计算机图形学北工大光照模型
- 格式:ppt
- 大小:1.48 MB
- 文档页数:92
计算机图形学中的光照模型在计算机图形学中,光照模型是模拟现实世界中光线与物体之间相互作用的模型。
通过使用光照模型,计算机可以在虚拟场景中模拟光线的传播和反射,从而创建出真实感和逼真感的图像。
因此,光照模型是计算机图形学中非常重要的一个组成部分。
光照模型的基本原理是从光源发出的光线经过物体表面的反射、折射和透射等变换,最终到达观察者的眼睛,从而形成人们所看到的图像。
在光照模型中,光源可以是点光源、定向光源和面光源等不同类型的光源,而物体的材质属性和表面形状也会对光线的传播和反射产生影响。
常见的光照模型包括冯氏光照模型、布林-菲菲(Blinn-Phong)光照模型、库克-托伯汉姆(Cook-Torrance)光照模型等。
下面,我们分别对这三种光照模型进行介绍。
冯氏光照模型是最早被提出的光照模型之一,它是由斯特恩伯格(Phong)在上世纪70年代提出的。
冯氏光照模型假设物体表面的亮度与其漫反射和镜面反射成分的线性组合有关。
其中,漫反射成分是从各个方向均匀地反射出来的光线,而镜面反射成分则是由光源直接反射回观察者的光线。
冯氏光照模型还考虑了环境光的影响,该影响是由光源外发射的光线在场景中反射和折射,并最终到达物体表面的。
布林-菲菲光照模型是另一种常用的光照模型,它是由布林(Blinn)和菲菲(Phong)在上世纪80年代提出的。
相比于冯氏光照模型,布林-菲菲光照模型增加了一个半角向量的概念。
半角向量是入射光线和出射光线的平均方向,它可以更加准确地描述物体表面的反射特性。
此外,布林-菲菲光照模型还加入了柔光和高光衰减等特性,从而使得被渲染的图像更加真实。
库克-托伯汉姆光照模型是一种物理模拟的光照模型,它是由库克(Cook)和托伯汉姆(Torrance)在上世纪80年代提出的。
该光照模型基于微观的物理原理,考虑了光线与物体表面微观结构之间的相互作用。
库克-托伯汉姆光照模型因其真实感和准确性而被广泛应用于计算机图形学、计算机游戏等领域。
《计算机图形学》实验报告实验十一真实感图形一、实验教学目标与基本要求初步实现真实感图形, 并实践图形的造型与变换等。
二、理论基础运用几何造型, 几何、投影及透视变换、真实感图形效果(消隐、纹理、光照等)有关知识实现。
1.用给定地形高程数据绘制出地形图;2.绘制一(套)房间,参数自定。
三. 算法设计与分析真实感图形绘制过程中, 由于投影变换失去了深度信息, 往往导致图形的二义性。
要消除这类二义性, 就必须在绘制时消除被遮挡的不可见的线或面, 习惯上称之为消除隐藏线和隐藏面, 或简称为消隐, 经过消隐得到的投影图称为物体的真实图形。
消隐处理是计算机绘图中一个引人注目的问题, 目前已提出多种算法, 基本上可以分为两大类:即物体空间方法和图象空间方法。
物体空间方法是通过比较物体和物体的相对关系来决定可见与不可见的;而图象空间方法则是根据在图象象素点上各投影点之间的关系来确定可见与否的。
用这两类方法就可以消除凸型模型、凹形模型和多个模型同时存在时的隐藏面。
1).消隐算法的实现1.物体空间的消隐算法物体空间法是在三维坐标系中, 通过分析物体模型间的几何关系, 如物体的几何位置、与观察点的相对位置等, 来进行隐藏面判断的消隐算法。
世界坐标系是描述物体的原始坐标系, 物体的世界坐标描述了物体的基本形状。
为了更好地观察和描述物体, 经常需要对其世界坐标进行平移和旋转, 而得到物体的观察坐标。
物体的观察坐标能得到描述物体的更好视角, 所以物体空间法通常都是在观察坐标系中进行的。
观察坐标系的原点一般即是观察点。
物体空间法消隐包括两个基本步骤, 即三维坐标变换和选取适当的隐藏面判断算法。
选择合适的观察坐标系不但可以更好地描述物体, 而且可以大大简化和降低消隐算法的运算。
因此, 利用物体空间法进行消隐的第一步往往是将物体所处的坐标系转换为适当的观察坐标系。
这需要对物体进行三维旋转和平移变换。
常用的物体空间消隐算法包括平面公式法、径向预排序法、径向排序法、隔离平面法、深度排序法、光线投射法和区域子分法。
计算机图形学课后习题答案计算机图形学课后习题答案计算机图形学是一门研究计算机生成和处理图像的学科,它在现代科技和娱乐领域扮演着重要的角色。
在学习这门课程时,我们通常会遇到一些习题,用以巩固所学知识。
