实数的运算大全
- 格式:doc
- 大小:1.33 MB
- 文档页数:17
实数运算知识点总结一、实数的基本性质1. 实数的定义及性质实数是指包括有理数和无理数的数集。
实数的性质包括封闭性、传递性、结合律、交换律和分配律等。
2. 实数的大小比较对于任意实数a和b,有两个重要性质:反对称性和三角不等式。
3. 实数的绝对值绝对值是实数a到原点的距离。
绝对值的性质包括非负性、非零性、三角不等式和绝对值的运算法则。
4. 实数的方根与幂实数的n次方根、实数的n次幂的运算法则和性质。
二、实数的运算1. 实数的加法运算实数的加法运算法则,包括交换律、结合律和单位元素等性质。
2. 实数的减法运算实数的减法定义,以及减法的性质和规律。
3. 实数的乘法运算实数的乘法运算法则,包括交换律、结合律、分配律和零因子等性质。
4. 实数的除法运算实数的除法定义,包括零的倒数、分数的相乘和相除等性质。
5. 实数的乘方运算实数的乘方运算法则,包括同底数幂的乘法法则和除法法则等。
三、实数的运算法则1. 基本的实数运算法则包括整数的加减法和乘法运算、有理数的加减法和乘法运算、实数的加减法和乘法运算等基本法则。
2. 实数的化简运算将实数的表达式化为最简形式,包括有理数的四则运算和乘方运算、无理数的运算等。
3. 实数的合并与分解将实数的表达式进行合并或分解,以便进行进一步的运算。
四、实数的应用1. 实数的应用于代数方程实数的应用包括一元一次方程、一元二次方程等的求解和实数的性质应用等方面。
2. 实数的应用于不等式实数的应用包括一元一次不等式、一元二次不等式等的求解和实数的性质应用等方面。
3. 实数的应用于几何问题实数的应用包括平面几何和立体几何中实数的运用、问题的建立和解决。
五、实数的推论与应用1. 实数的应用问题实数的运算和性质在实际生活中的应用,如金融、工程、物理等领域的问题解决。
2. 实数性质的证明实数的性质和运算法则的证明,以及实数应用问题的解题过程。
3. 实数性质的应用实数的性质在代数方程、不等式、几何问题和实际应用问题中的具体应用。
实数的计算知识点总结一、实数的四则运算实数的四则运算包括加法、减法、乘法和除法。
在进行实数的四则运算时,需要遵循基本的运算法则,包括交换律、结合律、分配律等。
具体来说,假设a、b、c为实数,则有以下计算规则:1. 实数的加法:a + b = b + a2. 实数的减法:a - b ≠ b - a3. 实数的乘法:a × b = b × a4. 实数的除法:a ÷ b ≠ b ÷ a在进行实数的四则运算时,需要先将实数转换为相同的形式,然后再按照各种运算法则进行计算。
例如,计算(-3) + 5,需要将-3转换为5的形式,得到(-3) + 5 = 5 + (-3) = 2。
二、实数的比较在实数的比较中,需要了解实数大小的比较规则,包括大于、小于、大于等于、小于等于等。
具体而言,假设a、b为实数,则有以下比较规则:1. 实数的大小比较:若a > b,则a称为大于b;若a < b,则a称为小于b;若a = b,则a 称为等于b。
2. 实数的大小顺序:对于任意两个实数a和b,它们之间具有大小顺序,即a > b、a = b 或a < b中的一种关系必定成立。
在实数的比较中,需要注意实数的符号、绝对值、小数点位数等因素,通过这些因素进行实数的大小比较。
例如,比较-3和5的大小关系时,由于5大于0且-3小于0,因此有-3 < 5。
三、实数的绝对值实数的绝对值是一个非负的数值,表示实数到原点的距离。
对于任意实数a,其绝对值记作|a|,具体定义为:1. 若a ≥ 0,则|a| = a;2. 若a < 0,则|a| = -a。
实数的绝对值可以理解为实数在数轴上的坐标到原点的距离,因此它是非负的。
在实数的计算中,经常需要对实数取绝对值,例如,计算|(-3)|,需将-3转换为3的形式,得到|(-3)| = 3。
四、实数的幂运算实数的幂运算是指对实数进行整数次幂的运算。
实数的运算与性质实数是数学中最基本的概念之一,广泛应用于各个领域。
在实际生活中,我们常常需要进行实数的运算,比如加减乘除等,通过运算可以帮助我们解决各种问题。
本文将简要介绍实数的运算规则以及相关性质。
一、实数的加法与减法运算实数的加法运算是指将两个实数进行相加的操作,其运算规则如下:规则1:对于任意实数a、b,a + b = b + a,即实数的加法满足交换律。
规则2:对于任意实数a、b和c,(a + b) + c = a + (b + c),即实数的加法满足结合律。
规则3:对于任意实数a,存在一个特殊的实数0,使得a + 0 = a,即实数0是加法的单位元素。
规则4:对于任意实数a,存在一个特殊的实数-b,使得a + (-b) = 0,即实数-b是a的加法逆元素。
