二级圆锥圆柱齿轮减速器设计
- 格式:doc
- 大小:1.72 MB
- 文档页数:29
二级圆锥圆柱齿轮减速器设计引言二级圆锥圆柱齿轮减速器是一种常用的机械传动装置,广泛应用于各种领域。
本文将详细探讨二级圆锥圆柱齿轮减速器的设计原理、结构和性能优化。
设计原理二级圆锥圆柱齿轮减速器是由两级齿轮传动组成,第一级为圆柱齿轮传动,第二级为圆锥齿轮传动。
其工作原理是通过两级齿轮的啮合传递转矩和速度,实现输入轴与输出轴之间的减速或增速。
结构组成二级圆锥圆柱齿轮减速器主要由输入轴、输出轴、圆柱齿轮、圆锥齿轮、轴承、密封件等组成。
输入轴输入轴是将外部动力传递到减速器内部的部件,通常通过联轴器与外部电机或发动机连接。
输出轴输出轴是将减速器内部传递过来的动力输出到机械设备的部件,可以根据实际需要设计成不同形式的轴。
圆柱齿轮圆柱齿轮是第一级传动中的主动齿轮,通常由多个齿轮组成齿轮组。
其参数包括模数、齿数、齿轮宽度等。
圆锥齿轮圆锥齿轮是第二级传动中的主动齿轮,通常由多个齿轮组成齿轮组。
其参数包括模数、齿数、齿轮宽度等。
轴承轴承是支撑齿轮转动并承受轴向和径向力的部件,包括滚动轴承和滑动轴承两种类型。
密封件密封件用于确保减速器内部润滑剂不外泄,并防止灰尘和杂质进入减速器内部。
性能优化为了提高二级圆锥圆柱齿轮减速器的性能,可以从以下几个方面进行优化。
齿轮材料合适的齿轮材料可以提高齿轮的强度和耐磨性,常用的材料有合金钢、硬质合金等。
根据传动功率和速度要求,选择合适的材料。
齿轮几何参数通过优化齿轮的几何参数,如齿数、齿轮宽度等,可以减小齿轮啮合时的噪声和振动,并提高传动效率。
润滑方式合适的润滑方式可以降低齿轮传动中的摩擦损失,提高传动效率和寿命。
常用的润滑方式有油浸润滑、油喷润滑等。
设计可靠性通过合理的设计和制造工艺,提高减速器的可靠性和稳定性,减少故障发生的概率和维修成本。
设计实例以下是一个二级圆锥圆柱齿轮减速器的设计实例。
第一级设计1.确定输入轴和输出轴的位置和布置方式。
2.根据传动比和运行功率,确定第一级圆柱齿轮的参数。
一、设计任务书1.1传动方案示意图1. 2原始数据传送带拉力F(N)传送带速度V (m/s)滚筒直径。
(mr)25001.62801. 3工作条件三班制,使用年限为10年,连续单向于运转,载荷平稳,小批量生产,运输 链速度允许误差为链速度 的5%。
1. 4工作量1、传动系统方案的分析; 2、 电动机的选择与传动装置运动和动力参数的计算; 3、 传动零件的设计计算; 4、 轴的设计计算;5、 轴承及其组合部件选择和轴承寿命校核;6、 键联接和联轴器的选择及校核;7、 减速器箱体,润滑及附件的设计;8、 装配图和零件图的设计;9、 设计小结;10、 参考文献;二、传动系统方案的分析传动方案见图一,其拟定的依据是结构紧凑且宽度尺寸较小,传动效率高,适用在恶劣环境下长期工 作,虽然所用的锥齿轮比较贵,但此方案是最合理的。
其减速器的传动比为8-15,用于输入轴于输出轴相 交而传动比较大的传动。
设计计算及说明结果图一、传动方案简图三、电动机的选择与传动装置运动和动力参数的计算结果设计计算及说明表2电动机方案比较表(指导书表19-1)由表中数据可知,方案1的总传动比小,传种装置结构尺寸小,因此可采用选方案选定电动机型号为Y 1 3 2 M 2 -型电动3. 2传动装置总传动比的计算和各级传动比的分配1、传动装置总传动比i n m / n w =960/109. 2=8. 792、分配各级传动比高速级为圆锥齿轮其传动比应小些约ii 0. 25,低速级为圆柱齿轮传动其传动比可大些。
