第五章_钛及钛合金的热处理
- 格式:ppt
- 大小:4.13 MB
- 文档页数:5
钛合金的热处理基本原理钛合金的热处理基本引言钛合金是一种重要的结构材料,具有广泛的应用领域。
然而,由于其特殊的化学成分和晶体结构,钛合金的热处理相对复杂。
在本文中,我们将从浅入深地介绍钛合金的热处理基本原理。
1. 钛合金的结构与特点钛合金由钛和其他合金元素组成,具有较高的强度、优良的耐腐蚀性和低的密度。
然而,钛合金的晶体结构也使其具有一些局限性,例如易形成过热α相和热稳定β相的共存状态。
2. 热处理的基本概念热处理是通过加热和冷却来改变材料的结构和性能的方法。
对钛合金进行热处理可以改变其晶粒尺寸、相组成和晶体方向性,从而调控其力学性能和耐腐蚀性。
3. 热处理的常见方法钛合金的热处理常见方法包括退火、时效、固溶处理和淬火等。
这些方法可以单独应用,也可以组合使用,以便达到最佳的材料性能。
•退火退火是将钛合金加热至适当温度并经过一段时间保温后缓慢冷却的过程。
退火可以消除内部应力、改善材料的塑性和韧性,并提高晶体的等轴性。
•时效时效是在退火完成后,将钛合金再次加热至一定温度下保温一段时间,然后冷却的过程。
时效能够使钛合金中的析出相达到最优化的状态,进一步提高材料的强度和韧性。
•固溶处理固溶处理是将钛合金加热至固溶温度,并迅速冷却以保持固溶状态。
固溶处理可以改善合金的可加工性,但会降低强度和耐蚀性。
•淬火淬火是将钛合金迅速冷却至室温,以形成固溶相。
淬火可以使合金获得最高的强度和硬度,但可能导致脆性增加。
4. 热处理过程中的微观变化在钛合金的热处理过程中,晶体结构和相组成会发生微观变化。
热处理可以引起晶粒长大或细化、相转变或析出反应。
这些变化对材料的性能具有重要影响。
结论综上所述,钛合金的热处理是调控其性能的重要方法。
不同的热处理方法可以针对不同的应用需求选择。
熟悉钛合金的结构和特点,并理解热处理的基本原理,对于正确应用热处理技术具有重要意义。
参考文献[1] Gupta, , Aman, D., Kashyap, , & Patnaik, A. (2016). Heat treatment of titanium alloys - A review. Materials Science and Engineering: A, 654, .。
钛及钛合金的热处理及耐蚀性表面处理1 有关热处理的标准与热处理炉钛及钛合金的热处理条件虽然在JIS或ASTM中都没有标准化,但在美国军用标准(MIL —H81200)中有详细的规定,下表列出了根据该标准整理的纯钛和钛合金的热处理温度、*ELI表示氧、氮等间隙元素特别低的材料在MIL标准中还规定了热处理炉的炉膛温度分布均匀性,要求退火或固溶处理时不超过±14℃,时效处理时不超过±8.3℃,针对这些要求希望采用具有(1)可控硅控制的电源;(2)升温、保温、冷却的程序控制机构;(3)用风扇搅拌炉内空气等功能的电炉。
在使用燃烧炉的时候,必须注意(1)为了防止吸氢,保持微氧化性气氛;(2)被处理材料装入马弗缸内,不要直接接触火焰。
2 退火一般地说,金属的退火是使其内部应变消除、加工组织产生恢复与再结晶的热处理。
钛及钛合金的热处理是为了组织稳定化、稳定制品尺寸、提高可切削性以及改善力学性能而实施的。
α合金的退火是在α相区加热,使平衡状态的α相充分地恢复与再结晶,然后再冷却到室温。
冷却速度引起的组织变化很小,快冷或缓冷均可。
α—β合金的退火是在两项区进行。
β合金则是在高于β相变点的温度下退火处理。