实数的减法运算是加法运算的逆运算,其运算规则如下:规则5:对于任意实数a、b,a - b = a + (-b),即实数的减法等价于加法。
二、实数的乘法与除法运算实数的乘法运算是指将两个实数进行相乘的操作,其运算规则如下:规则6:对于任意实数a、b,a × b = b × a,即实数的乘法满足交换律。
规则7:对于任意实数a、b和c,(a × b) × c = a × (b × c),即实数的乘法满足结合律。
规则8:对于任意实数a,存在一个特殊的实数1,使得a × 1 = a,即实数1是乘法的单位元素。
规则9:对于任意实数a(a ≠ 0),存在一个特殊的实数1/a,使得a × (1/a) = 1,即实数1/a是a的乘法逆元素。
实数的除法运算是乘法运算的逆运算,其运算规则如下:规则10:对于任意实数a、b(b ≠ 0),a ÷ b = a × (1/b),即实数的除法等价于乘法。
三、实数的性质除了运算规则外,实数还具有以下重要的性质:性质1:实数具有封闭性。
实数的运算知识点总结一、实数的四则运算实数的四则运算是基本的数学运算,包括加法、减法、乘法和除法。
在实数范围内,这些运算有着一些基本的性质和规律。
1. 加法实数的加法满足交换律、结合律和分配律。
即对于任意实数a、b、c,有:交换律:a + b = b + a结合律:(a + b) + c = a + (b + c)分配律:a × (b + c) = a × b + a × c2. 减法实数的减法可以看作是加法的逆运算。
即a - b可以等价于a + (-b),其中-a表示b的相反数。
减法满足减法性质:a - b = a + (-b)。
3. 乘法实数的乘法满足交换律、结合律和分配律。
即对于任意实数a、b、c,有:交换律:a × b = b × a结合律:(a × b) × c = a × (b × c)分配律:a × (b + c) = a × b + a × c此外,实数的乘法还满足乘法消去律:如果a×b=a×c且a≠0,则b=c。
即如果两个实数的乘积相等,那么它们的因数也是相等的。
4. 除法实数的除法是乘法的逆运算。
对于任意不等于0的实数a、b,有a ÷ b = a × (1/b),其中1/b表示b的倒数。
二、实数的绝对值在实数中,绝对值是一个非常重要的概念。
对于任意实数x,它的绝对值记作| x |,表示x 到原点的距离。
绝对值有着以下几个基本性质:1. | x | ≥ 02. | x | = 0 当且仅当 x = 03. | -x | = | x |,即绝对值的性质4. | xy | = | x | × | y |绝对值在实数的运算中有着重要的应用,它可以帮助我们简化运算,解决绝对值不等式,以及表示实数的大小关系等问题。
三、指数运算指数运算是实数运算中的重要内容,它包括幂运算、指数函数和对数函数等概念。
实数计算的常见类型及方法【精练】计算3-2÷3+(—)0—3—1+(—3)2-32解:原式=3-+1-+9-9=3在算3-2÷3时易算成1÷3=,另外(—3)2与-32是有区别的.【知识规律串讲】一、实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。
(2)减法 a—b=a+(-b)(3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即(4)除法(5)乘方(6)开方如果x2=a且x≥0,那么=x;如果x3=a,那么在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b=b+a(2)加法结合律(a+b)+c=a+(b+c)(3)乘法交换律 ab=ba.(4)乘法结合律 (ab)c=a(bc)(5)分配律 a(b+c)=ab+ac其中a、b、c表示任意实数.运用运算律有时可使运算简便.一、加法运算中的方法与技巧例1 计算:(1)5-[2+(-4。
8)-(-4)](2)|(-)-(-)+(-)|分析:(1)题的关键是确定运算顺序,有括号的还应先计算括号内的;(2)题的关键是求出绝对值符号中式子的值,进而求出整个式子的值.进行有理数的混合计算时,小学学过的确定运算顺序的方法仍然适用解(1)5-[2+(-4。
8)-(-4)]=5-[2-4.8+4]=5-[7-4.8]=5-2。
2=3(2)|(-)-(-)+(-)|=|-+-|=|--+|=|-|=【小结】巧用加法的交换律与结合律,以达到简化的目的,同时注意交换加数位置时,一定要连同前面的符号一起移动。
实数加法运算中通常有以下规律:互为相反数的两个数先相加—“相反数结合法”;符号相同的数先相加—“同号结合法";分母相同的数先相加—“同分母结合法";几个数相加得到整数先相加—“凑整法”;整数与整数,小数与小数相加-“同形结合法”。