所以可取”二2. 2 12 =43. 3计算传动装置的运动和动力参数1、各轴的转速(各轴的标号均已在图中标出)n 二n J i0=960r/mi nn n = n / i 2 =960/202=436. 36r/minn 皿二g / i2 =436. 36/4=109. 2r/minn iv n 皿二109・2i7niin2、各轴输入功率P P ed if =4. 95kwPi P I I. 2=4. 655kw结果i、2・2n 二960n n二436.36 n iv n 皿=109. 2r/min P =4. 95 kw P H =4. 65 kw Pm =4. 47 IzTirP II Pn 2 3=4.47kwPiv = Pm ・ n ・ n =4. 38kw3、各轴转矩Ti 9550 PL=49. 24N. m5Tn 9550 Pn =101.88N.mPillTm 9550 =390. 92N. mn川Tiv 9550 PlV =383. 04N. Mn. / 将计算结果汇总列表如下表3轴的运动及动力参数四、传动零件的设计计算4. 1斜齿圆柱齿轮传动的设计(主要参照教材《机械设计(第八版)》已知输入功率为R二4・655kw、小齿轮转速为=436. 36r/min.齿数比为4。
本科毕业论文(设计) 题目二级圆锥圆柱减速器设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
二级圆锥齿轮减速器的设计二级圆锥齿轮减速器是一种常见而重要的机械传动装置。
在工业机械中广泛应用,可实现输出扭矩和转速的变换,具有结构紧凑、传动效率高、可靠性强等特点。
下面将从设计原理、设计步骤和注意事项等方面介绍二级圆锥齿轮减速器的设计。
设计原理:二级圆锥齿轮减速器由两个不同级数的直齿圆锥齿轮组成。
第一级圆锥齿轮由输入轴带动,通过啮合传递力矩和转速给第二级圆锥齿轮,最终输出给负载。
通过合理的模数、齿数和配合等参数的选择,可以实现所需的输出扭矩和转速变换。
设计步骤:1.确定设计参数:根据实际需求,确定传动比、输入转速、输出扭矩等设计参数。
2.计算第一级圆锥齿轮参数:根据输入转速和输出扭矩,通过动力学分析和强度校核计算第一级圆锥齿轮的模数和齿数。
3.计算第二级圆锥齿轮参数:根据第一级圆锥齿轮的输出转速和输出扭矩,同样进行动力学分析和强度校核计算第二级圆锥齿轮的模数和齿数。
4.选择轴承:根据设计参数和计算结果,选择合适的轴承类型和规格,用于支撑齿轮和传递负载。
5.安装布置:根据实际安装场景和传动方式,确定减速器的安装布置,设计支撑结构和连接方式。
6.强度校核:通过强度校核计算,检验设计参数和材料的强度安全性。
7.材料选择:根据传动功率和工作条件,选择合适的材料进行制造,以满足强度和耐磨性能的要求。
8.制造和装配:根据设计图纸和工艺要求,进行齿轮的加工制造和减速器的装配。
9.润滑和冷却:选择合适的润滑方式和冷却系统,保证减速器的正常运行。
10.检测和调试:进行减速器的试运行和静态检测,调整和优化传动性能。
注意事项:1.综合考虑强度和传动效率,根据实际应用需求选择合适的传动比。
2.根据操作环境和工作条件,选择耐磨性好的齿轮材料。
3.合理选择齿轮的配合间隙和啮合角,以确保传动平稳、低噪音和高效率。
4.注意减速器的装配精度和轴心偏差等几何误差,避免故障和性能下降。
5.对于大型减速器,需要考虑轴承和润滑系统的设计,确保其正常工作和寿命。
1.传动简图的拟定 (2)2 电动机的选择 (2)3.传动比的分配 (3)4.传动参数的计算 (3)5 圆锥齿轮传动的设计计算 (4)6 圆柱齿轮传动的设计计算 (7)7 轴的设计计算 (11)8 键连接的选择和计算 (20)9 滚动轴承的设计和计算 (21)10 联轴器的选择 (23)11 箱体的设计 (23)12 润滑和密封设计 (25)设计总结 (26)1.传动简图的拟定1.1 技术参数:运输链工作拉力:F=5 kN ,运输链工作速度:1.0 m/s,运输链链轮齿数:z=10 ,运输链链节距:p=60mm,1.2 工作条件:连续单向运转,工作时有轻微振动,使用期10年(每年300个工作日,小批量生产,两班制工作,运输链速度允许误差±5%。
1.3传动方案传动装置由电动机,减速器,工作机等组成。
减速器为二级圆锥圆柱齿轮减速器。
外传动为链传动。
