高等数学对面积曲面积分
- 格式:ppt
- 大小:847.50 KB
- 文档页数:20
高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
对面积的曲面积分公式1. 对面积的曲面积分的概念。
- 设曲面∑是光滑的,函数f(x,y,z)在∑上有界。
把∑任意分成n小块Δ S_i(Δ S_i同时也表示第i小块曲面的面积),设(ξ_i,eta_i,ζ_i)是Δ S_i上任意取定的一点,作乘积f(ξ_i,eta_i,ζ_i)Δ S_i,并作和∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
- 如果当各小块曲面的直径的最大值λto0时,这和式的极限存在,则称此极限为函数f(x,y,z)在曲面∑上对面积的曲面积分或第一类曲面积分,记作∬_∑f(x,y,z)dS=limlimits_λto0∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。
2. 对面积的曲面积分的计算方法。
- 一、利用曲面的方程化为二重积分计算。
- 设曲面∑的方程为z = z(x,y),∑在xOy面上的投影区域为D_xy,函数z(x,y)在D_xy上具有连续偏导数,被积函数f(x,y,z)在∑上连续,则∬_∑f(x,y,z)dS=∬_D_{xy}f[x,y,z(x,y)]√(1 + z_x)^2+z_{y^2}dxdy。
- 类似地,如果曲面∑的方程为x = x(y,z),∑在yOz面上的投影区域为D_yz,则∬_∑f(x,y,z)dS=∬_D_{yz}f[x(y,z),y,z]√(1 + x_y)^2+x_{z^2}dydz。
- 如果曲面∑的方程为y = y(z,x),∑在zOx面上的投影区域为D_zx,则∬_∑f(x,y,z)dS=∬_D_{zx}f[x,y(z,x),z]√(1 + y_z)^2+y_{x^2}dzdx。
- 二、利用曲面的参数方程计算(略高于一般要求)- 设曲面∑的参数方程为<=ft{begin{array}{l}x = x(u,v) y = y(u,v) z =z(u,v)end{array}right.,(u,v)∈ D,且x(u,v),y(u,v),z(u,v)在D上具有连续偏导数,(∂(x,y))/(∂(u,v)),(∂(y,z))/(∂(u,v)),(∂(z,x))/(∂(u,v))不全为零,则dS=√(EG - F^2)dudv,其中E=x_u^2+y_u^2+z_u^2,F = x_ux_v+y_uy_v+z_uz_v,G=x_v^2+y_v^2+z_v^2。
高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:a = sec" x (cfgx)f = -csc 2 x (secx)f = secx-^x (cscx/ = -cscx-ctgx {a x y = a x \na(arcsinx)'=〔——=vl-x 2 (arc COSY )"=1 x\na基本积分表:j tgxdx = -In |c osx| + C j ctgxdx = In |sin x| + C j secxdx = ln|secx ++ Cj c scxdx = In |cscx - ctg^ + C r dx1 x -I —一 =-arctg-+C J^r+对 aaf —2— = f sec 2 xdx = tgx+ C Jcos" x 」| ] *'、— = jcsc 2 xdx = -ctgx + C J secx ・ tgxclx = secx + C J c sex ・ ctgxdx = - c sex + Cjshxdx = chx + C f chxdx = shx + C72]I n = jsin ,xdx =jcos" xdx =-——on_______ _____________ 2 ______________ j* ylx 2 +a 2dx =扌 \/x 2 +a 2 + 牛ln(x + >Jx 2 +a~) + Cf y/x 2 -erdx =丄yjx 2 -a 2 J2 2-x 2+ —arcsin —+ C 2 a. 2u 1-M 2 Xsin x = ------- , cosx = -------- - , u =tQ —9\ + u 2 1 + M 2 2Per -;r= arcsin —+ C =ln(x + 土/ ) + C+ C- — In x + yjx 2 -a 2 +Cj* yja 1 -x 2dx = y 三角函数的有理式积分:1 + w2 a + x一些初等函数: 两个重要极限:双曲正弦皿r -X-x双曲余弦:C/2X =匚丄2双曲正切:〃X=—=chx e x +e ']・ sinxlim ------ = 1lim (1 + 丄)x=e = 2.718281828459045...xX->Xarshx = ln(x + V%2 +1)archx = ±\n(x + Jx? _])1 1 + xart hx = —In ----2 1 — x三角函数公式:•诱导公式:数角sin cos tg ctg-a -sina cosa -tga -ctga90°-a cosa sina ctga tga90°+a cosa -sina -ctga -tga180°-a sma -cosa -tga -ctga180°+a -sina ・ cosa tga ctga27O°-a -cosa -sina ctga tga27O°+a -cosa sma -ctga -tga360°-a -sina cosa -tga -ctga360°+a sma cosa tga ctga•和差化积公式:sin(a ±0) = sinacos0 土cosasin 0 sin a + sin 0 = 2sin a + ^cos—―— cos(tz±^)= cosacos/7 + sinasin 03土tg/3•和差角公式:恥±0匕珂"0 亦匕±0)仝曲50期2 2 sin a-sin 0 = 2cos Q "sin ―—2 2q c a + fl a_ 卩cosa + cosp = 2cos ---------- cos ------ —2 2 cosa-cos0 = 2sin ° + " sin ——2 2•倍角公式:•半角公式^叫宀+響宀+…W+…+S,中值定理与导数应用拉格朗日中值定理:f(b) - /(d) = f 《)0 - a)当F(x) = x 时,柯西中值定理就是立格朗日中值定理<:曲率:sin la = 2sincrcosacos2a = 2cos 2 cr-1 = l-2sin 2 a = cos' a-sin' a ctg2a = ------------2ctga fg2a = 2弋sin 3a = 3sina-4sin 、a cos3a = 4cos a-3cosa1一3妙 a・a sin —= 2a U-cosa l-cosa sin a tg — = ± \ ----------------------- = ----------- = ----------- '2 V 1 + cosa sine? 1 + cosaa , /1 + cosaCOS — =±a ---------2 V 2a ll + cosa 1 + cosa sin er etg — = ±A i---------- = ------------ = ------------ 2 Vl-cosa sin a l-cosa^— = 2RsinC•余弦定理:c 2=«2 +b 2 - labeQsC•反三角函数性质:arcsinx = — -arc COST 2aretgx = —- arcctgx高阶导数公式一莱布尼兹(Leibniz)公式: 柯西中值定理:F(b)-F ⑷广⑷ 陀)-正弦定理:bsinB弧微分公式:ds = y ]\ + y ,2dx,其中y = Fga平均曲率斤彳予卜a:从M 点到M ,点,切线斜率的倾角变化量;As : MM 弧长。
习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为 ⎰⎰==L L ydsy x ds y x x MM x ),(),(μμ, ⎰⎰==L L x dsy x ds y x y MM y ),(),(μμ.2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 11111),(lim),(lim),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d x x d x L L⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=1102241x d x dx x x )12655(121-+=.(4)dsey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axaaxdx e dt t a t a edx e220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧; 解 dt dtdz dt dy dtdx ds 222)()()(++= dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e e t e t e ds z y x t tt t⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故y z d sx y z d s x y z d s x y z d s xCDBCAB2222⎰⎰⎰⎰++=Γ 901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdy dtdx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y xL ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx x d s aMM x ϕ21⎰-⋅=ϕϕθθϕa d a ac o s 21ϕϕs i n a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=,ds z y x x M x L)(1222⎰++=⎰++=π2022222)(c o s 1dt k a t k a t a M2222436k a ak ππ+=,ds z y x y My L)(1222⎰++=⎰++=π2022222)(s i n 1dt k a t k a t a M2222436k a ak ππ+-=,ds z y x z Mz L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3ka k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())(,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtdat a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lba dx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baLb adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-Ldx x x dx y x 242221556)()(. (2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L Lx y d xx y d x x y d x ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π302232)s i n s i ns i n (a t td tdt a πππ-=+-=⎰⎰. (3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202c o s πt d t R .(4)⎰+--+Ly x dyy x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+Ly x dyy x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a.