Ti-6Al-4V是采取在两相区加热后空冷进行退火的,以便在常温下得到稳定的β相和α相混合组织。
MIL标准规定的退火工艺为690~871℃下加热并保温,然后空冷。
β合金的退火与固溶处理相同。
3 固溶处理所谓固溶处理,就是使所有合金元素溶入基体相中形成均匀的固溶体后快冷到室温,将高温下的组织状态保持下来,获得过饱和固溶体的热处理操作。
由于过饱和固溶体是不稳定的,若在某一温度下重新加热,溶入的元素或者以化合物形态析出或者形成平衡的稳定相,从而达到稳定的状态。
α—β合金的固溶处理是在β相变点以下的两相区加热,类似于铁素体+奥氏体两相不锈钢的固溶处理。
加热到固溶温度后溶入该温度下处于平衡状态的α和β相中的合金元素是不同的,各自的成分也完全不同于合金的平均组成。
钛合金热处理概述钛合金是一种具有轻质、高强度、耐腐蚀性好等优点的重要结构材料。
然而,钛合金的性能还受到热处理工艺的影响。
本文将介绍钛合金热处理的基本概念、常见工艺以及热处理后钛合金的性能变化。
热处理工艺钛合金的热处理工艺主要包括退火、时效处理和固溶处理等。
下面将详细介绍每种热处理工艺的原理和步骤。
退火退火是钛合金常用的热处理工艺之一,通过加热和持温使材料晶粒长大,消除应力和改善材料的机械性能。
退火的具体步骤如下:1.加热:将钛合金材料放入炉中,以逐渐升高温度的方式进行加热。
2.保温:在达到合适的退火温度后,保持材料在该温度下一定的时间。
3.冷却:将材料从炉中取出,在大气中自然冷却至室温。
时效处理时效处理是通过合理的时间和温度控制,使合金中的相发生相互转变,提高材料的硬度、强度和耐蚀性。
时效处理的步骤如下:1.固溶处理:将预处理好的钛合金材料加热至固溶温度,保持一定时间,使溶解相均匀分布。
2.快速冷却:迅速将材料从固溶温度快速冷却至较低温度,比如水淬或油淬。
3.时效处理:将快速冷却后的材料再次加热至时效温度,保持一定时间,使相转变发生。
固溶处理固溶处理是将固溶体加热至一定温度,使其中的溶质完全溶解,然后通过快速冷却将其固定。
固溶处理的步骤如下:1.加热:将钛合金材料放入炉中,以逐渐升高温度的方式进行加热至固溶温度。
2.保温:在固溶温度下保持一定的时间,使溶质彻底溶解。
3.快速冷却:迅速将材料从固溶温度快速冷却至较低温度,比如水淬或油淬。
热处理后钛合金的性能变化钛合金经过热处理后,其性能会发生一系列变化,主要包括硬度、强度和耐蚀性等。
以下是热处理对这些性能的影响:硬度通过固溶处理和时效处理,钛合金的硬度可以显著提高。
固溶处理可以使固溶体中的溶质溶解,消除溶质对晶格的影响,提高硬度。
时效处理则可以通过相转变的方式使钛合金的硬度进一步增加。
强度热处理对钛合金的强度也有显著的影响。
退火处理可以消除材料中的内应力,提高韧性和韧性与强度的平衡。
固溶和时效的钛及钛合金固溶和时效是钛合金加工过程中的两个重要热处理步骤,它们可以显著改变钛合金的力学性能和微观组织。
在本文中,我将深入探讨固溶和时效对钛及钛合金的影响,并分享我的观点和理解。
首先,让我们来了解固溶和时效的基本概念。
固溶是指将钛合金加热到固溶温度,使合金中的溶质元素溶解在α相(钛基体)中形成固溶固溶体。
固溶温度因合金成分而异,在800-1000摄氏度范围内。
然后,通过快速冷却,固溶固溶体被固定在晶格中,形成一个均质的α固溶体。
固溶处理可以显著提高钛合金的强度和硬度,同时保持一定的韧性。
这是因为溶质元素的固溶固溶体可以改变合金中原子之间的相互作用力,从而增加材料的变形阻力。
此外,溶质元素的加入还可以限制α相的晶体生长,使晶粒细化,提高材料的硬度。
然而,固溶处理后的钛合金存在着时效敏感性。