方案简图如图。
2电动机的选择2.1 电动机的类型:Y系列全封闭自扇式笼型三相异步交流电动机,电源电压380V,2.2 功率的确定2.2.1 工作机所需功率w P (kw):w P =w w v F =5000×1= 5kw ,2.2.2 电动机至工作机的总效率η:η=1η×2η×3η×4η×45η=0.99×0.97×0.97×0.96×0.994=0.858995(1η为联轴器的效率,2η为锥齿轮的效率,3η为圆柱齿轮传动的效率,4η为滚子链的传动效率,5η为滚动球轴承的效率)。
2.2.3 所需电动机的功率d P (kw):d P =wP /η=5Kw/0.858995=5.821kw为了载荷平稳,电动机额定功率P m 略大于P d 。
选定功率P m =7.5kw 2.4 确定电动机的型号因同步转速的电动机磁极多的,尺寸小,质量大,价格高,但可使传动比和机构尺寸减小,其中m P =7.5kw ,符合要求,但传动机构电动机容易制造且体积小。
二级圆锥圆柱齿轮减速器课程设计说明书二级圆锥圆柱齿轮减速器课程设计说明书
一、设计背景
在机械传动系统中,减速器被广泛应用于传递力矩和降低转速的目的。
圆锥圆柱齿轮减速器是一种常见的减速器类型,其结构紧凑、传动效率高、承载能力强,因此在各种机械设备中得到了广泛应用。
本课程设计旨在通过对圆锥圆柱齿轮减速器的设计与分析,使学生掌握减速器的设计原理和方法,培养其在实际工程中使用减速器的能力。
二、设计目标
1、了解圆锥圆柱齿轮减速器的工作原理和结构特点;
2、掌握圆锥齿轮齿数的设计方法;
3、掌握轴的设计和选用原则;
4、进行传动系统的扭矩和速度计算。
三、设计内容和步骤
1、圆锥齿轮减速器的工作原理和结构特点
1.1 工作原理
1.2 结构组成
1.3 主要特点
2、圆锥齿轮齿数的设计方法
2.1 齿数计算公式
2.2 齿形参数的选择
3、轴的设计和选用原则
3.1 轴的强度计算
3.2 材料选择
3.3 轴的选用原则
4、传动系统的扭矩和速度计算
4.1 输入输出功率计算
4.2 传动比的计算
4.3 扭矩计算
4.4 速度计算
五、设计结果
根据所学知识和设计方法,进行圆锥圆柱齿轮减速器的设计,得到了减速器的主要参数和性能指标。
六、附件
本文档涉及的附件包括设计计算表格、图纸和相关文献资料。
七、法律名词及注释
1、法律名词A:解释说明。
2、法律名词B:解释说明。
两级圆锥圆柱齿轮减速器设计说明书设计说明书:两级圆锥圆柱齿轮减速器一、引言1.1 项目背景1.2 目的和范围1.3 参考文献二、需求分析2.1 性能指标2.2 工作原理2.3 系统组成三、设计概述3.1 整体结构布局3.2 齿轮参数计算3.2.1 材料选择3.2.2 齿轮类型选择3.2.3 传动比计算3.2.4 齿轮模数计算3.2.5 齿轮参数设计3.3 装配方式设计3.4 传动效率计算四、设计细节4.1 第一级圆锥齿轮设计4.1.1 主动轮设计4.1.2 从动轮设计4.2 第二级圆柱齿轮设计4.2.1 主动轮设计4.2.2 从动轮设计4.3 强度校核4.3.1 接触疲劳强度校核4.3.2 弯曲疲劳强度校核4.3.3 齿轮脱落强度校核五、制造和装配要求5.1 材料准备5.2 精密加工要求5.3 装配调试六、测试与验证6.1 试验方案6.2 试验结果分析6.3 故障诊断与解决七、维护与保养7.1 定期维护计划7.2 预防性维护措施7.3 故障诊断与排除附件:1、技术图纸2、相关计算表格3、试验数据记录表法律名词及注释:1、材料选择:根据设计参数和工作环境要求,选择齿轮材料。
2、齿轮类型选择:根据传动要求,选择圆锥齿轮和圆柱齿轮的组合形式。
3、传动比计算:根据工作要求和传动规则,计算减速器的传动比。
4、齿轮模数计算:根据传动比和齿轮尺寸要求,计算齿轮的模数。
5、齿轮参数设计:根据齿轮传动要求,设计齿轮的齿数、齿宽等参数。
6、接触疲劳强度校核:根据接触应力和材料疲劳性能,判断齿轮接触面的强度。
