混凝土的施工温度与裂缝研究
- 格式:pdf
- 大小:15.82 MB
- 文档页数:88
大体积混凝土施工中温度及收缩裂缝控制在现代建筑工程中,大体积混凝土的应用越来越广泛,例如大型基础、桥梁墩台、高层楼房的地下室底板等。
然而,由于大体积混凝土体积大、水泥水化热释放集中、内部温升快等特点,在施工过程中如果控制不当,极易产生温度裂缝和收缩裂缝,这不仅会影响混凝土结构的外观质量,更会严重削弱其承载能力和耐久性。
因此,如何有效地控制大体积混凝土施工中的温度及收缩裂缝,成为了建筑工程领域中一个至关重要的课题。
一、大体积混凝土温度裂缝和收缩裂缝的成因(一)温度裂缝的成因大体积混凝土在浇筑后,水泥水化反应会释放出大量的热量,由于混凝土的导热性能较差,热量在内部积聚,导致内部温度迅速升高。
而混凝土表面与外界环境接触,散热较快,形成较大的内外温差。
当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力。
由于混凝土在早期抗拉强度较低,当表面拉应力超过混凝土的抗拉强度时,就会产生温度裂缝。
此外,混凝土在降温阶段也容易产生裂缝。
随着水泥水化反应的逐渐减弱,混凝土内部温度开始下降,由于混凝土的收缩受到基础或结构边界的约束,会产生收缩应力。
当收缩应力超过混凝土的抗拉强度时,也会导致裂缝的产生。
(二)收缩裂缝的成因混凝土的收缩主要包括塑性收缩、化学收缩、干燥收缩和自收缩等。
在大体积混凝土施工中,干燥收缩和自收缩是导致收缩裂缝的主要原因。
干燥收缩是由于混凝土表面水分蒸发过快,内部水分迁移速度跟不上表面水分蒸发速度,导致混凝土产生不均匀的收缩。
自收缩是指在水泥水化过程中,水泥浆体自身产生的体积收缩,这种收缩与外界湿度无关。
二、大体积混凝土温度及收缩裂缝的控制措施(一)优化混凝土配合比1、选用低水化热的水泥品种,如矿渣水泥、粉煤灰水泥等,以减少水泥水化热的释放。
2、降低混凝土的水胶比,减少水泥用量,增加粉煤灰、矿渣粉等掺合料的用量,以降低混凝土的绝热温升。
3、选用级配良好的粗、细骨料,控制骨料的含泥量,以提高混凝土的密实度和抗拉强度。
混凝土的施工温度与裂缝问题探究摘要:混凝土因其整体强度较高、可模型、耐久性、耐火性好;易于取材、成本低等优点广泛应用于各类民用建筑的建造,如何对混凝土结构的裂缝进行控制,是保证混凝土结构可靠性的首要前提,本文粗浅的探讨了施工温度对混凝土裂缝的影响。
关键词:混凝土温度裂缝探究引言普通混凝土(以下简称混凝土)一般由水泥、砂、石和水所组成。
为改善混凝土的某些性能,还常加入适量的外加剂和掺合料。
在混凝土中,砂、石起骨架作用,故称为骨料或集料;水和水泥形成水泥浆,包裹在骨料的表面并填充其空隙。
在混凝土硬化前,水泥浆、外加剂与掺合料起润滑作用,赋予拌合物一定的流动性,便于施工操作。
水泥浆硬化后,则将砂、石骨料胶结成一个结实的的整体。
砂、石一般不参与水与水泥的化学反应,其主要作用是节约水泥、承担荷载和限制硬化水泥的收缩。
外加剂、掺合料除了起改善混凝土性能的作用外,还有节约水泥的作用。
混凝土因其强度较高、可模型、耐久性、耐火性好及现浇混凝土结构的整体性、延性好、易于取材、成本低等优点广泛应用于各类民用建筑的建造。
由于混凝土结构的使用依赖于其良好的整体性,必须要严格控制混凝土结构的裂缝,以保证建筑物的可靠性;笔者通过多年的现场施工实践,查阅了大量的相关文献,对混泥土施工温度对裂缝的影响进行了粗浅的探究。