本文将提供一些计算机图形学课后习题的答案,希望能对大家的学习有所帮助。
1. 什么是光栅化?如何实现光栅化?光栅化是将连续的几何图形转换为离散的像素表示的过程。
它是计算机图形学中最基本的操作之一。
实现光栅化的方法有多种,其中最常见的是扫描线算法。
该算法通过扫描图形的每一条扫描线,确定每个像素的颜色值,从而实现光栅化。
2. 什么是反走样?为什么需要反走样?反走样是一种减少图像锯齿状边缘的技术。
在计算机图形学中,由于像素是离散的,当几何图形的边缘与像素格子不完全对齐时,会产生锯齿状边缘。
反走样技术通过在边缘周围使用不同颜色的像素来模拟平滑边缘,从而减少锯齿状边缘的出现。
3. 什么是光照模型?请简要介绍一下常见的光照模型。
光照模型是用来模拟光照对物体表面的影响的数学模型。
常见的光照模型有以下几种:- 环境光照模型:模拟环境中的整体光照效果,通常用来表示物体表面的基本颜色。
- 漫反射光照模型:模拟光线在物体表面上的扩散效果,根据物体表面法线和光线方向计算光照强度。
- 镜面反射光照模型:模拟光线在物体表面上的镜面反射效果,根据光线方向、物体表面法线和观察者方向计算光照强度。
- 高光反射光照模型:模拟光线在物体表面上的高光反射效果,通常用来表示物体表面的亮点。
4. 什么是纹理映射?如何实现纹理映射?纹理映射是将二维图像(纹理)映射到三维物体表面的过程。
它可以为物体表面增加细节和真实感。
实现纹理映射的方法有多种,其中最常见的是将纹理坐标与物体表面的顶点坐标关联起来,然后通过插值等技术将纹理映射到物体表面的每个像素上。
5. 什么是投影变换?请简要介绍一下常见的投影变换方法。
投影变换是将三维物体投影到二维平面上的过程。
常见的投影变换方法有以下几种:- 正交投影:将物体投影到一个平行于观察平面的平面上,保持物体在不同深度上的大小不变。
学习计算机图形学中的光照与阴影处理技术在计算机图形学中,光照与阴影处理技术是非常重要的一部分。
通过模拟现实中的光照效果和阴影,可以使计算机生成的图像更加真实,增强视觉效果。
本文将介绍学习计算机图形学中的光照与阴影处理技术的基础知识和常用方法。
一、光照模型光照模型是计算机图形学中描述光照效果的数学模型。
常见的光照模型有局部光照模型和全局光照模型。
1. 局部光照模型局部光照模型是根据物体表面的法线向量、入射光线和视线方向来计算光照效果的模型。
其中,最常用的局部光照模型是Lambert光照模型和Phong光照模型。
Lambert光照模型假设光线均匀地照射在物体表面,不考虑镜面反射。
它的计算公式为:I = kd * (N · L) * Ia其中,I表示物体表面的最终颜色,kd表示物体表面的漫反射系数,N表示物体表面的法线向量,L表示入射光线的方向向量,Ia表示环境光的颜色。
Phong光照模型考虑了镜面反射,并在Lambert光照模型的基础上增加了镜面反射系数和高光反射指数。
它的计算公式为:I = kd * (N · L) * Id + ks * (R · V) * Is其中,ks表示物体表面的镜面反射系数,Id表示入射光的颜色,R表示反射光线的方向向量,V表示视线的方向向量,Is表示光源的颜色。
2. 全局光照模型全局光照模型考虑了光线在场景中的多次反射和折射,可以产生更真实的光照效果。
常用的全局光照模型有光线追踪和辐射度。
光线追踪是通过递归地跟踪光线的路径来模拟光照效果,而辐射度是通过求解光传输方程来计算光照效果。
二、阴影处理技术阴影处理技术可以模拟现实中物体之间及物体与光源之间的阴影效果,增强图像的真实感和立体感。
1. 平面阴影平面阴影是最简单的阴影处理技术之一,通过计算物体与平面之间的关系来生成阴影效果。
常用的平面阴影处理技术有阴影贴图和投影贴图。
阴影贴图是通过渲染一个代表遮挡物的贴图来生成阴影效果,而投影贴图则是通过投影计算来生成阴影效果。
知识点归纳计算机图形学中的光栅化与渲染技术计算机图形学是研究计算机应用中的图像处理和图像生成的学科,涉及到许多核心的知识点和技术。
其中,光栅化和渲染技术是计算机图形学中非常重要的一部分。
本文将对光栅化和渲染技术进行归纳总结,并探讨其在计算机图形学中的应用。
一、光栅化技术光栅化是计算机图形学中一种将连续的几何形状转换为离散的像素图像的技术。
在计算机渲染过程中,光栅化技术起到了至关重要的作用。
