③如图4,“四边形CDGE为菱形时,以点C为圆心,以CD的长为半径作圆,交直线AD于点E,设点E的坐标为(k,k+3),点C的坐标为(0,﹣1).∴EC==.∵EC=CD=4,∴2k2+8k+16=16,解得k1=0(舍去),k2=﹣4.∴点E的坐标为(﹣4,﹣1)将点E上移1个单位长度得点G.∴点G的坐标为(﹣4,3).综上所述,点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).。
二次函数中的梯形、菱形存在性问题学生版引言二次函数是数学中一类重要的函数,在求解问题时经常被使用。
本文将讨论二次函数中的梯形和菱形存在性问题。
我们将探讨在何种情况下,二次函数图像可以形成梯形和菱形,以及梯形和菱形的特征和性质。
梯形的存在性问题在二次函数中,当函数图像呈现梯形形状时,我们需要考虑以下情况:1.当二次函数的二次项系数为正数时,函数图像可以形成正梯形。
正梯形的特点是上底和下底之间的差值逐渐增大。
2.当二次函数的二次项系数为负数时,函数图像可以形成倒梯形。
倒梯形的特点是上底和下底之间的差值逐渐减小。
3.当二次函数的二次项系数为零时,函数图像将退化为一条直线,无法形成梯形。
菱形的存在性问题在二次函数中,当函数图像呈现菱形形状时,我们需要考虑以下情况:1.当二次函数的一次项系数为零时,函数图像将变为一个完美的菱形。
菱形的特点是上底和下底之间的差值恒定。
2.当二次函数的一次项系数不为零时,函数图像将出现略微变形的菱形。
菱形的特点是上底和下底之间的差值会随着一次项系数的变化而变化。
结论在二次函数中,梯形和菱形的形成与二次项系数和一次项系数的取值有关。
通过了解二次函数的系数对函数图像形状的影响,我们可以更好地理解二次函数的性质和特点。
深入研究二次函数中梯形和菱形存在性问题,有助于学生对二次函数的图像有着更清晰的认识和理解。
以上是关于二次函数中的梯形、菱形存在性问题的学生版文档。
希望能够帮助学生们更好地理解和应用二次函数的图像特点。
菱形存在性问题作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点解决问题的方法也可有如下两种: 思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A +C =B +D ”(AC 、BD 为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.思路1:先平四,再菱形设C 点坐标为(m ,0),D 点坐标为(p ,q ).(1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()222215*********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC ) ()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩思路2:先等腰,再菱形先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.(1)当AB=AC时,C点坐标为()1+,对应D点坐标为()5+;C点坐标为()1-,对应D点坐标为()5-.(2)当BA=BC时,C点坐标为(8,0),对应D点坐标为(4,-3);C点坐标为(2,0),对应D点坐标为(-2,-3).(3)AC=BC时,C点坐标为39,08⎛⎫⎪⎝⎭,D点坐标为9,58⎛⎫⎪⎝⎭.以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.【两定两动:坐标轴+平面】(2019·齐齐哈尔中考删减)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.备用图【分析】(1)抛物线:26y x x=--;(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:①当CA=CM时,即CM=CA=M点坐标为(0,6--、(0,6-+,对应N点坐标为(2,--、(-.②当AC=AM时,即AM=AC=M点坐标为(0,6),对应N点坐标为(2,0).③当MA=MC时,勾股定理可求得M点坐标为8 0,3⎛⎫-⎪⎝⎭,对应N点坐标为10 2,3⎛⎫--⎪⎝⎭.综上,N点坐标为(2,--、(-、(2,0)、102,3⎛⎫--⎪⎝⎭.如下图依次从左到右.【两定两动:对称轴+平面】(2019·辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线2y x bx c =-++经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,说明理由.【分析】(1)抛物线:223y x x =-++;(2)先考虑P 点位置,由P 、E 、C 三点构成的三角形是等腰三角形.①当EC =EP 时,由EC =,得EP =P 在对称轴x =1上, 勾股定理解得P点坐标为(、(1,3(舍), 根据点的平移推得M点坐标为(. ②当CE =CP 时,即CP =CE=P点坐标为(、(1,(舍), 根据点的平移推得M点坐标为(2,3-. ③当PE =PC 时, 设P 点坐标为(1,m ),解得:m =1,故P 点坐标为(1,1), 对应的点M 坐标为(2,2).综上所述,M 点坐标为(、(2,3-、(2,2).【两定两动:斜线+平面】 (2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线2y x bx c =-++经过点A ,C .(1)求抛物线的解析式(2)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N .若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.