实数的概念及运算法则实数的概念实数是指包括有理数和无理数在内的数的集合。
有理数是可以表示为两个整数的比值的数,而无理数则不能被表示为两个整数的比值。
实数包括了所有的整数、分数和无限不循环小数。
实数的运算法则1. 加法法则:实数的加法满足交换律和结合律。
即对于任意实数a、b和c,有:- 交换律:a + b = b + a- 结合律:(a + b) + c = a + (b + c)2. 减法法则:实数的减法可以视为加法的逆运算。
即对于任意实数a、b和c,有:- 减法定义:a - b = a + (-b)3. 乘法法则:实数的乘法满足交换律和结合律。
即对于任意实数a、b和c,有:- 交换律:a * b = b * a- 结合律:(a * b) * c = a * (b * c)4. 除法法则:实数的除法可以视为乘法的逆运算。
即对于任意实数a、b和c,有:- 除法定义:a / b = a * (1 / b)5. 分配律:实数的乘法对加法具有分配律。
即对于任意实数a、b和c,有:- 左分配律:a * (b + c) = (a * b) + (a * c)- 右分配律:(a + b) * c = (a * c) + (b * c)6. 幂的法则:实数的幂运算满足以下法则:- a^0 = 1,其中a是非零实数- a^n * a^m = a^(n + m),其中a是非零实数,n和m是整数这些实数的运算法则可以帮助我们在数学计算中正确地进行加减乘除等运算。
通过熟练掌握这些法则,我们可以更好地理解和应用实数的运算概念。
实数的运算计算题30道一、加法运算1. 计算:√(2)+3√(2)- 解析:因为被加数和加数都是同类二次根式(二次根式的被开方数相同),所以可以直接将系数相加。
√(2)+3√(2)=(1 + 3)√(2)=4√(2)。
2. 计算:(-2)+5- 解析:这是简单的有理数加法,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5|>| - 2|,所以(-2)+5 = 5-2=3。
3. 计算:√(5)+(-√(5))- 解析:互为相反数的两个数相加得0,√(5)与-√(5)互为相反数,所以√(5)+(-√(5)) = 0。
二、减法运算4. 计算:5 - √(3)-(3-√(3))- 解析:先去括号,括号前是减号,去括号后括号里的各项要变号。
则原式=5-√(3)-3 +√(3),然后再合并同类项,-√(3)+√(3)=0,5 - 3=2,所以结果为2。
5. 计算:7-(-2)- 解析:减去一个数等于加上这个数的相反数,所以7-(-2)=7 + 2=9。
6. 计算:√(8)-√(2)- 解析:先将√(8)化简为2√(2),则原式=2√(2)-√(2)=(2 - 1)√(2)=√(2)。
三、乘法运算7. 计算:2√(3)×√(6)- 解析:根据二次根式乘法法则√(a)×√(b)=√(ab),则2√(3)×√(6)=2√(3×6)=2√(18),再将√(18)化简为3√(2),所以2√(18)=2×3√(2)=6√(2)。
8. 计算:(-3)×5- 解析:两数相乘,异号得负,所以(-3)×5=-15。
9. 计算:√(5)×√(5)- 解析:根据二次根式乘法法则,√(5)×√(5)=√(5×5)=√(25) = 5。
四、除法运算10. 计算:(√(12))/(√(3))- 解析:根据二次根式除法法则(√(a))/(√(b))=√(frac{a){b}}(b≠0),则(√(12))/(√(3))=√(frac{12){3}}=√(4)=2。
七年级下册数学实数的运算实数是包括有理数和无理数的数集合,包括正数、负数和零。
在数学中,我们经常会进行实数的运算,包括加、减、乘、除等。
下面我们来详细介绍一下七年级下册数学实数的运算。
首先,我们来讨论实数的加法运算。
实数的加法运算遵循交换律和结合律。
例如,对于实数a、b、c,有如下性质:1.交换律:a + b = b + a2.结合律:(a + b) + c = a + (b + c)在实数的加法运算中,我们可以将正数、负数和零进行运算。
例如,2 + 3 = 5,(-2) + 3 = 1,(-2) + (-3) = -5,0 + 2 = 2。
接着,我们来讨论实数的减法运算。
实数的减法运算可以看作是加法运算的逆运算。
例如,a - b = a + (-b)。
实数的减法运算遵循减法性质,即减法不满足交换律,但满足结合律。
对于实数a、b、c,有如下性质:1.非交换性:a - b ≠ b - a2.结合律:(a - b) - c = a - (b + c)在实数的减法运算中,我们也可以将正数、负数和零进行运算。
例如,5 - 3 = 2,(-2) - 3 = -5,0 - 2 = -2。
接着,我们来讨论实数的乘法运算。