时效是指将固溶处理后的钛合金在中间温度下长时间保持,使固溶固溶体发生分解和相变的过程。
时效温度通常在200-500摄氏度之间,持续时间从几分钟到数小时不等。
时效可以进一步改善钛合金的力学性能,并调节材料的织构和晶粒尺寸。
时效处理中的相变通常包括析出溶质元素的形成和沉淀,并形成一些强化相,如α'+β"相。
这些相的存在可以增加材料的强度和耐热性能,但可能会降低材料的可塑性和韧性。
因此,在确定时效处理条件时,需要权衡强度和韧性的需求。
我个人认为,固溶和时效是钛及钛合金加工中至关重要的步骤。
通过固溶处理和时效处理,可以实现对钛合金力学性能和微观组织的有针对性调控。
固溶处理可以有效提高材料的强度和硬度,而时效处理可以进一步优化材料的性能。
然而,为了实现最佳性能,我们需要合理选择固溶温度、时效温度和持续时间,并在考虑应用环境和要求的情况下进行优化。
总结起来,固溶和时效是钛合金加工过程中不可或缺的步骤。
通过固溶处理和时效处理,可以显著改变钛合金的力学性能和微观组织。
固溶处理可以提高强度和硬度,而时效处理可以进一步调节材料的织构和晶粒尺寸。
钛合金热处理
钛合金是一种由钛、铝、氧和氮组成的铝基合金,具有良好的耐腐蚀性、耐热性和良
好的力学性能。
钛合金热处理是改善其物理和机械性能的重要步骤,包括固溶热处理和
组织调整等步骤。
钛合金固溶热处理是温度比较高的热处理,主要是为了增强合金的机械性能和耐腐蚀性。
该热处理通常在1100℃~1200℃的温度下,用一定的时间进行预热,然后降温,让材料中的结晶晶体达到足够数量,以满足使用寿命的要求。
在固溶热处理过程中,可以形成
针状结晶结构,以改善材料的性能。
另一种重要的热处理方法是组织调整热处理,主要是为了改善材料的结构,从而改善
其机械性能。
钛合金组织调整热处理一般在500℃~800℃的温度下进行,可以形成α-
α+β双相结构,通过加热、预热和对材料进行延长时间,从而减少中空和晶界等缺陷,
从而提高外部载荷和抗疲劳性能。
此外,还有一种热处理方法,即细化处理热处理,主要是为了改善材料的性能,提高
耐热性能。
该热处理可以用来细化钛合金的晶体结构,以提高材料的抗疲劳性能。
总之,钛合金的热处理主要有固溶热处理、组织调整热处理和细化处理热处理等,这
些热处理方法可以有效改善其物理和机械性能,使其更加适宜用于高温环境中的工程应用。
钛合金的热处理基本原理(一)钛合金的热处理基本1. 什么是钛合金的热处理?钛合金是一种轻巧、高强度、耐腐蚀的金属材料。
然而,由于钛合金的制造过程中可能会导致材料内部存在一些不稳定晶相或缺陷,因此需要进行热处理。
热处理是通过加热和冷却的不同方式改变钛合金的晶体结构和性能,以达到所需的材料性能。
本文将介绍钛合金热处理的基本原理和常用方法。
2. 钛合金的热处理原理钛合金的热处理原理基于以下两个基本原则:固溶处理原理固溶处理是指将钛合金加热至其固溶温度以上,使合金中的溶质原子均匀地溶解在基体晶格中。
通过固溶处理,可以消除钛合金中的不稳定相,提高合金的强度和塑性。
相变处理原理相变处理是指在固溶处理的基础上,通过控制冷却速度使钛合金的晶体结构发生相变。
相变处理可以改变钛合金的晶体结构和晶界形貌,从而调整其力学性能和耐腐蚀性能。
钛合金的热处理方法主要包括固溶处理和时效处理两种。
下面将分别介绍这两种方法:固溶处理固溶处理是钛合金热处理的基础步骤,它可以消除钛合金中的不稳定相和缺陷,提高合金的强度和塑性。
固溶处理的具体步骤如下:•加热:将钛合金加热至其固溶温度以上,一般在摄氏度范围内。
