泵振动原因、测试与解决方法
- 格式:docx
- 大小:898.14 KB
- 文档页数:24
离心泵产生振动的原因及解决方法一. 机泵轴弯曲机泵轴是带着固定在其上的叶轮或转子旋转,由于叶轮和转子的重量,特别是大机泵,当机泵较长时间停止工作时,使机泵轴在一个方向上受力,造成轴弯曲。
轴弯曲的机泵在运行中就会引起叶轮等传动产生不平衡,致使叶轮与本壳发生摩擦,导致机泵产生振动现象。
解决方法是每8h盘车一次,每次按同一方向将轴转动120度。
二. 轴承问题1.轴承“跑外缘”由于轴承装配质量不良,机泵经过长时间运行后,就会出现轴承“跑外缘”现象,造成轴承温度升高,产生杂音,出现转动。
解决的方法是:(1)将轴承支架焊上一层金属,然后车削到合适的尺寸,重新装配;(2)如轴承间隙较大,可加薄铜皮,使轴承外缘静配合达到规定值。
2.轴承磨损目前从市场上采购的轴承或多或少都存在一些质量问题。
主要是滚珠大小不一、硬度差、间隙大等,很难保证维修质量。
轴承磨损一般伴随有发热和异常声音,严重时发生卡泵。
因此,发现轴承异常时应及时停机更换。
3.轴瓦间隙过大这种情况常出现在采用滑动轴承的大、中型水泵中,若轴瓦间隙过大,就容易使轴松动,因此应及时调整轴瓦间隙。
三. 联轴器问题联轴器的作用主要是把泵和电机连接起来一同旋转并转递扭矩,其问题有以下两点,一是不同心,有些大型泵使用一段时间后,就会发生变化,如果出现不同心现象,只能停机并重新找正;二是联轴器所使用的胶圈、梅花胶皮、等容易损坏,将损坏的胶圈换掉即可恢复正常。
四. 液体通道不畅当机泵运行时,由于液体通道不畅,产生水力冲击而引起机泵振动。
主要原因有以下几点。
1、出口阀门开度太小离心式泵,特别是高扬程、大排量的泵在流量小时容易产生不通程度的振动,当开大阀门流量正常后,振动就会消失。
2、泵吸入端管道进气或有杂物入口端装有底阀和过滤网的输送泵,在试运初期流体过脏或粘度过大,易产生气蚀,同时伴随有振动,严重时水泵不能正常工作。
为了消除这一现象,最好在泵的入口端安装一负压表,以便随时观察负压变化,从而准确判断吸入管路的变化情况,及时清理底阀和过滤器。
电动给水泵振动原因分析及处理方法摘要:电动给水泵作为发电厂最主要的辅机设备,如果水泵出现明显的故障异常,必然会导致发电机组出力下降或停运造成经济损失。
从目前来看,引起泵站机组轴承振动异常的因素非常多,引起发电厂电动给水泵振动的因素非常复杂,需要检修人员结合故障的实际现象进行认真分析。
对振动简易诊断进行判断,明确设备振动或其他的状态异常利用普通测振仪以及其他的方式来,最大程度增强电动给水泵安全运行的整体效果,确保安装水平全面提升。
关键词:火电厂;给水泵;原因;处理方法1.给水泵的振动原因1.1电动机引起的振动从给水泵的结构构成和运行原理来看,电动机是给水泵的核心构成,电动机的安装质量是否达标、运行是否稳定与可靠,都将会影响到给水泵的运行效率。
因此,电动机方面的问题会引起给水泵的振动,尤其是在轴承损坏、内部磁力不平衡的情况下,振动难以避免。
一旦在电动机的安装过程中磁力中心的准确度不够,电机轴振动、泵组振动势必出现,且这种振动表现为以下特征:水平方向上的振动小,轴向振动大;在负荷与转速日渐增大的过程中,前置泵与耦合器电机侧的振动同步增大,这一情况对于主泵振动并不存在直接且明显的干扰。
1.2从给水泵支撑系统角度台板、基础底座等在整个给水泵的运行过程中起着一定的支撑作用,当在给水泵运行时这些其支撑作用的模块出现了问题时,同样会引起一定的振动。