图2【分析】(1)抛物线解析式:234y x x =--+; (2)设M 点坐标为(m ,0)(-4<m <0),则N 点坐标为()2,34m m m --+,P 点坐标为(m ,m +4), 若P 是MN 中点,则()23424m m m --+=+, 解得:11m =-,24m =-(舍) 故P (-1,3)、M (-1,0)考虑到F 点在直线AC 上,故可先确定F 点位置,再求得D 点坐标.当PM =PF 时,PF =3,可得11F ⎛-+ ⎝⎭、21F ⎛-- ⎝⎭, 对应D点坐标分别为11D ⎛-+ ⎝⎭、21D ⎛- ⎝⎭. 当MP =MF 时,MP =MF ,可得()34,0F -,对应D 点坐标为()34,3D -. 当FP =FM 时,FP =FM ,F 点在PM 垂直平分线上,可得453,22F ⎛⎫- ⎪⎝⎭,对应D 点坐标为413,22D ⎛⎫⎪⎝⎭.综上所述,D点坐标有11D ⎛-+ ⎝⎭、21D ⎛-- ⎝⎭、()34,3D -、413,22D ⎛⎫⎪⎝⎭.【两定两动:斜线+抛物线】(2018•衡阳)如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线过A 、B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D . (1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由.【分析】(1)①M 点坐标为19,22⎛⎫ ⎪⎝⎭,N 点坐标为1,32⎛⎫⎪⎝⎭.②由题意可知MN ∥PD ,故四边形MNPD 若是菱形,首先MN =PD 考虑到M 、N 是定点,可先求得32MN =, 设(),24P m m -+,则()2,224D m m m -++, ()222242424PD m m m m m =-++--+=-+,令32PD =,即23242m m -+=, 解得:112m =,232m =. 故P 点坐标为3,12⎛⎫ ⎪⎝⎭,D 点坐标为35,22⎛⎫⎪⎝⎭.但此时仅仅满足四边形MNPD 是平行四边形,本题要求的是菱形,故还需加邻边相等. 但此时P 、D 已定,因此接下来要做的只是验证邻边是否相等.由两点间距离公式得:32PN ==≠,PN ≠MN ,故不存在点P 使四边形MNPD 是菱形.【小结】为什么此题会不存在,表面上看是不满足邻边相等,究其原因,是因为M 、N 是定点,P 、D 虽为动点但仅仅是半动点,且P 、D 横坐标相同,故本题只需一个字母便可表示出4个点的坐标,对于菱形四个点满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=若只有1个未知数或2个未知数,便出现方程个数>未知量个数的情况,就有可能会无解. 方程个数<未知数个量,可能无法确定有限组解; 方程个数>未知数个量,可能会无解.特殊图形的存在性,其动点是在线上还是在平面上,是有1个动点还是有2个动点,都是由其图形本身决定,矩形和菱形相比起平行四边形,均多一个等式,故对动点位置的要求可以有3个半动点或者1个全动点+1个半动点,若减少未知量的个数,反而可能会产生无解的情况.不难想象,对于正方形来说,可以有4个未知量,比如在坐标系中已知两定点,若要作正方形,只能在平面中再取另外两动点,即2个全动点,当然,也有可能是1全动+2半动,甚至是4个半动点.练习:如图,抛物线2y x bx c=++与x轴相交于A、B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是94x=,点B的坐标为(4,0).(1)求抛物线解析式;(2)若M为x轴上一动点,在抛物线上是否存在点N,使得点B、C、M、N构成的四边形是菱形,若存在,求出点N坐标,若不存在,请说明理由.【分析】(1)抛物线:2922y x x =-+;(2)本题是“两定两动”,但两个动点一个在x 轴上,一个在抛物线上,均为半动点,故只需两个字母即可表示,未知量个数少于方程个数,结果可能会无解.设M 点坐标为(m ,0),N 点坐标为29,22n n n ⎛⎫-+ ⎪⎝⎭,又B (4,0)、C (0,2).当CB 为对角线时,取对角线互相平分及MB =MC ,可得: ()()()()2222240902022400002m nn n m m ⎧+=+⎪⎪+=+-+⎨⎪⎪-+-=-+-⎩方程组无解,故这种情况不存在;当CM 为对角线时,取对角线互相平分及BC =BM ,可得: ()()()()22222049022024002400m n n n m ⎧+=+⎪⎪+=-++⎨⎪⎪-+-=-+-⎩方程组依然无解;这种情况也不存在;当CN 为对角线时,取对角线互相平分及CB =CM ,可得: ()()()()22222049220020420020n m n n m ⎧+=+⎪⎪+-+=+⎨⎪⎪-+-=-+-⎩方程组还是无解.综上,不存在这样的M 、N .【小结】问题本身源于对动点位置的选取导致点坐标中未知量的个数与方程个数不一致,以致出现不存在的情况.【一定三动】讲真在翻了一些中考题,并没有看到类似的题型,举些数据编一个吧:如图,抛物线过A (-1,0)、B (3,0)、C (0,3),点C 关于抛物线对称轴的对称点为D 点,连接AD .点P 在抛物线上,点M 在直线AD 上,点N 在抛物线对称轴上,四边形OPMN 能否为菱形,若能,求出P 点坐标,若不能,说明理由.【分析】抛物线解析式为:223y x x =-++,直线AD 解析式为y =x -1.设P 点坐标为()2,23p p p -++,M 点坐标为(),1m m -,N 点坐标为()1,n , 考虑到在四边形OPMN 中,OM 为对角线,可得: ()()()()222220+1012310011m p m p p nn m n m ⎧=+⎪⎪+-=-+++⎨⎪-+-=-+-+⎪⎩显然这个计算很麻烦,经化简可得点P 满足32610p p --=,剩下的就不解了呵呵呵. 可能是数据不太凑巧,但显然,这样的问题并不像“两定两动”问题那样普遍易解,方法其实是同样的方法,因为就题目构造而言,其实“3个半动点”与“1全动+1半动”并无本质区别.了解题目的构造,当再去看一些题目的时候,是否一目了然?。