•保温:保持合金在固溶温度下足够长的时间,使溶质原子充分溶解在基体中。
•冷却:迅速冷却合金至室温,固定溶质原子在基体中。
时效处理时效处理是在固溶处理的基础上进行的钛合金热处理方法,通过控制冷却速度,使合金的晶体结构发生相变,从而调整其力学性能和耐腐蚀性能。
时效处理的具体步骤如下:•固溶处理:按照固溶处理的方法对钛合金进行加热和冷却处理。
•时效处理:将处理过的钛合金再次加热至合金中存在的稳定相的温度,并保持一段时间。
•冷却:迅速冷却合金至室温,固定相变后的晶体结构。
钛合金的热处理广泛应用于航空航天、汽车、医疗器械等领域。
通过热处理,可以增加钛合金的强度和保持其良好的耐腐蚀性能,提高材料的使用寿命。
5. 结论钛合金热处理是一种重要的材料加工方法,通过固溶处理和时效处理可以调整钛合金的晶体结构和性能。
钛及钛合金热处理标准钛及钛合金是一类重要的结构材料,具有优良的耐腐蚀性能和高强度,因此在航空航天、船舶制造、化工设备等领域得到广泛应用。
然而,钛及钛合金的热处理工艺对其性能和组织结构有着重要影响,因此需要严格按照标准进行热处理,以确保材料的性能和质量。
首先,钛及钛合金的热处理标准主要包括退火、固溶处理、时效处理等工艺。
在退火处理中,通常需要将材料加热至一定温度,然后进行保温一段时间,最后缓慢冷却至室温。
这一过程旨在消除材料的应力和改善其塑性,提高加工性能。
固溶处理则是将材料加热至固溶温度,保温一段时间,然后迅速冷却至室温,以溶解合金元素并均匀分布在基体中,提高材料的强度和硬度。
时效处理是在固溶处理后,将材料在较低温度下保温一段时间,使合金元素析出形成弥散分布的强化相,进一步提高材料的强度和耐热性。
其次,钛及钛合金的热处理标准还包括了加热温度、保温时间、冷却速度等具体参数的要求。
这些参数的选择直接影响着材料的组织结构和性能。
例如,在退火处理中,加热温度和保温时间的选择需根据材料的成分和工艺要求来确定,以保证材料达到理想的组织状态。
在固溶处理和时效处理中,加热温度和保温时间的控制也是至关重要的,过高或过低的温度都会导致材料性能的下降。
最后,钛及钛合金的热处理标准还包括了热处理后的性能检测和评定要求。
经过热处理的材料需要进行硬度测试、拉伸试验、冲击试验等,以评定其力学性能和韧性。
同时,还需要对材料的显微组织进行金相分析,以确保热处理后的组织结构符合标准要求。
只有通过了性能检测和组织评定的材料,才能被认定为合格品,并投入实际使用。
总之,钛及钛合金的热处理标准是确保材料性能和质量的重要保障,只有严格按照标准要求进行热处理,才能保证材料达到理想的性能水平,满足工程需求。
因此,作为钛及钛合金的生产和加工单位,必须严格遵守相关标准,加强工艺管理,确保产品质量,为推动钛及钛合金产业的发展做出应有的贡献。
钛及钛合金的热处理 钛及钛合金通过程序控制技术和各种热处理工艺可获得不同特性的产品,表1~表4列出了工业纯钛及部分钛合金的热处理工艺。
表1 工业纯钛和部分钛合金的β相变温度合 金β相变温度℃,±15°υ,±25°工业纯钛,0125%O2最大9101675工业纯钛,014%O2最大9451735α或近α合金Ti25Al2215Sn10501925Ti28Al21Mo21V10401900Ti2215Cu(IM I230)8951645Ti26Al22Sn24Zr22Mo9951820Ti26Al25Zr2015Mo2012Si(IM I685)10201870Ti2515Al2315Sn23Zr21Nb2013Mo2013Si(IM I829)10151860Ti2518Al24Sn2315Zr2017Nb2015Mo2013Si(IM