7、弯曲疲劳强度校核:根据齿轮弯曲应力和材料弯曲疲劳性能,判断齿轮齿面和齿根的强度。
8、齿轮脱落强度校核:根据齿轮脱落强度计算方法,判断齿轮齿根的强度。
9、精密加工要求:要求对齿轮进行高精度的加工和热处理,确保齿轮的质量和使用寿命。
10、装配调试:对齿轮进行统一的装配和调试,确保减速器的正常运转。
机械设计课程设计任务书设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容:(1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张系统简图:原始数据:运输带拉力 F=2100N ,运输带速度 s m 6.1=∨,滚筒直径 D=400mm工作条件:连续单向运转,载荷较平稳,两班制。
环境最高温度350C;允许运输带速度误差为±5%,小批量生产。
设计步骤:一、 选择电动机和计算运动参数(一) 电动机的选择1. 计算带式运输机所需的功率:P w =1000FV =10006.12100⨯=3.36kw 2. 各机械传动效率的参数选择:1η=0.99(弹性联轴器), 2η=0.98(圆锥滚子轴承),3η=0.96(圆锥齿轮传动),4η=0.97(圆柱齿轮传动),5η=0.96(卷筒).所以总传动效率:∑η=21η42η3η4η5η=96.097.096.098.099.042⨯⨯⨯⨯ =0.808 3. 计算电动机的输出功率:d P =∑ηwP =808.036.3kw ≈4.16kw 4. 确定电动机转速:查表选择二级圆锥圆柱齿轮减速器传动比合理范围∑'i =8~25(华南理工大学出版社《机械设计课程设计》第二版朱文坚黄平主编),工作机卷筒的转速w n =40014.36.1100060d v 100060⨯⨯⨯=⨯π=76.43 r/m in,所以电动机转速范围为min /r 75.1910~44.61143.7625~8n i n w d )()(’=⨯==∑。
则电动机同步转速选择可选为 750r/m in ,1000r/min ,1500r/min 。
考虑电动机和传动装置的尺寸、价格、及结构紧凑和 满足锥齿轮传动比关系(3i i 25.0i ≤=I ∑I 且),故首先选择750r/mi n,电动机选择如表所示 表1(二) 计算传动比:1. 总传动比:420.943.76720n n i w m ≈==∑ 2. 传动比的分配:I I I ∑⨯=i i i ,∑I =i 25.0i =355.2420.925.0=⨯<3,成立355.2420.9i i i ==I ∑∏=4 (三) 计算各轴的转速:Ⅰ轴 r/m in 720n n m ==I Ⅱ轴 r/min 73.305355.2720i n n ===I I ∏ Ⅲ轴 r/min 43.76473.305i n n ===∏∏I I I (四) 计算各轴的输入功率:Ⅰ轴 kw 118.499.016.41d =⨯==I ηP PⅡ轴 kw 874.396.098.0118.432=⨯⨯==I ∏ηηP PⅢ轴 42ηη∏I I I =P P =3.874×0.98×0.97=3.683kw 卷筒轴 kw 573.399.098.0683.312=⨯⨯==I I I ηηP P 卷 (五) 各轴的输入转矩电动机轴的输出转矩mm 1052.572016.41055.9n 1055.946m d 6d •⨯=⨯⨯=⨯=N P T 故Ⅰ轴 =⨯==I 99.051778.51d ηT T 5.462mm 104•⨯NⅡ轴 mm 102103.110355.296.098.046260.5i 5432•⨯=⨯⨯⨯⨯==I I ∏N T T ηη Ⅲ轴 m m 10602.410497.098.021028.1i 5542•⨯=⨯⨯⨯⨯==∏∏I I I N T T ηη 卷筒轴 mm 10465.41099.098.0602.45512•⨯=⨯⨯⨯==∏N T T ηη卷二、 高速轴齿轮传动的设计(一) 选定高速级齿轮类型、精度等级、材料及齿数1. 按传动方案选用直齿圆锥齿轮传动2. 输送机为一般工作机械,速度不高,故选用8级精度。