比如,当基础的稳定性或者刚度不够的情况下,可能会伴随着微小振动的出现,在受到其他不平衡激振力的作用下,这些微小振动将朝着更大的振动发展[1]。
1.3从给水泵内流体流动角度给水泵运行时,为发挥其在火电厂机组运行中的作用,呈现出机械能向流体势能与动能的转换,一旦在给水泵中流体存在异常的流动行为和现象,势必伴随着异常振动。
根据由这种原因所引起的振动分析,汽蚀和水力冲击是主要的原因,给水泵内严重的汽蚀现象存在时,因为存在凝结过程,也就同步产生了一定的脉动力,当与其他激振力同步作用时,振动问题越发严重,振动强度偏大;水力冲击则更多地表现在导叶与动叶同方向的情况下,因为导叶叠加时的叶片冲击力巨大,同样会引起给水泵的巨大振动,对给水泵的正常运转产生极大的干扰。
离心泵是炼厂不可缺少的转动设备动力设备,离心泵的运行状态决定了泵能否安全稳定地长周期运行,进而决定整个装置是否能够平稳运行。
离心泵在运转过程中轴承位置的振动值一般采用速度有效值来表示,单位mm/s。
轴承座的振动标准执行ISO 10816—3 或者GB/T6075.3 等相关标准。
某公司硫磺联合装置有3套溶剂再生装置,其中1号溶剂再生装置处理量为500 t/h,2 号3号溶剂再生装置处理量为600 t/h,工艺流程相同如图1所示。
其中1 号溶剂再生装置贫液泵P-104AB设备型号250X250WEZ500、型式OH2、扬程80 m、额定流量550m3/h、电动机功率185kW、电压:10000V以及转速1480 r/min,2号、3号溶剂再生装置P-204AB、P304AB贫液泵额定流量为650m3/h、电动机功率200kW,其他参数与P104AB相同。
1号溶剂再生装置在开工初期水联运时发现P104AB泵在运转时轴承座水平振动值超标,通过手持式测振仪检测振值在4~13 mm/s 波动,振值波动的同时伴有“呼呼”的嗡鸣声。
现场初步认为水联运初期管线内有杂物造成泵入口过滤器堵塞,导致发生这种现象。
现场安排切泵,清理泵入口滤网。
当切换到另一台泵运行时,发现也发生了同样的问题,而且原运转泵过滤器滤网干净没有杂物。
2号、3号溶剂再生装置在水联运时P-204AB/304AB也发生了同样的问题,泵叶轮流道情况如图2所示。
在泵P-104AB/204AB/304AB运转时,用巡检仪对泵轴承座进行测振,通过巡检仪自带的频谱功能,发现每台泵振值的高点都是在150Hz附近,如图3所示,这几台泵的转速都是1480r/min,所以6倍频高,结合泵的叶轮为6流道,所以现场泵的振动问题初步判定为叶片通过频率故障。
故障原因分析及制定措施现场泵或者风机叶片流道通过故障主要有以下几个方面:一是动刚度不足,即设备或与其相连管道的动刚度不足,在压力脉动作用下,出现振动放大效应,表现为叶片通过频率振动十分剧烈。
电动给水泵振动原因分析及处理方法在我国经济实力逐渐壮大,科学技术不断创新的今天,电动给水泵是火电燃煤机组给水系统的重要附属机械,液力耦合器连接电动机与给水泵,传递驱动,调节转速。
文章通过分析电动给水泵几种常见振动故障的原因,介绍了处理措施。
标签:电动给水泵;振动原因;处理方法引言随着我国经济实力不断加强,我国电动给水泵的应用愈加广泛,电站用主给水泵机组轴承振动的大小直接关系到机组能否安全运行,而引起主给水泵机组轴承振动过大或者异常的原因有很多。
1电动给水泵振动原因分析1.1振动随泵运行时间而增大1)由于热应力而造成泵体变形过大或弯曲;2)轴瓦顶部间隙过小或瓦盖紧力过大,造成轴与上瓦部分接触;3)油内有杂质,润滑不良;4)泵体保温厚度不够,上下泵壳存在温差,暖泵不均匀;5)电泵进出口管道安装对口产生附加应力,支架安装错误影响管道热膨胀。
