是对策G的两个解,则 akr =apq.
事实上,由 aij ,有aij aij
apq≤ apr≤ akr ≤ akq ≤ apq
因此 akr =apq.
6 5
2
1
7 5
6
2
第9页/共44页
性质2(可交换性).若(αk,βr)和 (αp,βq) 是对策G的两个解,则(αk,βq)和 (αp,βr) 也是对策G的解. 由 aiq ≤ apq= akr ≤ akq≤ apq = akr ≤ akj 得aiq≤akq≤ akj ,即akq是鞍点. 故(αk,βq)是解.同理,(αp,βr)是解.
,
y
∈
S
* 2
,
则
(
x
*
,
y
*
)
是
G
的
解
的
充
要
条
件
是
:
对任意i=1,2,…,m
和
j=1,2,…,n,有
E(i,y*)≤E(x*,y*)≤E(x*,j) (7)
证明:设(x*,y*)是G的解,则由定理2,有
E(x,y*)≤E(x*,y*)≤E(x*,y) (4)
由于纯策略是混合策略的特例,故(7)式成立. 反之,设(7)式成立,由(5)、(6)有 E(x,y*)=∑E(i,y*)xi≤E(x*,y*)∑xi=E(x*,y*) E(x*,y)=∑E(x*,j)yj≥E(x*,y*)∑yj=E(x*,y*)可知(4)式成立,故(x*,y*)是G的解
S1={α1,α2,α3,α4}, S2={β1,β2,β3},
6 1 8
A
3
2
4
9 1 10
试求双方的最优策略和赢得.