3. 材料选择 由《机械设计》第八版西北工业大学机械原理及机械零件教研室编著的教材 表10—1选择小齿轮材料和大齿轮材料如下:二者硬度差约为45HBS 。
4. 选择小齿轮齿数=1z 25,则:875.5825355.2z i z 12=⨯==I ,取59z 2=。
实际齿比36.22559z z u 12===5. 确定当量齿数 36.2tan cot u 21===δδ ∴036.67964.2221==δδ, ∴ 14.27921.025cos z z 11v1===δ,28.151390.059cos z z 22v2===δ 。
(二) 按齿面接触疲劳强度设计[]()32121u 5.0192.2d RR H E KT Z Φ-Φ⎪⎪⎭⎫ ⎝⎛≥σ 1. 确定公式内的数值1) 试选载荷系数8.1t =K2) 教材表10—6查得材料弹性系数a 8.189MP Z E =(大小齿轮均采用锻钢) 3) 小齿轮传递转矩 =I T 5.462mm 104•⨯N 4) 锥齿轮传动齿宽系数33.035.0b25.0=Φ≤=Φ≤R R R,取。
5) 教材10—21d图按齿面硬度查得小齿轮的接触疲劳强度极限a 570lim1MP H =σ;10—21c 图按齿面硬度查得大齿轮接触疲劳强度极限a 390lim2MP H =σ。
6) 按式(1—13)计算应力循环次数()9h 1110074.21030082172060j n 60⨯=⨯⨯⨯⨯⨯⨯==L N ;891210788.836.210074.2u ⨯=⨯==N N7) 查教材10—19图接触疲劳寿命系数01.11=HN K ,05.12=HN K 。
8) 计算接触疲劳许用应力[]H σ 取失效概率为1%,安全系数为S=1,则 []1H σ=a 7.57557001.1lim11MP S K H HN =⨯=σ[]a 5.40939005.1lim222MP SK H HN H =⨯==σσ∴ []H σ=[][]a 6.49225.4097.575221MP H H =+=+σσ<1.23[]2H σ[]a 6.492MP H =∴σ取2. 计算1) 计算小齿轮分度圆直径1d (由于小齿轮更容易失效故按小齿轮设计)[]()32121t u 5.0192.2d RR H E KT Z Φ-Φ⎪⎪⎭⎫ ⎝⎛≥σ =()324236.233.05.0133.010462.58.16.4928.18992.2⨯⨯-⨯⨯⨯⨯⎪⎭⎫⎝⎛⨯ =87.470 mm2) 计算圆周速度 m/s 296.360000720470.8714.3100060n d v t 1=⨯⨯=⨯=I π3) 计算齿宽b 及模数m =+⨯⨯=+Φ=Φ=2136.233.0470.8721u d b 22t 1RR R 36.992mm 4988.325470.87z d m 1t 1nt ===mm 4) 齿高m m 8723.74988.325.2m 25.2h nt =⨯==699.48723.7992.36h b == 5) 计算载荷系数K由教材10—2表查得:使用系数使用系数A K =1;根据v=3.296m/s 、8级精度,由10—8图查得:动载系数V K =1.18;由10—3表查得:齿间载荷分配系数αK =1==ααF H K K ;取轴承系数be βH K =1.25,齿向载荷分布系数βK =αβH H K K ==875.15.1be =⨯βH K所以:213.2875.1118.11=⨯⨯⨯==βαH H V A K K K K K 6) 按实际载荷系数校正所算得分度圆直径 mm 705.938.1213.2470.87d d 33t t11=⨯==K K7) 就算模数: 748.325705.93z d m 11n ===mm (三) 按齿根弯曲疲劳强度设计m ()[]3aa 21211u z 5.014F S F R R Y Y KT σ+Φ-Φ≥1. 确定计算参数1) 计算载荷213.2875.1118.11=⨯⨯⨯==βαF F V A K K K K K2) 查取齿数系数及应了校正系数 由教材10—5表得:568.2a1=F Y ,601.1a1=S Y ;14.22=Fa Y ,83.12=Sa Y 。