I834)10451915Ti26Al22Cb21Ta2018Mo10151860Ti2013Mo2018Ni(TiCode12)8801615α2β合金Ti26Al24V1000(a)1830(b) Ti26Al27Nb(IM I367)10101850Ti26Al26V22Sn(Cu+Fe)9451735Ti23Al2215V9351715Ti26Al22Sn24Zr26Mo9401720Ti24Al24Mo22Sn2015Si(IM I550)9751785Ti24Al24Mo24Sn2015Si(IM I550)10501920Ti25Al22Sn22Zr24Mo24Cr(Ti217)9001650Ti27Al24Mo10001840Ti26Al22Sn22Zr22Mo22Cr20125Si9701780Ti28Mn800(c)1475(d)β或近β合金Ti213V211Cr23Al7201330Ti21115Mo26Zr2415Sn(βШ)7601400Ti23Al28V26Cr24Zr24Mo(βC)7951460Ti210V22Fe23Al8051480Ti215V23Al23Cr23Sn7601400 (a)±20℃,(b)±30υ,(c)±35℃,(d)±50υ。
钛的热处理方法一.钛的基本热处理:工业纯钛是单相α型组织,虽然在890℃以上有α-β的多型体转变,但由于相变特点决定了它的强化效应比较弱,所以不能用调质等热处理提高工业纯钛的机械强度。
工业纯钛唯一的热处理就是退火。
它的主要退火方法有三种:1再结晶退火2消应力退火3真空退火。
前两种的目的都是消除应力和加工硬化效应,以恢复塑性和成型能力。
工业纯钛在材料生产过程中加工硬度效应很大。
图2-26所示为经不同冷加工后,TA2屈服强度的升高,因此在钛材生产过程中,经冷、热加工后,为了恢复塑性,得到稳定的细晶粒组织和均匀的机械性能,应进行再结晶退火。
工业纯钛的再结晶温度为550-650℃,因此再结晶退火温度应高于再结晶温度,但低于α-β相的转变温度。
在650-700℃退火可获得最高的综合机械性能(因高于700℃的退火将引起晶粒粗大,导致机械性能下降)。
退火材料的冷加工硬化一般经10-20分钟退火就能消除。
这种热处理一般在钛材生产单位进行。
为了减少高温热处理的气体污染并进一步脱除钛材在热加工过程中所吸收的氢气,目前一般钛材生产厂家都要求真空气氛下的退火处理。
为了消除钛材在加工过程(如焊接、爆炸复合、制造过程中的轻度冷变形)中的残余应力,应进行消应力热处理。
消应力退火一般不需要在真空或氩气气氛中进行,只要保持炉内气氛为微氧化性即可。
二.钛及钛合金的热处理:为了便于进行机械工业加并得到具有一定性能的钛和钛合金,以满足各种产品对材料性能的要求,需要对钛及钛合金进行热处理。
1.工业纯钛(TA1、TA2、TA3)的热处理α-钛合金从高温冷却到室温时,金相组织几乎全是α相,不能起强化作用,因此,目前对α-钛只需要进行消应力退火、再结晶退火和真空退火处理。
前两种是在微氧化炉中进行,而后者则应在真空炉中进行。
(一)消应力退火为了消除钛和钛合金在熔铸、冷加工、机械加工及焊接等工艺过程中所产生的内应力,以便于以后加工,并避免在使用过程中由于内应力存在而引起开裂破坏,对α-钛应进行消除应力退火处理。
钛合金的热处理及其对组织的影响
钛合金的热处理是一种方法,通过控制合金的加热温度、持续时间和冷却速度,可以改变钛合金的组织结构和性能。
常见的热处理方法包括固溶退火、时效处理等。
