电磁场理论习题
- 格式:doc
- 大小:795.50 KB
- 文档页数:27
电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。
解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。
解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。
解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。
电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。
为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。
练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。
求整个空间内的电势分布。
2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。
求两个带电板之间的电场强度。
3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。
求圆环轴线上离圆环中心距离为x处的电场强度。
练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。
求点A处的磁场强度。
2. 一个长直导线以λ的线密度均匀分布电流。
求距离导线距离为r处的磁场强度。
3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。
练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。
求电子做曲线运动的轨迹。
2. 有两个无限长平行导线,分别通过电流I1和I2。
求两个导线之间的相互作用力。
3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。
求电荷受到的合力。
练习题4:电磁场的应用1. 描述电磁波的基本特性。
2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。
3. 解释电磁场与电路中感应电动势和自感现象的关系。
根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。
通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。
希望读者能够认真思考每道练习题,尽量自行解答。
如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。
通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。
大学电磁场考试题及答案一、选择题(每题2分,共20分)1. 电磁场中,电场与磁场的相互作用遵循以下哪个定律?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 洛伦兹力定律答案:D2. 在真空中,电磁波的传播速度是多少?A. 100,000 km/sB. 300,000 km/sC. 1,000,000 km/sD. 3,000,000 km/s答案:B3. 一个点电荷产生的电场强度与距离的平方成什么关系?A. 正比B. 反比C. 对数关系D. 线性关系答案:B4. 以下哪种介质不能支持电磁波的传播?A. 真空B. 空气C. 玻璃D. 金属答案:D5. 麦克斯韦方程组中描述变化电场产生磁场的方程是?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 安培环路定律答案:C6. 一个均匀带电球壳内部的电场强度是多少?A. 零B. 与球壳内的电荷分布有关C. 与球壳外的电荷分布有关D. 与球壳的总电荷量成正比答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率越大,波长越小答案:B8. 根据洛伦兹力公式,一个带电粒子在磁场中运动时,其受到的力的方向与什么因素有关?A. 粒子的速度B. 磁场的方向C. 粒子的电荷D. 所有上述因素答案:D9. 电磁波的偏振现象说明电磁波是横波,这是因为?A. 电磁波的振动方向与传播方向垂直B. 电磁波的振动方向与传播方向平行C. 电磁波的传播不需要介质D. 电磁波在真空中传播速度最快答案:A10. 一个闭合电路中的感应电动势遵循以下哪个定律?A. 欧姆定律B. 基尔霍夫电压定律C. 法拉第电磁感应定律D. 安培环路定律答案:C二、填空题(每题2分,共20分)11. 电磁波的传播不需要______,因此它可以在真空中传播。
答案:介质12. 根据麦克斯韦方程组,电荷守恒定律可以表示为:∇⋅ E =______。
电磁场理论基础习题集(说明:加重的符号和上标有箭头的符号都表示矢量)一、填空题1.矢量场的散度定理为(1),斯托克斯定理为(2)。
【知识点】:1.2 【难易度】:C 【参考分】:3【答案】:(1)()∫∫⋅=⋅∇SS d A d A v v v ττ (2)()S d A l d A SCvv v v ⋅×∇=⋅∫∫2.矢量场A v满足(1)时,可用一个标量场的梯度表示。
【知识点】:1.4 【难易度】:C 【参考分】:1.5【答案】:(1) 0=×∇A v 3.真空中静电场的基本方程的积分形式为(1),(2),微分形式为(3),(4)。
【知识点】:3.2 【难易度】:B【参考分】:6【答案】:(1) 0=⋅∫c l d E v v (2) ∑∫=⋅q S d D Sv v 0(3) 0=×∇E v (4)()r D vv ρ=⋅∇04.电位移矢量D v 、极化强度P v 和电场强度E v满足关系(1)。
【知识点】:3.6 【难易度】:B【参考分】:1.5【答案】:(1) P E P D D vv v v v +=+=00ε 5.有面电流s 的不同介质分界面上,恒定磁场的边界条件为(1),(2)。