1. 点、线、多边形的光栅化在计算机图形学中,最基本的图形形状是点、线和多边形。
光栅化技术可以将这些形状转换为像素点集,从而在屏幕上显示出来。
通过合适的算法,可以准确地计算出像素的坐标和颜色值,从而实现图形的显示和绘制。
2. 光栅化算法光栅化过程中,需要使用各种算法来提高渲染效率和准确性。
常见的光栅化算法包括扫描线算法、中点画线算法、多边形填充算法等。
这些算法根据不同的需求和图形形状,选择合适的计算方法,以实现快速而准确的图形显示。
3. 光栅化与几何变换在对图形进行光栅化之前,常常需要进行几何变换,如平移、旋转、缩放等。
光栅化技术需要能够适应几何变换,并处理变换后的图形数据,以保持图形的形状和结构的准确性。
二、渲染技术渲染技术是计算机图形学中将三维模型转换为二维图像的过程。
通过适当的光照和材质处理,可以使得渲染结果更加真实和逼真。
1. 光照模型光照模型是渲染中的关键要素之一,决定了图像中各部分的明暗和色彩。
常见的光照模型有环境光照、点光源光照、平行光源光照等。
这些模型根据实际光照的物理模型,计算出每个像素点的光强和颜色。
2. 材质和纹理处理在渲染过程中,对于不同的物体材质,需要采用不同的渲染算法来模拟它们的表现方式。
常见的材质特性有反射率、折射率、光滑度等,需要根据不同的材质属性来计算图像的渲染效果。
同时,通过纹理映射技术,还可以将图像贴在物体表面,使得渲染结果更加真实和细致。
3. 光线跟踪光线跟踪是一种高级的渲染技术,它模拟了现实世界中光线的传播和反射路径,能够产生非常真实的渲染效果。
整体光照模型概念
整体光照模型是计算机图形学和计算机视觉领域的重要概念,用于描述物体表面的光照和阴影效果。
它是一种数学模型,用于模拟物体表面在不同光照条件下的表现,以便在计算机图形渲染中生成逼真的图像。
整体光照模型通常包括以下几个方面的内容:
环境光照(Ambient Lighting):描述了物体表面在周围环境光线的作用下的整体亮度。
环境光照通常是均匀分布的,用于模拟物体受到周围环境光的普遍影响。
漫反射光照(Diffuse Reflection):描述了光线在物体表面上均匀反射的情况,模拟了光线照射到物体表面后向各个方向发射的情况,使得物体在各个方向上都具有一定亮度。
镜面反射光照(Specular Reflection):描述了光线在物体表面上发生镜面反射的情况,模拟了光线照射到物体表面后呈现出明亮镜面的情况,通常用于模拟物体的光泽和反射效果。
阴影效果(Shading):描述了物体表面上由于光线照射而产生的阴影效果,包括平行光阴影、点光源阴影等,用于模拟物体表面的光照变化和深度感。
整体光照模型的目标是尽可能真实地模拟物体在真实光照条件下的表现,以便在计算机图形渲染中生成逼真的图像。
不同的整体光照模型可以根据具体的光学特性和应用场景进行调整和组合,以获得适合特定需求的光照效果。
计算机形学光照模型基础知识全面解析计算机图形学的光照模型是模拟真实世界中的光照效果,使得计算机生成的图像更加逼真。
本文将全面解析计算机形学光照模型的基础知识,帮助读者深入了解光照模型的原理和应用。
一、光照模型的概述光照模型是计算机图形学中的重要内容,它可以模拟光照对物体的影响,使得计算机生成的图像具有真实感。
光照模型通常由三部分组成,分别是环境光、漫反射光和镜面光。
这三部分光线的叠加决定了物体在计算机图像中的亮度和明暗。
1. 环境光:环境光是指来自无特定方向的光线,它可以认为是光线在环境中的均匀散射。
环境光的强度在整个场景中是恒定的,它决定了整个场景的基准亮度。
2. 漫反射光:漫反射光是指光线照射到物体表面后均匀散射的光线。
漫反射光的强度受到物体表面法线和光线入射方向的夹角以及材质的反射特性的影响,决定了物体的明暗。
3. 镜面光:镜面光是指光线照射到物体表面后沿着反射角方向反射的光线,它使得物体表面呈现出高光效果。
镜面光的强度受到光线入射方向、观察者方向以及物体表面的平滑程度等因素的影响。
二、经典的光照模型计算机图形学中有多种经典的光照模型,本节将介绍其中的两种:Lambert模型和Phong模型。
这两种模型分别从漫反射光和镜面光的角度考虑光照效果。
1. Lambert模型Lambert模型是一种最简单的光照模型,它只考虑漫反射光的影响。
Lambert模型中,物体表面的明暗只与光线入射方向和物体表面法线的夹角有关,与观察者方向无关。