实数的乘法运算也遵循交换律和结合律。
例如,对于实数a、b、c,有如下性质:1.交换律:a × b = b × a2.结合律:(a × b) × c = a × (b × c)在实数的乘法运算中,我们可以将正数、负数和零进行运算。
例如,2 × 3 = 6,(-2) × 3 = -6,(-2) × (-3) = 6,0 × 2 = 0。
最后,我们来讨论实数的除法运算。
实数的除法运算可以看作是乘法运算的逆运算。
对于非零实数a、b,有如下性质:1.除法性质:a ÷ b = a × (1/b)在实数的除法运算中,我们也可以将正数、负数进行运算。
实数的运算实数的运算(1)加法 同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。
(2)减法 a-b=a+(-b)(3)乘法 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab(4)除法 )0(1≠⋅=b b a b a (5)乘方 个n n a aa a = (6)开方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律(1)加法交换律 a+b =b+a (2)加法结合律 (a+b)+c=a+(b+c)(3)乘法交换律 ab =ba . (4)乘法结合律 (ab)c=a(bc)(5)分配律 a(b+c)=ab+ac其中a 、b 、c 表示任意实数.运用运算律有时可使运算简便.典型题型与习题一、填空题:1.我国数学家刘徽,是第一个找到计算圆周率π方法的人,他求出π的近似值是3.1416,如果取3.142是精确到 位,它有 个有效数字,分别是 。
1.5972精确到百分位的近似数是 ;我国的国土面积约为9600000平方干米,用科学计数法表示为 平方干米。
2.按鍵顺序-1·2÷4=,结果是 。
3.我国1990年的人口出生数为23784659人。
保留三个有效数字的近似值是人。
4.由四舍五入法得到的近似数 3.10×104,它精确到 位。
这个近似值的有效数字是 。
5.2的相反数与倒数的和的绝对值等于 。
6.若n 为自然数时(-1)2n+1+(-1)2n = .7.已知2a -b =4, 2(b -2a)2-3(b -2a)+1=8.已知:|x|=4,y 2=149且x>0,y<0,则x -y = 。
实数的运算大全1. 计算:8×24;2. 计算: 52;3. 计算: 3 ×(21-12+1)4. 计算: 2-21 ;5.化简:316437-;6.计算: 212+348 ; 7.化简:348-; 8. 计算:)515(5-9.计算:252826-+ 10.计算:2022(()3-+- 11.计算:|-2|-(3-1)0+121-⎪⎭⎫⎝⎛121314.化简:5312-⨯15.化简:2236+⨯16.计算:(25+1)2 17.计算:)12)(12(-+ 18.计算:(1)2095⨯19.计算:8612⨯ 20.计算:(1+3)(2-3) 21.计算:(132-)2 22.计算:(2+5)223.计算:21850-⨯ 24.计算:)82(2+ 25.计算:3721⨯ 26.计算: 10405104+27.计算: 2)313(-28.计算:250580⨯-⨯ 29.计算: (1+5)(5-2)30.计算:(1)(1-2+3)(1-2-3) 31.计算:)623)(623(-++- 32.计算:320-45-51 33.x =2-3时,求(7+43)x 2+(2+3)x +3的值.34.计算:32221(4)3(--⨯+) 35.计算:222321+-36.计算:0211(1)124π-+---+37.计算:∣-2∣-23+38.先化简,再求值:5x 2-(3y 2+5x 2)+(4x 2+7xy ),其中x =-1,y =139.求a 的值。
40.计算:221213- 41.计算:(18).221+;42.若a=3 -10,求代数式a 2-6a -2的值;43.计算: 348-1477137+; 44.数轴上,点A表示1,点B表示3AB 间的距离;45.计算:2)2(182--⋅46.计算:2)525(-47.已知xy=2,x -y=125-,求(x +1)(y -1)的值;48.计算:)—()(23322332⨯+ ;49.计算:13.14⎛⎫ ⎪⎝⎭-1+(-π)250.计算:)32)(32(-+51.计算:210(2)(1---52.计算:2)4(|3|ππ-+-53.4)12(2=-x x :求 54.计算:3322323--+55.已知32b ,32a -=+=,求下列各式的值:(1)ab (2)a 2+b 2 56.计算:328- 57.计算: 21850-⨯ 58.计算:)56)(56(-+ 59.