1.2启动振动高原因1)测点问题。
开始由于电泵上下缸温差偏大,认为是温度测点有问题,热工校验振动测点后,确认热工测点正确。
2)泵体积存空气。
电泵上下缸存在温差,主要是上缸温度偏低造成,认为是电泵注水排气时速度较快,排空气不充分,上部积存空气所致。
因此对电泵进行重新注水排气,使泵体内空气完全排出,但上下缸温差无明显变化。
3)暖泵流量不足。
机组调峰时,不同负荷段如350MW,和660MW时热备用中的电泵进口流量(即倒暖流量)显示波动变化,而且负荷350MW,时,备用中的电泵几乎显示不出倒暖流量,而660MW,高负荷时由于压力高,倒暖流量显示有28T/H。
怀疑倒暖流量有问题,因此在负荷660MW,时将备用中的电泵再循环阀前手动阀隔离,其倒暖流量明显上升,减小了电泵的倒暖流量经再循环调节阀分流部分,进一步提高了其倒暖效果,稳定一个多小时,但电泵上下缸温度基本不变。
4)倒暖阀故障。
由于倒暖手动阀(靠泵侧)阀杆曾经出现过漏汽,并经过了焊接处理,因此运行人员充分开大四个倒暖泵手动阀的开度,试图增加暖泵效果,但是上下缸温差未得到解决。
离心泵振动的原因及处理方法离心泵啊,那可是在各种工业领域都大显身手的重要设备呢!可要是它振动起来,那可真让人头疼啊!你想想看,离心泵就好比是一台不知疲倦的“大力士”,整天在那辛勤工作。
可突然有一天,它开始“哆嗦”起来了,这是为啥呢?原因之一可能是转子不平衡。
就好像一个人走路一瘸一拐的,能稳当吗?转子不平衡了,离心泵自然就会振动啦。
还有啊,轴弯曲也会导致振动哦,这就好比是一根笔直的扁担突然变弯了,挑东西能不晃悠嘛!再说说安装问题吧。
如果离心泵安装得歪七扭八的,它能好好工作吗?肯定会闹别扭呀,振动也就随之而来了。
地脚螺栓松动也是个麻烦事儿,就像人的脚站不稳一样,离心泵也会摇摇晃晃的。
另外,泵内有异物也不行呀,就好比人嗓子里卡了东西,能舒服吗?离心泵也会通过振动来表达它的不满呢!那遇到这些问题该咋办呢?咱得对症下药啊!对于转子不平衡,就得好好给它调整平衡,让它能稳稳当当工作。
轴弯曲了,那就得想办法把它弄直呀,这可不能马虎。
安装的问题呢,就得重新认真安装,让离心泵站得稳稳的。
地脚螺栓松动了,赶紧拧紧呀,可别让它再晃悠啦。
要是泵内有异物,那得赶紧清理掉,让它的“嗓子眼儿”通畅起来。
还有啊,操作不当也可能让离心泵振动哦。
比如说流量过大或过小,就像人跑步速度忽快忽慢,能不难受嘛。
这时候就得调整好流量,让离心泵工作在一个舒适的状态。
总之啊,离心泵振动可不是小事儿,咱得重视起来。
要像照顾自己的宝贝一样照顾好它,及时发现问题,及时解决。
不然它要是闹起脾气来,耽误生产可就麻烦啦!你说是不是这个理儿呢?咱可不能让这么重要的设备出了问题还不管不顾呀,那可不行!要让离心泵一直稳稳当当地为我们服务,为我们的生产助力呀!。
水泵振动分析及处理随着现代工业的发展,水泵已经成为了生产过程中不可或缺的一部分,而随着水泵的普及和使用范围的扩大,其故障问题也时有发生。
其中,水泵振动问题是最常见的一种故障,本文将尝试对水泵振动问题进行分析及处理。
一、水泵振动的原因在使用水泵的过程中,会出现各种各样的振动现象,根据振动的具体性质和原因,可以将水泵振动分为以下几种类型:1、轴向振动轴向振动属于一般的过度杂乱振动,在水泵的轴与支座之间及轴与密封件之间的振动频率出现的感觉效果。
该振动主要是由于旋转机构的不平衡、叶轮间隙过大、轴弯和泵的基础设计不良等原因造成的。