该模型的计算公式为:I = Ia * Ka + Ip * Kd * cosθ其中,I表示最终的颜色强度,Ia表示环境光的强度,Ka表示物体表面的环境光反射系数,Ip表示光源的强度,Kd表示物体表面的漫反射系数,θ表示光线入射方向与物体表面法线的夹角。
2. Phong模型Phong模型是一种综合考虑漫反射光和镜面光的影响的光照模型。
Phong模型根据光线入射方向、观察者方向和物体表面的平滑程度来计算镜面光的反射强度,从而使得物体表面呈现出光泽感。
计算机图形学名词解释计算机图形学是研究如何使用计算机生成、处理和显示图像的学科。
在计算机图形学领域中,有许多术语和概念,下面将解释其中的几个常见名词。
1. 三维模型(3D Model):三维模型是一种用数学方法来描述物体外形的表示方式。
它通常由一系列的点、线、面或体素构成,可以通过渲染算法生成真实的图像。
2. 着色器(Shader):着色器是一种用于计算图像颜色的程序。
在图形渲染过程中,着色器负责为每个像素计算其颜色值,并受到光照、材质和纹理等因素的影响。
3. 光照模型(Lighting Model):光照模型用于描述光源和物体之间的相互作用。
它考虑了光照的强度、颜色、反射和折射等因素,以计算出每个像素的颜色。
4. 纹理映射(Texture Mapping):纹理映射是将二维图像贴到三维模型表面的过程。
它可以给模型增加细节和真实感,并使模型在渲染时更加逼真。
5. 多边形填充(Polygon Filling):多边形填充是将多边形的内部区域填充上颜色或纹理的过程。
常见的填充算法有扫描线填充和边缘填充。
6. 抗锯齿(Anti-aliasing):抗锯齿是一种图像处理技术,用于减少图像边缘锯齿状的感觉。
通过在边缘周围添加像素的灰度来模糊边缘,以使其看起来更加平滑。
7. 阴影(Shading):阴影是指由于物体遮挡光线而产生的暗影效果。
在计算机图形学中,可以使用不同的算法来模拟阴影效果,如平面阴影、深度阴影和阴影贴图等。
8. 曲线和曲面(Curves and Surfaces):曲线和曲面是表示物体形状的数学工具。
它们可以通过数学公式或控制点来定义,并用于建模和渲染三维物体。
以上是计算机图形学中的一些常见名词的解释,这些名词和概念在图形学的理论和实践中都有重要的作用。
计算机形学的光照模型计算机形学是计算机图形学的一个重要分支,主要研究计算机生成和处理图像的方法和技术。
在计算机形学中,光照模型起着至关重要的作用。
光照模型是描述物体如何与光源相互作用的数学模型,它用于计算物体表面的光照效果,使得计算机生成的图像更加逼真和真实。
一、光照模型的基本原理光照模型通常包括三个主要组成部分:环境光、漫反射和镜面反射。
环境光是指自然光照射到物体表面后经过多次反射而产生的来自无特定方向的散射光,它对于整体的光照效果起到了一定的调整作用。
漫反射是指光线照射到物体表面后均匀地反射到各个方向,这种反射使物体呈现出柔和的光照效果。
镜面反射是指光线照射到物体表面后以等角反射的方式反射出去,形成明亮的高光点,使物体呈现出明亮的高光效果。
二、经典的光照模型1. Lambert光照模型Lambert光照模型是一种最基本的光照模型,它假设光线与物体表面成直角入射,并且光线均匀地散射到各个方向。
它的计算公式为:I = Ia * Ka + Ip * Kd * (L · N)其中,I表示最终的光照强度,Ia表示环境光的强度,Ka表示环境光的反射系数,Ip表示光源的强度,Kd表示物体的漫反射系数,L表示光线的方向向量,N表示物体表面的法向量。
2. Phong光照模型Phong光照模型是一种基于镜面反射的光照模型,它综合考虑了环境光、漫反射和镜面反射三个方面的光照效果。
它的计算公式为:I = Ia * Ka + Ip * Kd * (L · N) + Ip * Ks * ((R · V) ^ s)其中,Ks表示物体的镜面反射系数,R表示镜面反射方向向量,V表示观察者的视线方向向量,s表示镜面反射的强度指数。
三、实时光照模型传统的光照模型在计算效果上非常准确,但是计算量较大,难以在实时渲染中使用。
因此,为了满足实时渲染的需求,研究人员提出了一些实时光照模型。
常见的实时光照模型有:1. Gouraud光照模型Gouraud光照模型是一种基于顶点的实时光照模型,它通过给顶点设置颜色值来模拟光照效果。