固溶退火是将钛合金加热至固溶温度以上并保持一段时间,以促进固溶体内的杂质元素和合金元素相溶。
固溶退火后,通过快速冷却可以实现快速淬火,从而形成细小的固溶体晶粒,提高合金的强度、硬度和耐久性。
时效处理是将已经固溶退火的钛合金,再次加热至适当的温度和时间范围内,促进固溶体内的杂质元素和合金元素的再结合,形成一种新的合金,从而提高钛合金的抗拉强度、延展性等性能。
钛合金的热处理对其组织的影响主要是改变其晶粒大小、相数量、相分布和相组成等因素,进而改变其力学性能和化学性能。
此外,适当的热处理能够去除钛合金的内部应力,提高其强度和耐腐蚀性能。
总之,钛合金的热处理是一种非常重要的工艺,可以改善其力学和化学性能,从而广泛应用于航空航天、船舶、化工、生物医学和汽车等领域。
钛合金热处理钛合金是一种新兴的材料,具有优良的力学和化学性能、高强度、良好的塑性、良好的耐腐蚀性以及易于加工等特点。
随着工业应用的不断发展,钛合金热处理已成为这种金属材料开发和改性的重要手段。
钛合金热处理的目的是通过热处理,改变和改善材料的组织和性能,使得材料满足应用条件的要求。
钛合金热处理的主要内容有四类:组织调整热处理、表面淬火热处理、深冷热处理和试验用的热处理。
其中,组织调整热处理是改变正常晶体态组织中晶体尺寸、细纹、晶界、细晶和纹理等的热处理。
经过组织调整热处理,可使材料具有更好的力学性能、改善材料的可锻性、韧性、耐蚀性、耐热性等功能。
表面淬火热处理的主要目的是改善钛合金的表面强度,以提高材料的抗磨性、抗冲击性和耐磨性。
淬火热处理过程由热处理和冷却构成,通常使用致密性热处理和脆性热处理,使材料的外层达到软塑性,细节部分达到韧性和耐磨性,提高了材料的抗磨性和抗冲击性。
深冷热处理是指将钛合金浸入低温液体中进行热处理,使材料中的晶粒缩小和晶界介质微化,进而改善材料的力学性能。
深冷热处理可以改善材料的疲劳性能、延性、冲击强度和弹性模量,提高材料的抗疲劳性能。
此外,试验用的热处理是指在研究钛合金的性能和组织过程中,为了使其符合试验要求而进行的一种热处理。
它的主要目的是改善试样的理化性能,建立试样和实际应用中材料的一致性,以便获得准确的实验数据。
钛合金热处理在实际应用中的重要性不言而喻,其目的是以有效的方法改变和提高材料的性能,使得材料具有更优良的力学性能和化学性能,有利于满足应用条件的要求。
合理的钛合金热处理工艺,可以提高材料的使用性能,为工业应用节省更多的成本。
综上所述,钛合金热处理是一种重要的金属材料开发和改性的手段,可以显著提高材料的性能,最大限度地满足应用条件的要求。
它不仅可以改变和改善材料的组织和性能,还可以提高材料的使用性能,为工业应用节省更多的成本。
因此,在选择和开发钛合金材料时,应十分重视它的热处理过程,并从合理的热处理工艺入手,确保材料有效的热处理,为国家工业发展做出积极贡献。
钛合金热处理钛合金是一种非常强大的金属材料,它具有良好的耐腐蚀性、高强度和较高的熔点,因此在航空航天、航海、核电、军事、汽车等多个领域有广泛的应用。
钛合金热处理是为了改善其物理性能和加工性能而进行的一种处理方法。
本文将对钛合金热处理进行深入的介绍。
钛合金热处理的目的热处理是改善钛合金的力学性能和工艺性能的手段,可以提高抗拉强度、塑性、冲击强度和耐磨性能。
此外,热处理还可以改变钛合金的晶粒结构,使物料的组织更加规整,塑性和抗拉强度更高,耐腐蚀性也更强,从而使钛合金可以应用在更多的领域。
钛合金热处理方法常见的钛合金热处理方法有五种,即回火、正火、淬火、淬火回火和表面贴装。
1.回火:在较低的温度(通常在650℃左右)下进行的钛合金的热处理,可以改变组织,减少厚度,改善机械性能。