计算: 316437-60.计算:13327-+61.计算:25.05116.021- 62.计算:22)2332()2332(--+63.计算:32 -321+2;64.计算:)483814122(22-+ 656667.求x 的值: 9)2(2=-x 68.求x 的值:52=+x 69.计算:527×23322 70.计算:x 932+64x —2x x171.计算:33232- +233-72.计算:(5+6)(52—23) 73.计算:9)21()4()4()2(278233233-⨯-+-⨯--- 74.求x: (2x+1)2—0.01=0 75.求x: 4(1—3x)3=16176.)7581()3125.0(--- 77.)32223(-1251359⨯÷ 78.计算:1831627+-;79.计算:10754254⨯÷; 80.计算:)3225)(65(-+; 81.计算:50)2131(6-+⋅82.计算:22108117-83.计算:2731331103.0+-- 84.计算:322123-+- ;85.计算:8122-- ; 86.计算:)2161(32+÷;87.计算:)3225)(65(-+; 88.计算:18812131212---- ; 89.计算:182⋅; 93.计算:31648+; 90.计算:405214551252021515-+-+ 91.计算:21102112736112⨯÷; 92.计算:()()3234341222++--⨯-;93.计算:(1)182825-+ ; 94.计算:xxx x 1244932-+; 95.计算:32)6122(⋅-+ ; 96.计算:27)3148(÷+97.解方程:03222=-x 98.计算:)(50815.0-- 99.解方程: 0342=--x x 100.计算:103273175.02-+101.已知x =2,y =3,求yxx y -的值 102.计算:2)322223324(÷+-; 103.计算:)7581()3125.0(---; 104.计算:451-491+2)21(- ;105.计算: (3-2)2·(5+26); 106.计算:4520215115-+ ;107.计算:251765265⨯÷ ; 108.计算:)23(321312+-++; 109.计算: )755181(3125.032---+ 110.计算:22)73()73)(73(2)73(++-+--111.计算:()()()221131321--+-+⎪⎭⎫⎝⎛- ;112.计算: 25341122÷⨯;113.计算:(6-215)×3-621; 114.计算:621624++5; 115.计算:263862421++-; 116.计算:()1525- ; 117.计算:123127+-; 118.计算:()()131381672-++- ;119.计算:364141636.0--⋅ 120.解方程:012552=-x121.解方程:54)32(413=+x122.已知163+x 的立方根是4,求x;123.已知b a b a 2462+==,求,; 124.计算:27412732+-125.计算:(1+32)(1—32)126.计算:483314124--127.计算:52)15(2+- 128.计算:24×(22—33) 129.计算:31215-130. 求x : 02783=+x ;131.计算:23-+23-+22-132.求x :1)1(3-=-x133.求x :1)32(412=+x134.计算:311—3(精确到0.01)135.计算:16191271029453++--136.计算:11243)1(6425)5()2.0()5(-÷⨯+-⨯-⋅- 137.计算:7523⨯138.计算:3104812-+139.求x :641212=x 140.求x :02433=-x141.求x :22)7()5(-=-x 142.求x :222129-143.计算:31000511003631-144.计算:1691691271943--+145.计算:+-146.计算147.求x: 24360x -= 148.求x: 3(1)8x +=-149.计算:44.141264.0+- 150.计算:21316121831++- 151.计算:1224323•⎪⎪⎭⎫⎝⎛- 152.计算:121242764810+-153.计算:()()()2232525--+-154.已知实数a 有两个平方根x 和y ,且满足125=-y x ,求a;155.若5x +19的算术平方根是8,求x . 156.一个Rt △的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积。