1 裂缝产生的原因混凝土中产生裂缝有多种原因,主要有温度和湿度的变化、混凝土的脆性和不均匀性、结构不合理、原材料不合格(如碱骨料反应)、模板变形以及基础不均匀沉降等。
混凝土硬化期间释放出大量水化热,内部温度不断上升,在表面引起拉应力。
后期在降温过程中,由于受到基础或老混凝上的约束,又会在混凝土内部出现拉应力。
气温的降低也会在混凝土表面引起很大的拉应力。
当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
混凝土施工中的温度与裂缝控制摘要:温度控制及温度应力对于大体积混凝土而言极为重要。
在施工过程中,不可避免就会出现混凝土裂缝问题。
但是我们可以通过多种措施,将温度裂缝控制在可控范围内,不会出现较为严重的危害。
该文首先阐述了混凝土的温度裂缝及其危害,其次,分析了温度应力,同时,就温度控制和防止裂缝的措施进行了深入的探讨,具有一定的参考价值。
关键词:温度控制裂缝控制混凝土施工温度控制及温度应力对于大体积混凝土而言极为重要。
原因主要有两个方面,第一,混凝土结构的应力状态会受到温度变化的影响;第二,混凝土在施工过程中会出现温度裂缝,对于结构的耐久性和整体性都会造成影响。
本文就混凝土施工中的温度与裂缝控制进行探讨。
1 混凝土的温度裂缝及其危害在施工过程中,不可避免就会出现混凝土裂缝问题。
但是我们可以通过多种措施,将温度裂缝控制在可控范围内,不会出现较为严重的危害。
混凝土的温度裂缝可分为宏观裂缝、微观裂缝。
宏观裂缝是受到外力的作用而产生的裂缝,微观裂缝是肉眼不易看见、也不受任何外力影响的裂缝。
微观的裂缝包括32种,一种裂缝存在于骨料上面,另外一种裂缝是存在于水泥粘合面,还有一种是水泥石自身的裂缝。
宏观裂缝主要是由于外来力量作用而产生的,此外收缩、温度等因素也会使之变形,尤其是混凝土的浇灌初期,水泥的热量很大,就很容易会造成混凝土出现裂缝问题。
混凝土属于典型的脆性材料,抗压强度是抗拉强度的10倍。
极限拉伸变形在长期加荷时为(1.2-2.0)×104,短期加荷时为(0.6-1.0)×104。
再加上浇筑、运输中出现离析、水灰比不稳定、原材料不均匀等原因,很容易使得混凝土的抗拉能力较差,很容易就会出现裂缝薄弱部位。
钢筋混凝土中,混凝土通常只会承受压应力,而由钢筋来承担拉应力。
而在钢筋混凝土的边缘部位或者素混凝土内,通常需要由混凝土来独自承担拉应力。
混凝土在施工过程中,由于温度变化较大,就很容易出现较大的拉应力。
混凝土的施工温度与裂缝范文混凝土作为一种常见的建筑材料,广泛应用于各种建筑工程中。
在混凝土的施工过程中,温度是一个重要的因素,对混凝土的性能和质量有着关键性的影响。
不同的施工温度可能导致混凝土产生裂缝,从而影响到工程的安全和可靠性。
因此,混凝土的施工温度与裂缝问题一直备受关注。
混凝土的施工温度指的是混凝土在浇注过程中的温度,这个温度受到环境温度、混凝土配合比、水胶比、外加剂等多个因素的影响。
在混凝土浇注过程中,温度的控制非常重要。
过高或过低的温度都会导致混凝土出现问题,如开裂、变形等。
首先,混凝土在过高温度下施工容易出现开裂。
当环境温度过高时,混凝土的凝结过程会加快,使得水分迅速蒸发,而混凝土的内部仍未充分凝结。