3) 教材10—20图c按齿面硬度查得小齿轮的弯曲疲劳极限 a 4001MP FE =σ;教材10—20图b 按齿面硬度查得大齿轮的弯曲疲劳强度极限 a 3202MP FE =σ。
4) 教材10—18图查得弯曲疲劳寿命系数 92.091.021==FN FN K K ,。
5) 计算弯曲疲劳许用应力 取弯曲疲劳安全系数 S=1.4 。
[]a 2604.140091.0111MP S K FE FN F =⨯==σσ []a 29.2104.132092.0222MP S K FN FN F =⨯==σσ 6) 计算大小齿轮的[]F S F Y Y σaa 并加以比较,[]1a1a1F S F Y Y σ=01581.0260601.1568.2=⨯ ,[]01862.029.21083.114.22a2a2=⨯=F S F Y Y σ ,大齿轮的数值大。
2. 计算(按大齿轮) ()[]3aa 22121t 1u z 5.014m F S F R R Y Y KT σ+Φ-Φ≥=()3222401862.0136.22533.05.0133.010462.5213.24⨯+⨯⨯⨯-⨯⨯⨯⨯=2.901mm对比计算结果,由齿面接触疲劳计算的模m大于由齿根弯曲疲劳强度的模数,又有齿轮模数m 的大小要有弯曲强度觉定的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿轮直径有关。
所以可取弯曲强度算得的模数 2.901 m m并就近圆整为标准值3m n = mm (摘自《机械原理教程》第二版清华大学出版社 4.11锥齿轮模数(摘自G B/T12368—1990)),而按接触强度算得分度圆直径1d =93.705mm 重新修正齿轮齿数,235.313705.93m d z n 11===,取整33z 1=,则715.7733355.2z i z 112=⨯==,为了使各个相啮合齿对磨损均匀,传动平稳,12z z 与一般应互为质数。
故取整77z 2=。
则实际传动比333.23377z z i 121===,与原传动比相差2.2%,且在%5±误差范围内。
(四) 计算大小齿轮的基本几何尺寸1. 分度圆锥角:1) 小齿轮 199.23z z arccot121==δ 2) 大齿轮 801.66199.23909012=-=-=δδ 2. 分度圆直径:1) 小齿轮 m m 99333z m d 1n 1=⨯== 2) 大齿轮 m m 231773z m d 2n 2=⨯== 3. 齿顶高 mm 3mm 31m h h n a a =⨯==*4. 齿根高 ()()mm 6.3mm 32.01m c h h n a f =⨯+=+=**5. 齿顶圆直径:1) 小齿轮 m m 515.1049191.03299cos h 2d d 1a 11a =⨯⨯+=+=δ 2) 大齿轮 m m 363.2333939.032231cos h 2d d 2a 2a2=⨯⨯+=+=δ6. 齿根圆直径:1) 小齿轮 m m 382.929191.06.3299cos h 2d d 1f 11f =⨯⨯-=-=δ 2) 大齿轮 m m 164.2283939.06.32231cos h 2d d 2f 2f2=⨯⨯-=-=δ7. 锥距 mm 660.125773323z z 2m sin 2mz 222221=+⨯=+==δR8. 齿宽 m m 845.41660.125333.0b =⨯=Φ=R R ,(取整)b=41mm 。