2、径向振动径向振动是指水泵轴与垂直轴线的振荡运动。
水泵叶轮形状的不同、动平衡的不良、轴承间隙过大以及启动和停止频繁等都可能会导致径向振动问题的发生。
3、涡流振动涡流振动是一种由于流体内部涡流、涡旋等形成的振动,其频率与在叶轮中产生的涡流相同。
涡流振动可能会导致叶轮腐蚀、弹性不足以及失重等问题的发生。
4、共振振动共振振动是由于泵、管道、支撑结构等元件相互作用而造成的振动。
当泵的输出频率与支撑结构或管道的自然振动频率相同时,将发生共振振动。
共振振动能够导致机体振动加速度增加、壳体和外壳失效、托架之间产生相对位移等问题。
二、水泵振动的处理方法为了有效地解决水泵振动问题,一般需要从以下几个方面进行处理:1、改善设备结构如果水泵的振动问题是由设备结构不良所致,可以通过优化水泵的结构和传动机构,如更换梳齿轮、增加过滤器、更换机体等来解决振动问题。
2、进行机体平衡处理对于由不平衡导致的振动问题,可以通过进行机体平衡来解决该问题。
在进行平衡时,需要注意使用合适的平衡设备,以确保平衡效果真正达到要求。
3、修整叶轮如发现叶轮的形状不够完美或存在损伤等问题,可以对叶轮进行修整或更换。
为了确保修整后的叶轮满足要求,必须严格按照设计要求进行加工和检验。
4、增加防护措施在水泵的基础和支撑结构上增加减震效果,可以有效地降低水泵振动的影响。
泵振动过大的10个原因!1.泵与基座连接不稳固:泵与基座之间的紧固螺栓或连接螺纹未正确拧紧,或者使用的垫片不合适。
解决办法是检查并重新紧固泵与基座之间的连接件,并确保使用合适的垫片。
2.轴与轴承配合不良:轴与轴承的配合间隙过大或过小,或者轴承磨损严重。
解决办法是检查轴与轴承的配合尺寸,并根据需要更换轴承。
3.泵叶轮损坏或不平衡:叶轮表面磨损、变形或裂纹,或者叶片均匀性差,会导致泵振动过大。
解决办法是修复或更换损坏的叶轮,并确保叶片均匀分布。
4.泵内部部件磨损严重:泵的密封件、轴封等部件磨损严重,泄漏导致振动增大。
解决办法是更换磨损的部件,并确保密封良好。
5.泵进口或出口管道不平衡:管道大小不适当,或者管道连接松动,会导致流体的不稳定运动,进而引发泵振动。
解决办法是调整管道尺寸和重新紧固管道连接。
6.泵运行时遭遇空气或固体颗粒:安装位置不当或未正确净化,导致泵吸入空气或固体颗粒。
解决办法是重新选择合适的安装位置,并增加过滤器来净化吸入介质。
7.泵机械端部分不平衡:泵机械端的转子或传动件不平衡,会导致泵产生振动。
解决办法是进行动平衡或静平衡处理。
8.泵轴弯曲或变形:泵轴弯曲或变形会导致轴与轴承之间的不对中,增加振动。
解决办法是检查泵轴对中情况,并根据需要重新修复或更换轴。
9.泵驱动电机振动过大:驱动泵的电机本身振动过大,或者电机与泵之间的联接不刚性。
解决办法是检查电机的振动情况,并重新安装泵和电机的联接件。
10.泵结构松动或变形:泵壳、支撑架等结构部件出现松动或变形,会导致泵振动过大。
解决办法是检查泵结构的紧固情况,并进行必要的修复。
总之,泵振动过大是由多种原因引起的,解决时需要仔细检查泵的各个部分,并采取相应的措施进行修复或更换。
最好的办法是定期维保泵设备,预防问题的发生。
浅谈泵振动的因素及处理方法摘要:本文从离心泵运行过程中产生振动的原因出发,充分对几个震动因素进行分析,通过对导致泵震动因素的前期预防,杜绝机泵事故发生,降低保养和维修成本,提高离心泵使用寿命,保证离心泵长期高效运行。
关键词:离心泵泵、振动、事故、寿命、高效离心泵被广泛应用于油气集输系统,离心泵安全和高效运行,对整个生产起到关键作用,常用的离心泵为水平卧式单机双吸泵,如图1。