这种失衡的凝结过程会导致混凝土表面与内部温度差异较大,进而引发开裂现象。
此外,高温施工还会引起混凝土的体积变化,从而导致混凝土变形,并可能对工程结构的整体稳定性产生负面影响。
其次,在低温下施工混凝土同样容易出现裂缝。
当环境温度较低时,混凝土的凝结过程会受到影响,凝结时间会延长。
此时,混凝土的强度发展缓慢,容易受到外界的影响而产生变形。
另外,在低温下,混凝土中的水分容易冻结,形成冰晶,导致混凝土膨胀,从而引发裂缝问题。
此外,温度的变化还会影响到混凝土的整体性能。
在施工过程中,混凝土内部会产生热量,而外界环境温度的变化会导致混凝土内部温度的变化。
这种温度变化会导致混凝土的体积变化,进而引发拉应力和压应力的变化,最终导致混凝土开裂。
此外,温度变化还会影响到混凝土的强度和硬度。
当温度较高时,混凝土的强度较低,而当温度较低时,混凝土的硬度较低。
因此,在混凝土的施工过程中,合理控制温度对于保证混凝土的性能和质量至关重要。
为了解决混凝土施工温度引发的裂缝问题,可以采取以下措施:一、合理选择施工时间。
在环境温度较高的季节,应尽量在清晨或傍晚施工,避免在中午或下午太阳较为猛烈的时候施工。
这样可以尽量减少混凝土受热的时间,降低混凝土的温度。
混凝土的施工温度与裂缝混凝土是一种常用的建筑材料,用于各种建筑工程中,包括房屋、桥梁、路面等。
在混凝土施工过程中,温度是一个重要的因素,它对混凝土的性能和质量有着直接的影响。
特别是在高温或低温环境中施工,容易出现裂缝问题。
本文将从混凝土施工温度的影响、裂缝的形成机制和预防措施等方面进行详细介绍。
首先,混凝土施工温度对混凝土的性能有着直接的影响。
在混凝土浇筑后,水泥水化反应会产生热量,这将导致混凝土的温度升高。
当施工温度过高时,水泥的水化反应速度加快,混凝土的凝固和硬化过程加快,浇筑后的混凝土容易出现开裂的问题。
而当施工温度过低时,水泥的水化反应速度减慢,混凝土的凝固和硬化时间延长,容易导致混凝土的强度不够,造成混凝土强度不达标的问题。
其次,混凝土施工温度对裂缝的形成有着重要的影响。
温度变化会导致混凝土的体积发生变化,当温度升高时,混凝土膨胀,当温度降低时,混凝土收缩。
而由于混凝土的强度和刚度有限,当温度变化较大时,混凝土与支撑结构之间的约束会造成应力的集中,从而导致混凝土表面产生裂缝。
此外,混凝土的收缩和膨胀还会导致内部产生应力,这些应力也可能引起混凝土的裂缝。
那么,如何预防混凝土在施工过程中出现裂缝呢?首先,在施工前要进行充分的设计和计算,确定混凝土的配合比和施工方案。
根据具体环境温度和材料特性,合理控制施工温度,选择合适的水泥和控制混凝土的浇筑温度。
其次,在施工过程中要进行良好的施工管理和控制。
尽量减少混凝土的温度变化,避免突然的温度变化对混凝土的影响。
合理安排施工时间,尽量避免在高温或低温时段进行混凝土施工,减少温度差异的产生。
此外,可以采取一些技术措施,如混凝土表面覆盖保护、预应力等,来减少混凝土裂缝的产生和扩展。
在施工结束后,及时进行保养和养护,控制混凝土的干燥速度和温度变化,避免混凝土出现表面开裂。
总的来说,混凝土施工温度与裂缝是密切相关的。
合理控制施工温度,进行施工方案设计和施工管理,采取适当的技术措施,可以有效预防混凝土裂缝的产生。
混凝土的施工温度与裂缝混凝土的施工温度混凝土的施工温度是指混凝土浇筑时的环境温度。