2.正火:在较高的温度(通常为1000-1000℃)下进行的钛合金热处理,可以提高材料的抗拉强度、塑性和耐腐蚀性。
3.淬火:在较低的温度(通常为1000-1200℃)下进行的钛合金热处理,目的是改变晶粒结构,使材料拉伸强度、塑性、冲击强度和耐磨性都得到改善。
4.淬火回火:在较高的温度(通常为1000-1200℃)下进行的钛合金热处理,用于改善材料的抗拉强度和抗疲劳性能。
5.表面贴装:在较低的温度(通常在350-500℃)下进行的钛合金表面热处理,意在改善材料的抗腐蚀性和耐磨性。
钛合金热处理的注意事项钛合金热处理需要非常小心,注意以下几点:1.温度一定要调到适宜的水平,过低或者过高都会破坏材料的性能。
2.热处理时需要进行定时或采样检测,以确保材料的质量。
3.要尽可能避免冷却过程中产生的微小残留应力,以防止材料表面的损坏。
4.要充分掌握各种热处理方法的优缺点,以便在处理不同的材料时正确选择。
以上就是有关钛合金热处理的介绍,从材料的选择、热处理方法及其要求,以及施工时的注意事项,用户可以根据自己的实际应用需要,选择合适的处理方法,以达到改善材料性能的目的。
钛的热处理方法一.钛的基本热处理:工业纯钛是单相α型组织,虽然在890℃以上有α-β的多型体转变,但由于相变特点决定了它的强化效应比较弱,所以不能用调质等热处理提高工业纯钛的机械强度。
工业纯钛唯一的热处理就是退火。
它的主要退火方法有三种:1再结晶退火2消应力退火3真空退火。
前两种的目的都是消除应力和加工硬化效应,以恢复塑性和成型能力。
工业纯钛在材料生产过程中加工硬度效应很大。
图2-26所示为经不同冷加工后,TA2屈服强度的升高,因此在钛材生产过程中,经冷、热加工后,为了恢复塑性,得到稳定的细晶粒组织和均匀的机械性能,应进行再结晶退火。
工业纯钛的再结晶温度为550-650℃,因此再结晶退火温度应高于再结晶温度,但低于α-β相的转变温度。
在650-700℃退火可获得最高的综合机械性能(因高于700℃的退火将引起晶粒粗大,导致机械性能下降)。
退火材料的冷加工硬化一般经10-20分钟退火就能消除。
这种热处理一般在钛材生产单位进行。
为了减少高温热处理的气体污染并进一步脱除钛材在热加工过程中所吸收的氢气,目前一般钛材生产厂家都要求真空气氛下的退火处理。
为了消除钛材在加工过程(如焊接、爆炸复合、制造过程中的轻度冷变形)中的残余应力,应进行消应力热处理。
消应力退火一般不需要在真空或氩气气氛中进行,只要保持炉内气氛为微氧化性即可。
二.钛及钛合金的热处理:为了便于进行机械工业加并得到具有一定性能的钛和钛合金,以满足各种产品对材料性能的要求,需要对钛及钛合金进行热处理。
1.工业纯钛(TA1、TA2、TA3)的热处理α-钛合金从高温冷却到室温时,金相组织几乎全是α相,不能起强化作用,因此,目前对α-钛只需要进行消应力退火、再结晶退火和真空退火处理。
前两种是在微氧化炉中进行,而后者则应在真空炉中进行。
(一)消应力退火为了消除钛和钛合金在熔铸、冷加工、机械加工及焊接等工艺过程中所产生的内应力,以便于以后加工,并避免在使用过程中由于内应力存在而引起开裂破坏,对α-钛应进行消除应力退火处理。
钛合金的热处理工艺研究钛合金作为结构材料在航空航天、船舶、化工等领域广泛应用,其高强度、耐腐蚀、高温性能优越。
然而,钛合金在制造过程中易产生裂纹、氧化、变形、内部气泡等质量缺陷,影响材料性能和使用寿命。
热处理是一种有效的方法来改善材料的力学性能和耐腐蚀性能。
本文将介绍钛合金的热处理工艺研究。