该泵在额定排量250m3/h时达到高效区,扬程为300m、转速为2980r/min。
在离心泵轴承座上部安装了加速度震动传感器进行检测。
图1一、故障背景以首站当前并联运行的1#和2#泵为例,当并联运行排量为430m3/h时,通过传感器进行检测,非驱动端振动值在垂直、水平、轴向方向分别为9.1mm/s、5.1mm/s、3.4mm/s;驱动端为3.1mm/s、2.2mm/s、2.5mm/s。
离心泵震动级别属于D级,不合格,必须停泵检修。
二、故障排查①检测2#泵的联轴器同心度合格,检测前后泵头的盘根密封泄漏量合格,检测后泵头止推轴承温度值大于75℃,已超标。
②拆卸泵盖检测:如图2,叶轮无腐蚀现象,叶轮与轴的配合间隙过大,接触面磨损过度,叶轮外轮毂磨损过度;口环和壳体接触面磨损过度,已凹凸不平,壳体接触面产生带状腐蚀面。
图2以上因素属于正常运行过程中的腐蚀磨损,是机泵运行过程中,振动过高的非要因。
③拆卸进出口法兰连接螺栓检测,在垂直方向,管线法兰与泵进出口法兰同心度偏差较大,高度差值为3-6㎝,水平方向平齐。
结论为机泵在安装过程中带应力安装,泵基础安装偏差较大。
④泵水平中分面检测:(框式水平仪和塞尺进行)测量泵轴向水平度差值为1mm/m;泵径向水平度差值为1.3mm/m。
复测泵地脚水平度差值,数值与中分面检测数值相同。
结论为泵基础安装偏差较大。
三、故障处理更换2#泵转子部分,更换前后泵头的径向轴承和止推轴承。
针对泵基础偏差问题,为不影响生产,采用在泵地脚加垫片的方式。
离心泵喘振的原因及解决方法一、离心泵喘振的原因1.轴向不平衡:离心泵的转子轴向不平衡是最常见的原因之一、转子轴向不平衡主要表现为泵的振动频率与叶轮的转速相等,并且振动频率较高。
2.动静脉动的相互作用:当泵的进口流速较低,特别是在小流量和高扬程的工况下,会发生动静脉动的相互作用,从而引起泵腔内的压力变化,导致离心泵喘振。
3.气液两相流过程中的喘振:在一些工况下,如气体液体混输过程中,液体在离心力的作用下往外移动,而气体则往内运动。
当两相流速达到一定值时,会出现气液两相流相互干涉的现象,进而引起离心泵喘振。
4.叶轮与封水系统的不匹配:封水系统对离心泵的运行非常重要,当封水系统的适配性不合理时,如低压封水系统与高压封水系统不匹配,会导致泵体产生振动和喘振。
5.液力喘振:液力喘振是指由于液体在流动过程中产生的涡流紊乱,使得离心泵产生涡旋振动。
液力喘振是一种自激振荡,其频率与泵的工况有关。
二、离心泵喘振的解决方法1.检查并平衡转子轴向:对于转子轴向不平衡,可以使用动平衡仪进行检测和校正。
通过调整转轴位置,使转子在运转过程中保持平衡。
2.优化动静脉动的相互作用:针对动静脉动相互作用引起的喘振问题,可以通过改变进口流道结构、增大进口流速或采用消除泡沫和空气的措施来优化系统的流态,减少动静脉动的相互作用。
3.控制气液两相流:针对气液两相流引起的喘振问题,可以通过调整输送流量和改变流道结构来控制两相流的速度,从而减少喘振的可能性。
4.优化封水系统:封水系统的适配性非常重要,应根据泵的工况选择合适的封水系统,并确保封水系统的压力和流量匹配稳定,避免封水系统不匹配引起的喘振问题。
5.设计合理的阻振器:在离心泵的设计和安装中,可以采用一些阻振措施,如设置阻振器、减振装置等,对泵的振动进行控制。
综上所述,离心泵喘振的原因有很多,涉及到流体力学、结构力学和系统设计等多个方面。