在混凝土施工过程中,环境温度是一个很关键的因素。
环境温度对混凝土的强度、塑性和耐久性都有着影响。
温度对混凝土塑性的影响混凝土施工时,温度过高或过低都会对混凝土的塑性产生不利影响。
温度过高时,混凝土的水分会过快的蒸发,使混凝土表层变硬而内部仍在不断收缩,这容易导致混凝土表面开裂。
温度过低时,混凝土的初始强度不能得到有效的保证,同时混凝土中的水分可能会产生冻胀而引起开裂,影响混凝土的耐久性。
温度对混凝土强度的影响在混凝土制作过程中,混凝土的电脑矩孔数值与环境温度密切相关。
环境温度低于5℃时,混凝土硬化时间变长,强度相应降低。
同时,当温度高于25℃时,由于水份蒸发过快,混凝土混合物锁紧程度变差,强度也会下降。
裂缝的形成原因混凝土裂缝的形成原因较多。
其中,环境温度是导致混凝土裂缝的主要因素之一。
低温引起的裂缝在低温情况下,混凝土结构中的水分遇冷收缩,导致混凝土的内部和表面都会出现裂缝,从而影响混凝土的强度和稳定性。
高温引起的裂缝高温环境下,混凝土内部的水分会因为蒸发而产生干缩,从而导致混凝土结构的表面出现裂缝。
高温下,混凝土的初始强度也会下滑,严重地还会导致混凝土表面爆炸的现象,造成混凝土结构的破坏。
如何避免混凝土裂缝按照规定施工温度为了避免混凝土结构在施工过程中出现裂缝,应按照规定的温度施工。
一般来说,混凝土浇筑环境温度在5℃以上,30℃以下是理想的温度范围。
降低混凝土内部水分含量混凝土内部水分含量过高也是裂缝产生的重要原因之一。
因此,在施工前,尽可能的控制混凝土内部的水分含量,以避免混凝土出现裂缝。
增加混凝土的韧性通过混凝土的添加剂和改良材料来增强混凝土的韧性,使其能够承受更多的曲挠变形,从而避免在施工过程中出现裂缝。
结论混凝土的施工温度对混凝土的强度、塑性和耐久性都有着很大的影响。
在混凝土施工过程中,应按照规定的温度进行施工,并设法降低混凝土内部的水分含量,增强混凝土的韧性,以避免混凝土裂缝的产生,保证混凝土结构的稳定性和耐久性。
混凝土的施工温度与预防裂缝【摘要】现代建筑行业中,混凝土的使用越来越广泛,其作用也越来越重要。
但是随着工程的进行,还是不可避免的出现一些问题。
裂缝的出现就是其中一个方面,其原因和温度的控制密切相关,温度的高低也会影响混凝土的坚固性。
本文主要介绍了施工温度和混凝土之间的联系以及措施。
【关键词】施工温度;预防裂缝一、裂缝产生的原因1、温度和湿度的变化影响混凝土产生的裂缝的因素有很多,其中最主要的就是温度和湿度的变化。
混凝土的特质不同于一般的施工土壤,它有脆性和不均匀性,施工技术要求比较高。
同时,混凝土在其硬化期间其中的水泥会因为某些特性而释放出大量的热量,导致混凝土内部的温度不断地在上升,相当于有外力让其加热。
并且由于温度的不断升高,在混凝土的表面引起拉应力。
在后期阶段的降温过程中,因为受到了老混凝土的约束力,在混凝土的内部也出现了拉应力,同时气温的降低也会加剧了混凝土表面的拉应力。
当拉应力越聚越多,甚至超出了混凝土的抵抗能力时,就出现了裂缝。
还有就是,大多数情况下,混凝土的里面的温度变化是很小的,但是其表面湿度有可能变化比较大甚至剧烈变化,这也是造成混凝土出现裂缝的重要原因。
2、其他因素影响混凝土出现裂缝的原因还有很多,例如养护不到位,混凝土表面干缩发生形变导致受到内部的约束力,也会出现裂缝。