中考数学二次函数存在性问(Wen)题 及参考答案一、二次函数中相似三(San)角形的存在性问题 1.如图,把抛(Pao)物线向左(Zuo)平移(Yi)1个(Ge)单位,再向下平移(Yi)4个单位,得(De)到抛物线2y x =.所得抛物线与2y x =轴交于A ,B 两点(点A 在点B 的左边),与2y x =轴交于点C ,顶点为D.(1)写出2y x =的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM 2y x =x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存(Cun)在性问题3.如图,抛物(Wu)线2y x =与(Yu)双曲线2y x =相(Xiang)交于点(Dian)A ,B .已(Yi)知点(Dian)B 的坐标(Biao)为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥2y x =轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3).(1)求抛物线的解析式;(3分)(2)点(Dian)M 为(Wei)y 轴上(Shang)任意一点,当点M 到(Dao)A 、B 两点的距离之和为最小时(Shi),求此时点M 的(De)坐标;(2分(Fen))(3)在(Zai)第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。
我们已经知道菱形是特殊的平行四边形,它的判定方法一共有五种,分别是①四边都相等的四边形是菱形;②两条对角线互相垂直的平行四边形是菱形;③邻边相等的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形;⑤一条对角线平分一个顶角的平行四边形是菱形.在做几何证明题的时候我们常用的判定方法主要是前三种.二次函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大的多,因此我在研究了近些年中考真题之后尝试性的总结一下菱形存在性问题的通用解法,以供大家参考.纵观历年中考真题,菱形存在性问题主要是以“两定两动”为设问方式,其中两定指的是四边形四个顶点其中有两个顶点的坐标是确定的或者是可求解的;两动指的是其中一个动点在一条直线或者抛物线上,另外一个动点是平面内任意一点或者该动点也在一条直线或者抛物线上.一解题模型铺垫1:等腰三角形的构造方法点A和点B为平面内的两个定点,点C为水平直线上的一个动点,要使△ABC为等腰三角形,请利用尺规作图的方法作出点C的位置.图1是以AB为底边(AC和BC为腰),作出线段AB的垂直平分线交直线于点C1;图2是以AB为腰,以点A为圆心,以AB长度为半径作圆,交直线于点C2;图3是以AB为腰,以点B为圆心,以AB长度为半径作圆,交直线于点C3、C4;我们把上述作图方法简称为“两圆一中垂”.铺垫2:平行四边形顶点坐标公式根据平行四边形的性质对角线互相平分,可以知道点O为线段AC 和线段BD的中点。
①两定点确定的线段为边作菱形如图所示,点A和点B为平面内两个定点,点C是直线l上一个动点,点D是平面内的一个动点.以AB为菱形的边,请作出符合题意的菱形.作图方法:由于点D是平面内的任意一个动点,意味着该点需要借助其它的点才能确定下来,因此,我们第一步先确定动点C的位置.要想使以AB为边的四边形是菱形,根据菱形的判定方法3我们可以确定△ABC是以AB为腰的等腰三角形,因此我们可以借助等腰三角形存在性知识,来确定点C的位置.确定方法具体如下:以点A为圆心,以AB长度为半径画圆,交直线l于点C1和C2.接下来需要确定点D的位置.以BC为对称轴作点A关于BC的对称点D,由于点C有两个点,确定下来的点D有两个.再以点B为圆心,BA长度为半径画圆,交直线l于点C3和C4,利用同样的方法作出点D3和D4.解题策略:第一步:确定点C的坐标设出点C坐标,利用两点间距离坐标公式,表示出AB、AC、BC 的长度.当AB=AC时,列出方程,求出点C的坐标;当BA=BC时,列出方程,求出点C的坐标.第二步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.②两定点确定的线段为对角线作菱形如图所示,点A和点B为平面内两个定点,点C是抛物线上一个动点,点D是平面内的一个动点.点C关于AB的对称点为点D,请作出所有符合题意的图形.作图方法:第一步:作出AB的垂直平分线;第二步:作点C关于AB 对称点D.解题策略:第一步:求出AB的中点坐标和AB的斜率k,利用两直线垂直,斜率乘积为﹣1这个结论,设直线CD的解析式为y=﹣1/k+b,再把AB中点坐标代入上式,解出b的值.求出CD解析式.第二步:联立直线CD和抛物线,可以解得点C的坐标;第三步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.二例题精讲题型一确定对角线【例1】(难度等级☆)如图,在平面直角坐标系中,O为原点,直线AB解析式为y=﹣2x﹣1,与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.且过A,B,C三点的抛物线的解析式为y=x2﹣x﹣1,P为抛物线上一点,它关于原点的对称点为Q,当四边形PBQC为菱形时,求点P的坐标.【例2】(2016•陕西一模)如图,在平面直角坐标系中,二次函数y=x2﹣3x﹣4的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C (0,﹣4)点,点P是直线BC下方的抛物线上一动点.