161.计算:162.计算:+ 163.计算:164.计算:165.计算:(2166.计算:((2233-+167.计算: 已知一个三角形的面积为2,一条底边长为,求该底边上的高。
168.计算: 3125.0-1613+23)871(-. 169.计算: 312564-38+-1001(-2)3×3064.0.170.计算: 21418232383-+-. 171.计算: 将半径为12cm 的铁球融化,重新铸造出27个半径相同的小铁球,如不计损耗,小铁球半径是多少cm ?(提示:球的体积公式为334R v π=)172.计算:8612⨯;173.计算: )7533(3-; 174.计算: 123127+-; 175.计算:(2+;176.计算: 2363327⨯-+.177.计算:81.031-4162+2268101+;178.计算: 3008.0-+481-532-38742-. 179.计算: 01.049⨯—222029- 180.计算: 3223146⋅÷181.计算: ()()1282775298---. 182.计算:2233223322332⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+. 183.计算: 已知三角形底边的边长是6,面积是12,求三角形的高线长.184.计算:2211()()32--÷+⨯- 185.计算:( 186.计算:285-187.计算:3237-188.计算: 2223+189.计算: 31273+190.计算:7275-191.计算: 6563-192.计算: 32327+193.计算: 125352+194.计算: 85214-195.计算:3253417-196.计算: 解方程:62=x197.计算:41552⨯ 198.计算: 248÷ 199.计算:672 200.计算:83152÷ 201.计算: 3824⨯÷ 202.计算:212352÷⨯ 203.计算: 54624-+204.计算: 27)312(⨯-205.计算: 2)37(+ 206.计算:273- 207.计算: 2)47(-208.计算:132+ 209.计算:02)210.计算: 先化简,再求值:22(3)(2)1x x x x x -+-+,其中x =211.计算:212.计算:-213.计算: 9×27 214.计算: 25×32215.计算:) 216.计算: 161694⨯ 217.计算: 3018⨯; 218.计算: 7523⨯; 219.计算: 38×(-46) 220.计算:221.计算:222.计算:223.计算:16141÷ 224.计算:225.计算:208226.计算: 521312321⨯÷227.计算: 21541)74181(2133÷-⨯ 228.计算: 2147431⨯÷229.计算:230.计算:231.计算: )27131(12-- 232.计算: )512()2048(-++233.计算:234.计算:235.计算:236.计算: 50511221832++- 237.计算: (38+)×6238.计算: 22)6324(÷- 239.计算: )52)(32(++ 240.计算: 2)232(- 241.计算: 12)323242731(⋅-- 242.计算: )32)(532(+- 243.计算: 2)3223(+244.计算:)()245.计算: 5)9080(÷+ 246.计算: 326324⨯-÷ 247.计算: 4814⨯248.计算: 2712+ 249.计算: 1872÷ 250.计算: 20125-251.计算: 25341122÷⨯252.计算:253.计算:2(- 254.计算:255.计算: 453227+- 256.计算:257.计算: 5426362+-- 258.计算: )27223)(232(- 259.计算: 2)210()515)(2012(--+- 260.计算: )2453)(241.0(+- 261.计算: )26()8512(+÷- 262.计算: 22)2233()2233(+-- 263.计算:5120-264.计算: 7523⨯265.计算: 233627+-266.计算:3232245- 267.计算: -81527102÷31225a 268.计算: )5031182()812732(-+--- 269.计算:)613384323(83+-- 270.计算:31627321-++ 271.计算:)21272.计算:11(1)52-⎛⎫π-+-+- ⎪⎝⎭273.计算:)1274.计算:)2275.计算:276.计算:277.计算:278.计算:279.计算:+-;280.计算:21)⎛ ⎝281.计算: 14722-282.计算: 59373654-+-283.计算: 的值。