从材质上讲,混凝土是脆性的,其抗拉强度只是其抗压强度的十分之一。
因为混凝土的材料不均匀,水灰的比例不固定,以及在运输和浇筑过程中会出现离析现象,所以在一块混凝土中它的抗拉强度是不一样的,有些部位抗拉强度较弱,所以容易出现裂缝。
一般的施工前都是要求不出现拉应力或很小的力出现,但是真正的施工过程中,混凝土会经过最高温度冷却至低温然后至稳定温度,这个过程会在混凝土的里面产生很大的拉应力。
所以,温度的控制显得尤为重要。
二、混凝土温度应力形成的三个阶段1、早期阶段一开始,先浇筑混凝土,然后一直到水泥放热过程结束为止,这个过程大约需要30天。
水工混凝土的施工温度与裂痕分析一、水工混凝土施工温度的影响因素1.混凝土材料的性质:水工混凝土主要由水泥、骨料、细骨料和外加剂等组成。
这些材料的性质会影响混凝土的施工温度。
比如,水泥的水化反应速度会随温度的变化而变化,高温下水化反应会加快,而低温下则会减慢。
2.外界环境条件:混凝土施工时的环境温度和湿度也会直接影响混凝土的施工温度。
在高温和干燥的环境下,混凝土的水分容易挥发,容易导致早期开裂;而在低温和潮湿的环境下,混凝土凝结时间会延长,也容易出现开裂现象。
3.施工方法和施工工艺:水工混凝土施工时的振捣和浇注方式、施工速度等也会对混凝土的施工温度产生影响。
频繁的振捣会增加混凝土的温度,而过快的浇注速度会导致混凝土表面冷却不均,易发生温度裂缝。
二、水工混凝土的施工温度控制方法1.合理选择施工时间:根据气温、湿度等环境条件,选择合适的时间段施工,以避免在极端气候条件下进行施工。
避免在高温和干燥的条件下施工,以及在低温和潮湿的条件下施工。
2.控制混凝土配合比:合理控制水胶比和水泥掺量,以提高混凝土的抗裂性能。
确保混凝土具有适当的流动性和粘附性,以减少裂缝的发生。
3.控制施工工艺:合理控制混凝土的振捣时间和振捣频率,以保证混凝土内部的均匀振实。
避免频繁振动和过快浇注,以减少混凝土表面的温度差异。
四、水工混凝土裂缝的原因分析1.温度应力:混凝土在凝结过程中会产生收缩应力和温度应力,而温度应力往往是裂缝形成的主要原因。
当混凝土温度变化较大时,内部不同部位的温度差异会引起应力释放,导致混凝土产生裂缝。
2.混凝土质量问题:混凝土配合比的不合理、材料质量不良等也会导致混凝土的抗裂能力下降,从而容易产生裂缝。
3.施工工艺问题:施工过程中,振捣不均匀、浇注速度过快等也会导致混凝土表面冷却太快,引起温度应力集中,从而产生裂缝。
五、水工混凝土裂缝防治措施1.控制施工温度:合理控制混凝土的施工温度,避免在极端温度下施工。
可以采取降温措施,如覆盖遮阳板等,防止混凝土的温度过高。
混凝土的施工温度与裂缝混凝土的施工温度对于混凝土的质量和性能有着重要影响,特别是在温度较高或者较低的环境下,可能会导致混凝土产生裂缝。
下面将从施工温度对混凝土性能的影响、裂缝的形成机理以及预防裂缝的方法等几个方面进行详细阐述。
一、施工温度对混凝土性能的影响1. 混凝土强度:混凝土的强度与固化过程中的温度密切相关。
施工时如果温度太高,会导致水分的过早蒸发,影响混凝土的固化过程,从而降低强度。
如果温度太低,则会延缓混凝土的固化速度,也会影响强度的发展。
2. 混凝土收缩性:混凝土在固化过程中会发生收缩,而收缩产生的应力可能会引起裂缝。
高温下混凝土的水分蒸发速度加快,收缩速度增大,容易发生裂缝。