连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.【例3】(2016•黔西南州)如图,二次函数y=﹣x2+3x+4的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C(0,4),P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标;题型三边和对角线均不确定【例5】(2018•齐齐哈尔)如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2﹣3x+4经过点A,C.如图2所示,M是线段OA的上一个动点,过点M垂直于x 轴的直线与直线AC和抛物线分别交于点P、N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.关注公众号【初中小窝】,每日发布学习资料,找资料问小窝!。
二次函数的存在性问题之菱形1. 如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.2. 如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.第1页共30页3. 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y= (k >0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.4. 综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)第2页共30页5. 如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.6. 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.第3页共30页7. 如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.8. 如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.第4页共30页9. 如图,抛物线y=x2﹣x﹣2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标;(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由;10. 抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若∠PBA= ∠OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.第5页共30页11. 如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于A(﹣1,0)、B (3,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)设点M是x轴上的动点,在平面直角坐标系中,是否存在点N,使得以点A、C、M、N为顶点的四边形是菱形?若存在,求出所有符合条件的点N 坐标;若不存在,说明理由.12. 如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与X轴交于点A、B两点B处的坐标为(3,0),与y轴交于c(0,﹣3),点P是直线BC下方抛物线上的动点.(1)求出二次函数的解析式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,求出点P的坐标,若存在,请说明理由;第6页共30页13. 如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M 四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.14. 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B 两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.第7页共30页15. 如图1,在平面直角坐标系中,抛物线y= 与x 轴交于A 、B两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为点D ,过点B作BC 的垂线,交对称轴于点E.(1)求证:点E与点D关于x轴对称;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面内找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.16. 如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为(1)求线段的长;(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使得点为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.第8页共30页17. 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.18. 已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.第9页共30页第10页共30页中考数学狙击重难点系列专题第 11 页 共 30 页答案解析部分一、综合题1.