针对不同的原因,需要采取相应的解决方法,以降低离心泵喘振的发生概率,确保泵的正常运行和使用寿命。
泵振动原因和测试与解决方法目录_Toc34896210总则 (3)振动评估 (3)泵的运行点对振动的影响 (4)泵入口设计对振动的影响 (5)平衡 (6)泵/驱动机对中 (6)共振 (7)转子动力学评估 (9)流体“增加质量”对转子动力学固有频率的影响 (10)环形密封“Lomakin效应”对转子动力学固有频率的影响 (10)转子扭转分析 (11)转子动力稳定性 (13)参数共振和分数频率 (15)测试方法– FFT频谱分析 (16)测试方法–冲击(敲击)测试 (17)振动故障排查 (19)案例:立式泵带空心轴/齿轮箱驱动 (22)总结 (24)总则当泵及其关联系统发生故障时,通常归结到四种类型:断裂,疲劳,摩擦磨损或泄漏。
断裂的原因是过载,例如超过预期的压力,或管口负荷超出推荐的水平。
疲劳的条件是施加的载荷是交变的,应力周期地超过材料破裂的耐久极限,泵部件的疲劳主要由振动过大引起,而振动大由转子不平衡,泵和驱动机之间轴中心线的过大不对中,或固有频率共振放大的过大运动引起。
摩擦磨损和密封泄漏意味着转子和定子之间的相互定位没有在设计的容差范围。
这可以动态发生,一般原因是过大的振动。
当磨损或泄漏位于壳体单个角度位置,常见的原因是不可接受的管口载荷量,及其导致的或独立的泵/驱动机不对中。
在高能泵(特别是加氢裂化和锅炉给水泵),另一个在定子一个位置摩擦的可能性是温度变化太快,导致每个部件由于随温度的变化,长度和装配不匹配。
有一些特定的方法和程序可供遵循,降低发生这些问题的机会;或如果发生了,帮助确定解决这些问题的方法,从而让一台泵保养的更好。
振动评估关于泵的振动和其它不稳定机械状态的诊断或预测,应包括如下评估:•转子动力学行为,包括临界转速,激励响应,和稳定性•扭转临界转速和振荡应力,包括起机/停机瞬态•管路和管口负荷引起的不稳定应力,和不对中导致的扭曲•由于扭振、止推和径向负荷导致高应力部件的疲劳•轴承和密封的稳态和动态行为•正常运行和连锁停机过程的润滑系统运行•工作范围对振动的影响•组合的泵和系统中的声学共振(类似喇叭)通常讨论的振动问题是轴的横向振动,即与轴垂直的转子动力学运动,然而,振动问题也会在泵的定子结构发生,如立式泵,另外振动也会发生在轴向,也可能涉及扭振。
泵的运行点对振动的影响尽量运行在BEF点,否则,离心泵随节流振动变大,除非节流伴随转速的改变如VFD。
在给定转速运行远低于BEF,与远高于BEF一样,使流体的速度角度与各级叶轮或扩散器或蜗壳舌部的流道角度不匹配。
在低于入口或出口回流的流量下,转子叶轮稳定的侧负荷和摇动可能引起摩擦,甚至损坏轴承。
一些工厂考虑未来生产扩容,购买大于需求能力的设备,但是这样会产生几年的本应可靠设备的性能不可靠。
如图1的典型结果,尽管运行在低于BEF是允许的甚至对某些应用是必须的,但是绝不要使泵长时间运行在低于厂家提供的“最小连续流量”,否则脉动和振动将有阶跃升高。
泵入口设计对振动的影响入口法兰的机械连接,以及泵叶轮上游的液压设计,都会显著影响泵的振动。
避免在大的管口有无限制的膨胀节(管路“柔性节”),然而,主要的液压问题是要有足够的静压避免气蚀。
这意味着不仅仅具有足够的净正入口压头(NPSHA),还要高一些以满足厂家公布的3%压头下降NPSHR(需要的NPHS)。
当NPSHA到3xNPHSR时,高频气蚀(有时听不见的)将引起叶轮流道入口侧或摩擦环出口侧的侵蚀,并导致低频有时流道通过频率振动增加。