【知识点】:3.8 【难易度】:B【参考分】:3【答案】:(1) ()021=−⋅B B n v v v (2) ()s J H H n v v vv =−×21 6.焦耳定律的微分形式为(1)。
【知识点】:3.8 【难易度】:B 【参考分】:1.5【答案】:(1) 2E E J p γ=⋅=v v 7.磁场能量密度=m w (1),区域V中的总磁场能量为=m W (2)。
【知识点】:5.9 【难易度】:B 【参考分】:3【答案】:(1) 221H μ (2) ∫Vd H τμ2218.理想导体中,时变电磁场的=(1),=(2) 。
【知识点】:6.1 【难易度】:A 【参考分】:3【答案】:(1)0 (2)0 9.理想介质中,电磁波的传播速度由(1)决定,速度=v (2)。
电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。
在学习电磁场理论时,习题是巩固和深化理解的重要方式。
本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。
一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。
求球心处的电场强度。
答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。
对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。
对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。
2. 问题:一个无限长的均匀带电线,线密度为λ。
求距离线上一点距离为r处的电势。
答案:根据电势公式V = kλ/r,其中k为库仑常数。
所以距离线上一点距离为r处的电势为V = kλ/r。
二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。
求距离导线距离为r处的磁感应强度。
答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。
所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。
2. 问题:一根长为L的直导线,电流为I。
求距离导线距离为r处的磁场强度。
答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。
所以距离导线距离为r处的磁场强度为H = I/2πr。
三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。
求导体球表面的电荷密度。
答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。
导体球表面的面积A等于球的表面积4πR^2。
所以导体球表面的电荷密度为σ = Q/4πR^2。
2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。
一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。
电磁场练习题一、选择题1. 电磁波是一种:A. 机械波B. 电磁场的传播C. 粒子流D. 声波2. 麦克斯韦方程组中描述电场和磁场变化关系的方程是:A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 洛伦兹力定律3. 以下哪个不是电磁波的特性:A. 波长B. 频率C. 质量D. 速度4. 电磁波的传播不需要:A. 介质B. 真空C. 电荷D. 磁场5. 根据洛伦兹力定律,一个带正电的粒子在磁场中运动时,其受力方向:A. 与速度和磁场垂直B. 与速度方向相同C. 与磁场方向相同D. 与速度和磁场平行二、填空题6. 电磁波的传播速度在真空中等于______。
7. 麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和______。
8. 当电磁波的频率增加时,其波长会______。
9. 电磁波的频率与波长的关系可以用公式______表示。
10. 在电磁波的传播过程中,电场和磁场的能量是相互______的。
三、简答题11. 简述麦克斯韦方程组的物理意义。
12. 描述电磁波在介质中的传播与在真空中的传播有何不同。
13. 解释为什么电磁波可以穿透某些物质,而不能穿透另一些物质。
四、计算题14. 假设一个电磁波在真空中的频率为10GHz,求其波长。
15. 已知一个带电粒子在均匀磁场中以速度v=3×10^7 m/s运动,磁场强度B=0.5T,求该粒子受到的洛伦兹力的大小和方向。
五、论述题16. 论述电磁波在现代通信技术中的应用及其重要性。
17. 讨论电磁波的产生机制以及它们在自然界和人工环境中的表现形式。
六、实验题18. 设计一个实验来验证电磁波的反射和折射现象。
19. 利用示波器观察电磁波的传播,并记录其波形,分析其特点。
20. 通过实验演示电磁波的干涉和衍射现象,并解释其物理原理。
以上练习题涵盖了电磁场的基本概念、电磁波的性质、麦克斯韦方程组的应用以及电磁波在现代科技中的应用等多个方面,旨在帮助学习者全面理解和掌握电磁场的相关知识。
第一章 矢量分析1.1 3ˆ2ˆˆz y x e e eA -+= ,z y e eB ˆ4ˆ+-= ,2ˆ5ˆy x e eC -= 求(1)ˆA e ;(2)矢量A 的方向余弦;(3)B A ⋅;(4)B A ⨯;(5)验证()()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ ;(6)验证()()()B A C C A B C B A ⋅-⋅=⨯⨯。
1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢量。
设A 为已知矢量,X A B ⋅=和X A B ⨯=已知,求X 。
1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e el ˆ2ˆ2ˆ-+= 方向上的方向导数。