【答案】(1)解:∵抛物线y=ax 2+bx ﹣2的对称轴是直线x=1,A (﹣2,0)在抛物线上,∴ ,解得:,抛物线解析式为y=x 2﹣x ﹣2;(2)解:令y=x 2﹣x ﹣2=0,解得:x 1=﹣2,x 2=4,当x=0时,y=﹣2,∴B (4,0),C (0,﹣2),设BC 的解析式为y=kx+b ,则 ,解得:,∴y=x ﹣2,设D (m ,0), ∵DP ∥y 轴, ∴E (m , m ﹣2),P (m ,m 2﹣m ﹣2),∵OD=4PE , ∴m=4(m 2﹣m ﹣2﹣m+2),∴m=5,m=0(舍去), ∴D (5,0),P (5,),E (5,), ∴四边形POBE 的面积=S △OPD ﹣S △EBD = ×5×﹣1×=;(3)解:存在,设M (n , n ﹣2),①以BD 为对角线,如图1,∵四边形BNDM 是菱形, ∴MN 垂直平分BD , ∴n=4+ , ∴M ( , ), ∵M ,N 关于x 轴对称,∴N (,﹣);②以BD 为边,如图2,∵四边形BNDM 是菱形, ∴MN ∥BD ,MN=BD=MD=1, 过M 作MH ⊥x 轴于H , ∴MH 2+DH 2=DM 2 ,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=5.6,∴N(4.6,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+ (不合题意,舍去),n2=4﹣,∴N(5﹣,),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+ ,n2=4﹣(不合题意,舍去),∴N(5+ ,),综上所述,当N(,﹣)或(4.6,)或(5﹣,)或(5+ ,),以点B,D,M,N为顶点的四边形是菱形.【解析】【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y= x﹣2,设D(m,0),得到E (m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+ ,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M 作MH⊥x轴于H,根据勾股定理列方程即可得到结论.2.【答案】(1)解:直线解析式,令,得;令,得.∴、.∵点、在抛物线上,∴,解得,∴抛物线解析式为:.令,解得:或,∴.(2)解:,设,①当时,如答图所示.第12页共30页∵,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与,得:,解得:,,∴,,∴;②当与关于轴对称时,如答图所示.∵,,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与得:,解得:,,∴,,∴.综上所述,满足条件的点的坐标为:或(3)解:设,则,,.假设存在满足条件的点,设菱形的对角线交于点,设运动时间为.第13页共30页①若以为菱形对角线,如答图.此时,菱形边长.∴.在中,,解得.∴.过点作轴于点,则,,∴.∴.∵点与点横坐标相差个单位,∴;②若以为菱形对角线,如答图.此时,菱形边长.∵,∴,点为中点,∴.∵点与点横坐标相差个单位,∴;③若以为菱形对角线,如答图.此时,菱形边长.在中,,解得.∴,.第14页共30页∴.综上所述,存在满足条件的点,点坐标为:或或.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B两点的坐标,将A,B两点的坐标分别代入抛物线y=x2+bx+c得出关于b,c的方程组,求解得出b,c的值,从而得出抛物线的解析式,再根据抛物线与x轴交点的纵坐标是0,将y=0代入抛物线的解析式,楸树对应的自变量的值,从而求出C 点的坐标;(2)设M ( x , y )①当BM⊥BC 时,如答图2 − 1 所示.根据等腰直角三角形的性质及垂直的定义得出∠MBA+∠CBO=45∘,故点M 满足条件,过点M1作M1E⊥y轴于点E ,则M1E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M1BE=tan∠BCO=,根据正切函数的定义得出关于x,y的方程,变形即可得出直线BM1的解析式,解联立直线BM 1的解析式与抛物线的解析式组成的方程组,即可求出M1的坐标;②当BM与BC关于y轴对称时,如答图 2 − 2 所示.根据根据角的和差及对称的性质得出∠ABO=∠MBA+∠MBO=45∘,∠MBO=∠CBO ,故∠MBA+∠CBO=45∘,故点M 满足条件过点M2 作M2E⊥y 轴于点E ,则M2E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M2BE=tan∠CBO=,根据正切函数的定义得出关于x,y 的方程,变形即可得出直线BM2的解析式,解联立直线BM2的解析式与抛物线的解析式组成的方程组,即可求出M2的坐标,综上所述即可得出M点的坐标;(3)设∠BCO=θ ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D ,设菱形的对角线交于点E ,设运动时间为t .①若以CQ为菱形对角线,如答图3 − 1 .此时BQ=t ,菱形边长=t ,根据菱形的对角线互相平分得出CE=CQ=(5−t) ,根据余弦函数的定义,由cosθ=,即可列出方程,求解得出t的值,进而得出CQ的值,过点Q作QF⊥x 轴于点F,则QF=CQ ⋅ sinθ,CF=CQ ⋅ cosθ,分别计算出QF,CF的长,进而得出OF的长,从而得出Q点的坐标,根据点D1与点Q横坐标相差t 个单位即可得出D1的坐标;②若以PQ为菱形对角线,如答图3 − 2 .此时BQ=t ,菱形边长=t,根据线段中点坐标公式,由点Q为BC中点得出Q点的坐标,根据点D2与点Q 横坐标相差t 个单位即可得出D1的坐标;③若以CP为菱形对角线,如答图3 − 3 .此时BQ=t ,菱形边长=5−t.根据cosθ =列出方程,求解得出t的值,进而求出OE, 由D3E=QE=CQ ⋅ sinθ,从而得出D3的坐标,综上所述即可得出答案。