除了入口压力太低,如果泵运行在远离BEF点,进入的流体对旋转的叶轮流道的冲击角度会与泵的设计者在该转速下预测的不同,将在入口或出口发生流道失速,分别导致入口或出口回流。
这种内部回流可引起流道压力侧的气蚀,导致旋涡状流随叶轮旋转,但是以一个较慢的转速,在意想不到的次同步频率激励转子临界转速,显著增大振动。
平衡不平衡是机器振动过大最常见的原因(大约50%),紧随其后的是不对中。
一般认为平衡分静态(质量中心偏离中心,质量分布主轴仍与旋转中心线平行)和动态(质量中心轴与旋转轴成角度)。
对应轴向短的部件(如一个止推垫圈)二者的差别可以忽略,只需要单面静态平衡。
对于长度大于1/6直径的部件,应考虑动态不平衡,至少需要双面平衡。
对于运行在二阶临界转速(对泵不常见)的转子,甚至双面平衡还不够,可能需要某些形式的高速模态平衡(即平衡去重考虑最接近的固有频率模态形状)。
不平衡表现为1X频率,这是因为转子的重点以转速旋转,使振动运动以相同频率。
一般它也导致一个圆形轴心轨迹,尽管如果转子在滑动轴承内承受高负荷轨迹可能为椭圆。
泵/驱动机对中不对中仅次于不平衡,是旋转机器振动问题第二个最常见的原因。
通常区分为两种形式:平行不对中和角不对中,一般不对中是两种的结合。
有时一个转子必须在冷态和未运行时偏移,以便在运行和热态时保持对中。
不对中主要引起2X转频振动,因为高度椭圆的轨迹驱使轴运行在不对中的一侧。
有时不对中负荷可导致高次谐频(即转子转速整数倍频,尤其3X),甚至可能降低振动,因为它加载转子使其对轴承壳异常变强。
或者,不对中可实际上引起1X振动增大,通过抬起转子使其离开重力加载的“轴承位置”,使轴承运行在相对卸载状态(这也可导致轴不稳定,后述)。
典型的不对中特征表现为2X振动,香蕉或数字8形轨迹,通常伴随相对较大的轴向运动,也是在2X,因为联轴器经历非线性“压弯”每转两次。
共振振动超标是常见的问题,尤其在变频系统,很可能存在一个激励频率等于一个固有频率。
为了避免共振,转子和轴承座的固有频率应该与“运球”型的力频率很好分离,它们很可能是1X转频(典型不平衡),2X(典型不对中),或叶轮流道数乘以转速(称为“流道通过”振动,当叶轮流道通过一个蜗壳舌或扩散器流道“切流”)实际上,共振放大(常称为“Q”值)系数通常介于2至25之间,如果引起振动的力是稳定的而不是振荡的。
Q取决于能量消耗的量,称为“阻尼”,它在碰撞中发生。
在一个汽车车身,这个阻尼由冲击吸收器提供;在一个泵,它大部分由轴承和“环形密封”转子和定子之间的流体陷阱提供,像平衡活塞。
对应共振,模态冲击测试是非常有效和被证明的方法,可快速发现共振的原因并从根本解决它。
典型的解决方法包括对最大振动运动区域选择性的支撑,或者增加质量。
模态“敲击“测试最好在机器运行中进行,这样,轴承和密封是“承载的”并支撑转子,在泵的典型运行状态。
确认你或服务商具有在机器运行条件下进行“敲击”测试的能力。
转子动力学评估转子动力学需要一个比结构动力学更专业计算机程序,因为它必须包括的影响如:◆在轴承,叶轮和密封,作为转速和负荷的函数的三维刚度和阻尼◆叶轮和止推平衡装置流体激励力◆陀螺效应然而,一些大学和商业组织开发了转子动力学程序,可用的程序包括各种计算子程序,用于轴承和圆形密封(如摩擦环和平衡鼓)的刚度和阻尼系数计算,临界转速计算,激励响应和转子稳定性计算,它包括轴承和密封阻尼和“交叉耦合刚度”的影响(即与运动垂直的的反作用力)。
