线性代数考试练习题带答案(6)
- 格式:doc
- 大小:1.14 MB
- 文档页数:12
线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。
规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
线性代数试题集与答案解析一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。
(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。
2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。
你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。
(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。
(A) 0(B) 0或-1(C) -1(D) -1或1正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。
(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3正确答案:C8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设A ,B 是同阶方阵,则AB=BA 。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1000323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=01111010100111.6.行列式=-0100002000010nn .7.行列式=--0001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知d b c a c c a b ba b ca cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dc b a dc b a dc b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a xa a a a x a a a a xa a a a x;5. na a a a111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.x a a a a x a a a a x a a a a xn nn321212121;9.2212221212121111nn n nn x x x x x x x x x x x x x x x +++; 10.211200000210001210001211.aa a aa a a aaD ---------=110110001100011001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++d ddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=.4.∏∑≤<≤=----=nj i i jni in nn nn n n n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c b a的充要条件是0=++c b a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
《 线性代数 》课程试题(附答案)一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。
二、 计算行列式的值。
(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。
(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。
(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。
六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。
(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。
(15分)《线性代数》课程试题参考答案一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。
线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数考试题库及答案第一部分 客观题(共30分)一、单项选择题(共 10小题,每小题2分,共20分)1. 若行列式111213212223313233a a a a a a d a a a =,则212223111213313233232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d -2. 设123010111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( )(A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( )(A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( )(A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ⨯矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。
(A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,,,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(C) 存在一组数12,,s k k k ,使得1122s s k k k βααα=+++ 成立(D) 对β的线性表达式唯一8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( )(A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解9. 设110101011A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的特征值是( )。
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数考试练习题带答案说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( ) A.20 B.24 C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式1221---k k =0,则k =_________________________.12.设A =⎥⎦⎤⎢⎣⎡1101,k 为正整数,则A k=_________________________. 13.设2阶可逆矩阵A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡4321,则矩阵A =_________________________. 14.设向量α=(6,-2,0,4),β=(-3,1,5,7),向量γ满足βγα32=+,则γ=_________________________.15.设A 是m ×n 矩阵,A x =0,只有零解,则r (A )=_________________________. 16.设21,αα是齐次线性方程组A x =0的两个解,则A (3217αα+)=________. 17.实数向量空间V ={(x 1,x 2,x 3)|x 1-x 2+x 3=0}的维数是______________________.18.设方阵A 有一个特征值为0,则|A 3|=________________________.19.设向量=1α(-1,1,-3),=2α(2,-1,λ)正交,则λ=__________________.20.设f (x 1,x 2,x 3)=31212322212224x x x tx x x x ++++是正定二次型,则t 满足_________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式ba c ccb c a b b a a cb a ------22222222.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---16101512211λλ,对参数λ讨论矩阵A 的秩.23.求解矩阵方程⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100152131X =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--315241 24.求向量组:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=21211α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=56522α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11133α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=37214α的一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.25.求齐次线性方程组⎪⎩⎪⎨⎧=++--=-++-=++-03204230532432143214321x x x x x x x x x x x x 的一个基础解系及其通解.26.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3142281232的特征值和特征向量. 四、证明题(本大题共1小题,6分)27.设向量1α,2α,….,k α线性无关,1<j ≤k . 证明:1α+j α,2α,…,k α线性无关.试题参考答案三、计算题解:原行列式线性代数考试练习题带答案说明:A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列等式中,正确的是()A.错误!未找到引用源。
B.3错误!未找到引用源。
=错误!未找到引用源。
C.5错误!未找到引用源。
D.错误!未找到引用源。
2.下列矩阵中,是初等矩阵的为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
3.设A、B均为n阶可逆矩阵,且C=错误!未找到引用源。
,则C-1是()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.设A为3阶矩阵,A的秩r (A)=3,则矩阵A*的秩r (A*)=()A.0 B.1C.2 D.35.设向量错误!未找到引用源。
,若有常数a,b使错误!未找到引用源。
,则()A.a=-1, b=-2 B.a=-1, b=2C.a=1, b=-2 D.a=1, b=26.向量组错误!未找到引用源。
的极大线性无关组为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.设矩阵A=错误!未找到引用源。
,那么矩阵A的列向量组的秩为()A.3 B.2C.1 D.08.设错误!未找到引用源。
是可逆矩阵A的一个特征值,则矩阵错误!未找到引用源。
有一个特征值等于()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
9.设矩阵A=错误!未找到引用源。
,则A的对应于特征值错误!未找到引用源。
的特征向量为()A.(0,0,0)T B.(0,2,-1)TC .(1,0,-1)TD .(0,1,1)T10.二次型2221213212),,(x x x x x x x f +-=的矩阵为( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
二、填空题(本大题共10小题,每小题2分,共20分) 11.行列式错误!未找到引用源。
__________.12.行列式22351011110403--中第4行各元素的代数余子式之和为__________.13.设矩阵A =错误!未找到引用源。
,B =(1,2,3),则BA =__________.14.设3阶方阵A 的行列式|A |=21,则|A 3|=__________.15.设A ,B 为n 阶方阵,且AB =E ,A -1B =B -1A =E ,则A 2+B 2=__________. 16.已知3维向量错误!未找到引用源。
=(1,-3,3),错误!未找到引用源。
(1,0,-1)则错误!未找到引用源。
+3错误!未找到引用源。
=__________. 17.设向量错误!未找到引用源。
=(1,2,3,4),则错误!未找到引用源。
的单位化向量为__________.18.设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为__________.19.设3阶矩阵A 与B 相似,若A 的特征值为41,31,21,则行列式|B -1|=__________.20.设A =错误!未找到引用源。
是正定矩阵,则a 的取值范围为__________. 三、计算题(本大题共6小题,每小题9分,共54分) 21.已知矩阵A =错误!未找到引用源。
,B =错误!未找到引用源。
,求:(1)A TB ;(2)|A TB |.22.设A =错误!未找到引用源。
,B =错误!未找到引用源。
,C =错误!未找到引用源。
,且满足AXB =C ,求矩阵X .23.求向量组错误!未找到引用源。
=(1, 2, 1, 0)T,错误!未找到引用源。
=(1, 1, 1, 2)T ,错误!未找到引用源。
=(3, 4, 3, 4)T ,错误!未找到引用源。
=(4, 5, 6, 4)T的秩与一个极大线性无关组. 24.判断线性方程组⎪⎩⎪⎨⎧-=+-=+--=-+-1542421343143214321x x x x x x x x x x x 是否有解,有解时求出它的解.25.已知2阶矩阵A 的特征值为错误!未找到引用源。
=1,错误!未找到引用源。
=9,对应的特征向量依次为错误!未找到引用源。
=(-1,1)T,错误!未找到引用源。
=(7,1)T,求矩阵A .26.已知矩阵A相似于对角矩阵Λ=错误!未找到引用源。
,求行列式|A-E|的值.四、证明题(本大题共6分)27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:(1)AB-BA为对称矩阵;(2)AB+BA为反对称矩阵.参考答案。