1.4 计算矢量()()3222224ˆˆˆz y x e xy e x eA z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ⋅∇对此立方体的体积分,以验证散度定理。
1.5 计算矢量z y e x e x eA z y x 22ˆˆˆ-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ⨯∇对此回路所包围的表面积的积分,以验证斯托克斯定理。
1.6 f 为任意一个标量函数,求f ∇⨯∇。
1.7 A 为任意一个矢量函数,求()A ⨯∇⋅∇。
1.8 证明:A f A f A f ⋅∇+∇=∇)(。
1.9 证明:A f A f A f ⨯∇+⨯∇=⨯∇)()()(。
1.10 证明:)()()(B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇。
1.11 证明:A A A 2)(∇-⋅∇∇=⨯∇⨯∇。
1.12 ϕρϕρϕρρsin cos ˆ),,(32z e ez A += ,试求A ⋅∇,A ⨯∇及A 2∇。
1.13 θθθϕθϕθcos 1ˆsin 1ˆsin ˆ),,(2re r e r e r A r ++= ,试求A ⋅∇,A ⨯∇及A 2∇。
习题5.1 设x0的半空间充满磁导率为的均匀介质,x0的半空间为真空,今有线电流沿z轴方向流动,求磁感应强度和磁化电流分布。
5.2 半径为a的无限长圆柱导体上有恒定电流J均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为0,导体外的磁导率为。
5.3 设无限长圆柱体内电流分布,J azrJ0(r a)求矢量磁位A和磁感应B。
5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。
试求圆弧中心点处的磁感应强度。
5.5 两根无限长直导线,布置于x1,y0处,并与z轴平行,分别通过电流I 及I,求空间任意一点处的磁感应强度B。
5.6 半径的磁介质球,具有磁化强度为M az(Az2B)求磁化电流和磁荷。
5.7已知两个相互平行,相隔距离为d,共轴圆线圈,其中一个线圈的半径为a(a d),另一个线圈的半径为b,试求两线圈之间的互感系数。
5.8 两平行无限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培力Fm。
5.9 一个薄铁圆盘,半径为a,厚度为b b a,如题5.9图所示。
在平行于z轴方向均匀磁化,磁化强度为M。
试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。
5.10 均匀磁化的无限大导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。
试求两空腔中心处磁场强度的比值。
5.11 两个无限大且平行的等磁位面D、N,相距h,mD10A,mN0。
其间充以两种不同的导磁媒质,其磁导率分别为10,220,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。
题5.11图5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图 a所示。
证明:直导线与矩形回路间的互感为M0aln2R2b R2C22b2R2题5.12图a5.13 一环形螺线管的平均半径r015cm,其圆形截面的半径a2cm,铁芯的相对磁导率r1400,环上绕N1000匝线圈,通过电流I0.7A。
第1~2章 矢量分析 宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处 A = ,=⨯∇A 0 。
2. 已知矢量场xz e xy e z y e A z y x ˆ4ˆ)(ˆ2+++= ,则在M (1,1,1)处=⋅∇A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的 旋度 及 散度 。
4. 写出线性和各项同性介质中场量D 、E 、B 、H、J 所满足的方程(结构方程): 。
5. 电流连续性方程的微分和积分形式分别为 和 。
6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B7. 两种不同的理想介质的交界面上,(A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C8. 设自由真空区域电场强度(V/m) )sin(ˆ0βz ωt E eE y -=,其中0E 、ω、β为常数。
则ˆˆˆ222x y z e e e ++A⋅∇A ⨯∇EJ H B E D σ=μ=ε= , ,t q S d J S∂∂-=⋅⎰ tJ ∂ρ∂-=⋅∇空间位移电流密度d J(A/m 2)为:(a ) )cos(ˆ0βz ωt E ey - (b ) )cos(ˆ0βz ωt ωE e y -(c ) )cos(ˆ00βz ωt E ωey -ε (d ) )cos(ˆ0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ˆ0dxeE x πρ= ,其中0ρ、d 为常数。
电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。
答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。
答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。
答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。
答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。
答案:电磁波是由变化的电场和磁场相互作用产生的。
当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。