流体“增加质量”对转子动力学固有频率的影响围绕转子的流体以三种方式增加转子的惯性:流体被困在叶轮通道直接增加质量;由于叶轮和轴材料的存在移动的流体直接对转子系统增加质量,由于转子在流体中的振动,它必须移动这个质量;以及在紧密间隙中的流体,一定比转子振动加速度更快地加速以保持连续性,并因此可能会增加很多倍于其移动的质量(称为Stroke Effect)。
环形密封“Lomakin效应”对转子动力学固有频率的影响泵的环形密封(例如,摩擦环和平衡鼓)可对动力学特性影响很大,通过改变转子支撑刚度从而转子固有频率,因此可以避开或导致强一倍和二倍转频激励与一个低固有频率之间可能的共振。
环形密封的刚度和阻尼小部分由挤压油膜和流体动力楔(对滑动轴承设计广为所知)提供。
然而,由于在环形密封中相对轴承来说存在高的轴向对圆周流速比例,由于圆周间隙变化可以在环形间隙产生很大的力,随着转子偏心的发展引起Bernoulli压降,这被称为Lomakin效应,并且是泵的环形密封中最大的刚度和阻尼力产生机制。
Lomakin效应直接取决于通过密封的压降,对于恒定系统流阻它产生Lomakin支撑刚度大约随着转速的平方而变化。
然而,对于大约恒定的系统压头,导致只有很小的Lomakin效应随转速的变化。
其它重要的参数是环形密封长度,直径和间隙;流体特性是次要的除非涉及非常高的粘度。
然而,流体漩涡可以导致Lomakin效应的显著下降,或者增加伴随它的交叉耦合,重要的是,当交叉耦合反作用力超过阻尼反作用力,它可能引起转子动力学不稳定(如合理设置的转子动力学程序所估算的那样)。
间隙效应是最强的几何尺寸影响,Lomakin效应大约与其平方成反比。
间隙影响很大的物理解释是,它给圆周压力分布(Lomakin效应的原因)通过圆周流动而消除。
任何环形密封腔带有切槽在一定程度具有与增加间隙相同的效果,在这个角度看深槽比浅槽更差。
转子扭转分析横向转子动力学分析可以通常不包括其它泵系统部件,如驱动机,泵壳体,轴承座,基础或管道,然而,泵轴的扭转振动和各种泵固定结构的振动是取决于系统的,由于振动的固有频率和振型随部件的质量,刚度和阻尼而变化的,不是包含在泵中的那些。
尽管扭振问题再泵不常见,除非由高频VDF激励的电动机驱动,或由往复发动机驱动,复杂的泵/驱动链具有扭振问题的可能性。
这可以通过计算进行检查,包括前几阶扭振临界转速,和系统在起机瞬态,稳态运行,连锁和电动机控制的瞬态过程中对激励的强迫振动响应。
强迫响应应该按照静态的加上振荡的应力之和,在驱动链的最高应力元件,通常是最小轴直径处。
一般计算前两个扭振模型足够覆盖期望的激励频率范围,为此,泵机组必须按照至少三个部分建模:泵转子,联轴器(包括任何垫块)和驱动机转子。
如果使用柔性联轴器(如盘联轴器),联轴器的刚度将与轴的刚度在一个数量级,必须包含在分析中。
联轴器扭转刚度的良好估计,通常相对独立与速度和稳态扭矩,列在联轴器样本数据中,通常提供给定尺寸的刚度范围。
如果包含齿轮箱,每个齿轮必须单独考虑,按照惯量和啮合比。
如果泵或驱动转子与将转子连接到联轴器的轴相比不是至少几倍的扭转刚度,那么单个轴长度和内部叶轮应包括在模型中,然而对工业泵来说要求最后一步是不常见的。
手工计算前几个扭转固有频率的方法由Blevins给出,然而泵的扭振计算应该包括系统阻尼的影响。
为了以足够精度确定轴的应力,应该使用数字的程序,如Holzer方法,传递矩阵法或有限元分析(FEA)。
最低扭转振型是在泵/驱动系统最常被激起的,这个扭转振型的大部分运动发生在泵的轴上。
这种情况下,主要的阻尼来自泵叶轮,当它由于扭振运动运行在稍高和稍低的瞬时转速时消耗的能量。