一、钛合金的热处理方法热处理是将材料加热到一定温度,并在一定时间内进行保温和冷却,以调整材料的晶粒结构和物理性能的过程。
常用的热处理方法包括固溶处理、时效处理、淬火和回火等。
固溶处理:将钛合金在高温下保温一段时间,使其固溶体中的固溶体元素溶解在钛基体中,形成固溶体。
这样可以改善合金的塑性、延展性和韧性,但会降低强度和硬度。
时效处理:在固溶处理后,经过一段时间的自然时效或加速时效,使溶解在钛基体中的元素析出形成固态沉淀,增加强度和硬度。
时效温度高、时间长可以得到更高的强度和硬度,但也会降低韧性。
淬火和回火:淬火是将材料加热到高温后迅速冷却,使材料达到亚稳态;回火是将亚稳态材料在适当温度下保温一段时间,使其稳定下来。
淬火可以得到高强度和硬度,但会降低韧性和延展性;回火可以恢复合金的韧性和延展性,但会降低硬度和强度。
二、钛合金的参数优化热处理的效果与时间、温度、冷却速率等因素密切相关。
因此,确定合适的热处理参数对于改善合金品质至关重要。
当前常用的方法包括试错法、拟合法和模拟法。
试错法:即通过试验不断调节处理参数来确定最优参数。
这种方法适用于钛合金批量较小的情况,但需要大量数据和试验,效率较低。
拟合法:将变量之间的关系用曲线拟合出来,以此预测最佳处理参数。
这种方法可以快速确定最优参数,但需要充分的数据支撑。
模拟法:利用数值模拟软件仿真出钛合金的热处理过程及其影响因素,预测出最佳处理参数。
这种方法可以快速、准确地评估处理效果和参数,但需要充足的计算资源和软件。
三、钛合金的处理效果测试热处理后的钛合金需要进行材料性能测试以确定处理效果。
钛及钛合金的热处理及耐蚀性表面处理1 有关热处理的标准与热处理炉钛及钛合金的热处理条件虽然在JIS或ASTM中都没有标准化,但在美国军用标准(MIL —H81200)中有详细的规定,下表列出了根据该标准整理的纯钛和钛合金的热处理温度、*ELI表示氧、氮等间隙元素特别低的材料在MIL标准中还规定了热处理炉的炉膛温度分布均匀性,要求退火或固溶处理时不超过±14℃,时效处理时不超过±8.3℃,针对这些要求希望采用具有(1)可控硅控制的电源;(2)升温、保温、冷却的程序控制机构;(3)用风扇搅拌炉内空气等功能的电炉。
在使用燃烧炉的时候,必须注意(1)为了防止吸氢,保持微氧化性气氛;(2)被处理材料装入马弗缸内,不要直接接触火焰。
2 退火一般地说,金属的退火是使其内部应变消除、加工组织产生恢复与再结晶的热处理。
钛及钛合金的热处理是为了组织稳定化、稳定制品尺寸、提高可切削性以及改善力学性能而实施的。
α合金的退火是在α相区加热,使平衡状态的α相充分地恢复与再结晶,然后再冷却到室温。
冷却速度引起的组织变化很小,快冷或缓冷均可。
α—β合金的退火是在两项区进行。
β合金则是在高于β相变点的温度下退火处理。
Ti-6Al-4V是采取在两相区加热后空冷进行退火的,以便在常温下得到稳定的β相和α相混合组织。
MIL标准规定的退火工艺为690~871℃下加热并保温,然后空冷。
β合金的退火与固溶处理相同。
3 固溶处理所谓固溶处理,就是使所有合金元素溶入基体相中形成均匀的固溶体后快冷到室温,将高温下的组织状态保持下来,获得过饱和固溶体的热处理操作。
由于过饱和固溶体是不稳定的,若在某一温度下重新加热,溶入的元素或者以化合物形态析出或者形成平衡的稳定相,从而达到稳定的状态。
α—β合金的固溶处理是在β相变点以下的两相区加热,类似于铁素体+奥氏体两相不锈钢的固溶处理。
加热到固溶温度后溶入该温度下处于平衡状态的α和β相中的合金元素是不同的,各自的成分也完全不同于合金的平均组成。