(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=10)]1211(3)21(2)1[(dtt t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1, 故y d z dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=111)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(2142-=-=⎰dx x x4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y .(2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰ ⎰+=Ld s y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()c o s ,(c o s 22xx x++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰++=Lds xy x xQ y x P 241),(2),(.(3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2xx x --=τ,单位切向量为)1 ,2()c o s ,(c o s 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)c o s ,c o s ,(c o s 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=Lds yx yR xQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx xxy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(101245235=++--++=⎰⎰dy y y y dx x x x , 而 d x d y x d x d y yPx Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x)2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰y d y x d x ,而d x d y xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ; 解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283c o s s i n 3a t d t t a.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2=144的参数方程为 x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)c o s 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-Ly x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x xQ +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+d x d y yPx Q Q d y P d x D l L ε, 即⎰⎰⎰+=+-=+-lL ldy Pdx Qdy Pdx QdyPdx .因此⎰⎰+-=+-l L y x x d yy d x y x x d yy d x )(2)(22222⎰--=πθεθεθε20222222c o s s i n d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且2312y xy xQy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx yxy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yPx Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(d x d y yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰d x d y D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2c o s s i n 2()2c o s s i n 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰d x d y yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)c o s 26()6c o s 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-d x d y yPx Q Q d y P d x DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故⎰⎰++=+AB OA L QdyPdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧. 解 P =x 2-y , Q =-x -sin 2y , 0)1(1=---=∂∂-∂∂yPx Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++d x d y yPx Q Q d y P d x DBO AB L , 其中L 、AB 、BO 及D 如图所示. 故⎰⎰++--=+--L OBBA dy y x dx y x dy y x dx y x)sin ()()sin ()(22222s i n 4167)s i n 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数 u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yPx Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分. ⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222.(2)2xydx +x 2dy ; 解 因为yPx x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C x y d x dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为yPx y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+-=),()0,0(2c o s 3c o s 3c o s 3s i n s i n 4),(y x C x d y y x d x y x y x uC y x C x d y y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yPxy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分.⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y xy +++=⎰⎰022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yPy x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=c o s s i n 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S m ; 划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅ ⋅ ⋅, ∆S m +n , 则∆S 1, ⋅ ⋅ ⋅, ∆S m , ∆S m +1, ⋅ ⋅ ⋅, ∆S m +n 为∑的一个划分, 并且 i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆+∆=∆++==+=∑∑∑),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,d x d y d x d yz z dS y x =++=221, 故d x d y z y x f dS z y x f D ),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下: (1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d y y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ313])41(121[2202/32=+=r .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d yy x y xdS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ30149412222=+=⎰rdr r r .(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此dS z y x f ),,(∑⎰⎰d x d y y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3r d r r r d ππ1011141)2(6222=+-=⎰rdr r r .5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中 ∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ d x d y y x d x d y y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ20132dr r dπππ221222+=+=.提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,d x d y d x d yz z dS y x 2122=++=, 因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑r d r r d d x d y y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,d x d y z z dS y x 221++=d x d y 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdydxdy dS y x z xyxyD D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,d x d y d x d yz z dS y x 3122=++=,dS z x xxy )22(2+--∑⎰⎰d x d yy x x xxy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; 解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a ay x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a a d x d y xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y yx a x dS 22222222)()(1+--++--+=dxdyyx a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d yy x y x xy dSzx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a)c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =.提示: dxdy yx y y x x dS 2222221++++=.7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 222211++=++=. 故 d x d yy x y x z d S M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ20222121r d r r r d )136(152+=π.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a a y x dS y x I z 22222022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ202230adr ya r d a 4034a πμ=.提示: dxdy yx a y yx a x dS 22222222)()(1---+---+=dxdyyx a a 222--=,习题10-51. 按对坐标的曲面积分的定义证明公式:d y d z z y x P z y x P )],,(),,([21±∑⎰⎰d y d z z y x P d y d zz y x P )],,(),,(21∑∑⎰⎰⎰⎰±=. 解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则d y d z z y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系? 解 因为∑: z =0, (x , y )∈D xy , 故d x d y z y x R d x d yz y x R xyD ),,(),,(⎰⎰⎰⎰±=∑, 当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是z d x d yy x22∑⎰⎰d x d yy x R y xxyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ2022222s i n c o s r d r r R r r d R⎰⎰-=πθθ20052222s i n 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑30112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故d z d x x y d z d x zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=301122131dx x dx x dz .因此 y d z d x x d y d z z d x d y ++∑⎰⎰)13(212dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)c o s ,c o s ,(c o s 22y x yx +=γβα,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy)cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示:dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中 f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31,31 ,31()c o s ,c o s ,(c o s -=γβα, 由两类曲面积分之间的联系可得d x d y z z y x f d z d x y z y x f d y d zx z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰ dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑d x d ydS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧. 解 ∑=∑1+∑2+∑3+∑4, 其中 ∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z , ∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , 于是⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdyx z d x d y4000∑⎰⎰+++= d x d y y x x xyD )1(--=⎰⎰⎰⎰-=--=110241)1(xdy y x xdx. 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x . 显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdxxydydz xzdxdyy z d z d x x y d y d z x z d x d y ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD .4. 把对坐标的曲面积分d x d y z y x R d z d x z y x Q d y d zz y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧; 解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n , 单位法向量为)32 ,2 ,3(51)c o s ,c o s ,(c o s =γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧. 解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量 n =(F x , F y , F z )=(2x , 2y , 1), 单位法向量为)1 ,2 ,2(4411)c o s ,c o s ,(c o s 22y x yx ++=γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dSR yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaaaa dz dy xdx xdv 040366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ204s i n 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧; 解 由高斯公式 原式dv y x z d zRy Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ202022s i n adr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧; 解 由高斯公式 原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv zRy Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧. 解 由高斯公式原式dv y y z dv zRy Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=1010123)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量:(1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv zxy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰d v . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a , 的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv zr y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=aaaa a dz xz x dy dx 02320)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv zRy Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度: (1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ; 解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222d i vz y x z y x zRy Q x P ++=++=∂∂+∂∂+∂∂=A .(2)A =e xy i +cos(xy )j +cos(xz 2)k ; 解 P =e xy , Q =cos(xy ), R =cos(xz 2),)s i n (2s i n d i v2xz xz xy x ye zRy Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ; 解 P =y 2, Q =xy , R =xz , x x x zRy Q x P 20d i v =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, nu ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向的方向导数. 证明dS nu v n v udxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知d x d y d z zvy v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d z zv z u y v y u x v x u dS n v u)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, d x d y d zzuy u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d zzvz u y v y u x v x u dS n u v)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得d x d y d zuy u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS nu v n v u)(.。
高等数学公式⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dxC shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx Cx tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='导数公式: 基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:x xarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦 ...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x xx x x x三角函数公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·和差角公式: ·和差化积公式:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R C cB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。