低温下水分困在混凝土中,无法蒸发,也容易引起收缩应力,从而导致裂缝的形成。
3. 混凝土抗冻性:混凝土的抗冻性是指在低温环境下,混凝土的抵抗冻融循环的能力。
如果在混凝土的施工过程中,温度过低,可能导致混凝土内部形成大量的冰晶,破坏混凝土的结构,进而降低混凝土的抗冻性,产生裂缝。
4. 混凝土的耐久性:施工温度对混凝土的耐久性也有一定影响。
温度过高会导致混凝土内部的气孔增多,水泥石中的水化产物减少,从而影响混凝土的耐久性。
而温度过低则会降低混凝土的抗渗性和抗碳化性。
二、裂缝的形成机理1. 温度应力引起的裂缝:混凝土在固化过程中会发生收缩,而收缩会产生应力。
当混凝土内部的应力超过其强度时,就会发生裂缝。
在温度变化过程中,混凝土由于热胀冷缩,产生的温度应力也会导致裂缝的形成。
2. 冻融应力引起的裂缝:在低温环境下,混凝土中的水分会结冰膨胀,形成冻融应力。
如果混凝土的抗冻性不足,就会产生裂缝。
尤其是在高含水率的混凝土中,当冻融应力超过混凝土强度时,就容易发生裂缝。
3. 混凝土干缩引起的裂缝:在混凝土的固化过程中,由于水分的蒸发,会使混凝土收缩。
特别是在高温环境下,混凝土的干缩速度较快,容易产生裂缝。
另外,混凝土的不均匀干缩也会引起裂缝的形成。
混凝土的施工温度与裂缝一、裂缝的原因混凝土中产生裂缝有多种原因,细分可分为:水泥干缩产生的裂缝。
温差变化,由热胀冷缩效应引起的裂缝。
应力集中引起的裂缝。
使用不当造成过载,变形过大引起的裂缝。
张拉力引起的裂缝。
不均匀沉降引起的裂缝.施工中,在混凝土初凝阶段因模板振动、变形或移位会使结构产生裂缝。
加荷过早产生的裂缝。
施工缝处理不好则可能在施工缝部位出现裂缝。
混凝土预制构件,在脱模、运输、堆放、起吊过程中因各种原因使构件受压区处于受拉状态,都可能使构件产生裂缝。
二、温度应力的分析在大体积混凝土中,混凝土产生裂缝的主要原因是由于温度应力的作用。
混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。
温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。
根据温度应力的形成过程可分为以下3个阶段:早期:自浇筑混凝土开始至水泥放热基本结束,一般约30天。
这个阶段的两个特征.一是水泥放出大量的水化热,二是混凝上弹性模量的急剧变化。
由于弹性模量的变化.这一时期在混凝土内形成残余应力。
中期:自水泥放热作用基本结束时起至混凝土冷却到稳定温度时止,这个时期中.温度应力主要是由于混凝土的冷却及外界气温变化所引起,这些应力与早期形-成的残余应力相叠加.在此期间混凝上的弹性模量变化不大。
晚期:混凝土完垒冷却以后的运转时期。
温度应力主要是外界气温变化所引起,这些应力与前两种的残余应力相迭加。
根据温度应力引起的原因可分为两类:自生应力:边界上没有任何约束或完全静止的结构,如果内部温度是非线性分布的,由于结构本身互相约束而出现的温度应力。
约束应力:结构的垒部或部分边界受到外界的约束,不能自由变形而引起的应力.如箱粱顶板混凝土和护栏混凝土。
这两种温度应力往往和混凝土的干缩所引起的应力共同作用。
要想根据已知的温度准确分析出温度应力的分布、大小是一项比较复杂的工作。
在大多数情况下,需要依靠模型试验或数值计算。