高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题
- 格式:docx
- 大小:113.69 KB
- 文档页数:4
高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题第11章曲线积分与曲面积分一(曲线积分1.对弧长的曲线积分 (第一类), f(x,y)ds,f[,(t),,(t)],'(t),,'(t)dt(,,,),,L,典型例题,x,acost (1)圆周0,t,1 {y,asint2,222n222n222n,1 (,)ds,(cost,asint)(acos't),(asin't)dt,2,ayax,,L0(x,y)ds(2)线段:把线段表示出来 L是(1,0)到(0,1)的直线段 ,L1(x,1,x)x,1dx,2,0 原式= 直线为:y=1-x22x,yeds (3)圆弧的整个边界(分段) ,La,a222,,xyxa22a42e1dx,e(acos't),(asin't)dt,e1,1dx,e(2,a),2 ,,,0004(4)参数方程 (公式)2xyzds(5)利用折线围成的封闭图形 (坐标分段) A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2) ,,3322,0,0,1y20,1,0dy,y,9AB: BC: CD: ,,,,ABBC0CD0?,,,,9 ,,,,,ABBCCD2.对坐标的曲线积分 (第二类),P(x,y)dx,Q(x,y)dy,{P[,(t),,(t)],'(t),Q[,(t),,(t)],'(t)dt ,,L,典型例题x,acost222xydx0,t,1(1)圆周圆周及x轴在一(x,a),y,a(a,0){,Ly,asint xaacost,,x,x:(0,t,1),:象限逆时针 {{LL12yasint0,y,2a,3a(1cost)asint(aacost)'dt0dxa,,,,,,,, ,,,,120LLL21222(2)直线: 写出函数关系从(0,0)到(2,4) x-ydx,L:y,x,L25624 原式=x-xdx- (),,015,(3)圆弧 L: x=rcost,y=rsint上对应t从0到的一段弧 ydx,xdy,,L2(4)参数方程 (公式)(5)利用折线围成的封闭图形dx-dy,ydz ,A(1,0,0) B(0,1,0) C(0,0,1) ABCA封闭图形 ,,=01131[1(1)][(1)'(1)']121 ,,,,,zdx,,,z,,zzdz,dx,,,,,,,,,,,ABBCCA10022二(格林公式,Q,P(-)dxdy,Pdx,Qdy1. ,,,L,x,yD1A,xdy-ydx2.面积 ,L2,,PQ3.曲线积分;pdx,dy,, 与路径无关Q,L,y,xP(x,y)dx,Q(x,y)dy同上Pdx,Qdy与路径无关,存在u(x,y)使du,Pdx,Qdy4. ,Lxy u(x,y),p(x,y)dx,Q(x,y)dy0,,xy00典型例题22xyxyyedxxedyL(,),(3,):,,1的正向(1) 22,Lab,p,Q,1,3?,2dxdy,2,ab,解: ,,,L,y,xD(2)验证整个xoy面内存在u(x,y)使2232ydu= (3xy,8xy)dx,(x,8xy,12ye)dy并求u(x,y),p,Q2,,3x,16xy,?存在解: ,y,xxy32y322yU(x,y),0dx,(x,8xy,12ye)dy,c,xy,4xy,12(y,1)e,c ,,002三(曲面积分1.对面积的曲面积分 (第一类)22 f(x,y,z)ds,f[x,y,z(x,y)]1,z,zdxdyxy,,,,Dxy典型例题221,4zds,其中,是z,x,y上z,1的曲面部分(1)球面。
1 / 13第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分利用性质计算曲线积分和曲面积分. .(2) 直接化为定积分或二重积分计算曲线或曲面积分直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分利用格林公式计算平面闭曲线上的曲线积分. . (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分利用斯托克斯公式计算空间闭曲线上的曲线积分. . (6) 利用高斯公式计算闭曲面上的曲面积分利用高斯公式计算闭曲面上的曲面积分. . 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则轴对称,则10 (,)2(,)L L f x f x y ds f x y dsf x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)LL Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数 其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则轴对称,则10 (,)2(,)L L f y f x y ds f x y dsf y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则对称,则 ()()=⎰⎰L L f x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则,则 []22(,)(),()()()()βααβ''=+<⎰⎰Lf x y ds f x t y t x t y t dt若曲线弧:()()θαθβ=≤≤L r r (极坐标),则,则[]22(,)()cos ,()sin ()()βαθθθθθθθ'=+⎰⎰Lf x y ds f r r r r d若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则,则[]222(,,)(),(),()()()()()βααβΓ'''=++<⎰⎰f x y z ds f x t y t z t x t y t z t dt (5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则,则[]22(,,),,(,)1(,)(,)xyx y D f x y z dS f x y z x y z x y z x y dxdy ∑''=++⎰⎰⎰⎰ 其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则,则[]22(,,)(,),,1(,)(,)yzy z D f x y z dS f x y z y z x y z x y z dydz ∑''=++⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则,则[]22(,,),(,),1(,)(,)zxz x D f x y z dS f x y x z z y y z y y z dzdx ∑''=++⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域.(8)d d +⎰⎰L P x Q y 与路径无关d d 0⇔+=⎰⎰Ñc P x Q y (c 为D 内任一闭曲线)内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Q y x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰ÑL DQ P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdydv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 或 (cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式)斯托克斯公式dydz dzdx dxdyPdx Qdy Rdz x y z P Q RΓ∑∂∂∂++=∂∂∂⎰⎰⎰Ñ 其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1.计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:)计算曲线积分的步骤: 1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dy I x y x x x x由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此函数,因此220,011==++⎰⎰LLdx dy xx故 20+==++⎰L dx dyI x y x 『方法技巧』『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用同,记清楚后再使用..事实上,本题还可应用格林公式计算事实上,本题还可应用格林公式计算..例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS 2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS故2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS by dS cz dS ndS22222()∑∑=+++⎰⎰⎰⎰a b c x dS ndS22222222()43π∑++=+++⎰⎰a b c x y z dS R n 22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n 『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些同,理解起来更容易些..若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰Òx y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰乙乙x y z dS axdS a x a dS a dS222402248ππ∑=+==⎰⎰g Òa dS a a a 『方法技巧』 积分曲面积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰Òx a dS例4 计算曲线积分2222-+⎰ÑLxy dy x ydxx y,其中L 为圆周222(0)+=>x y a a 的逆时针方向 解法1 直接计算. 将积分曲线L 表示为参数方程形式表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a 代入被积函数中得代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰ÑLxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d ad324332013118(sinsin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰g g g ad a a解法2 利用格林公式利用格林公式2222222211()-=-=++⎰⎰⎰⎰蜒L L Dxy dy x ydx xy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故,故2222322112πθρρρπ-==+⎰⎰⎰g ÑaLxy dy x ydxd d a ax y『方法技巧』『方法技巧』 本题解法本题解法1用到了定积分的积分公式:用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰g g Lg g g Lg g g n n n n n n d n n n n n 为奇数为偶数 解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰Lx y dx x y dyx y ,其中L 为沿cos π=y x 由点由点(,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难. 由于由于 2222,+-+==++x yx y P Q x y x y ,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:2cos 5:(:)442sin πθππθπθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得,代入被积函数中得222()()1()()2π'+--=+--+⎰⎰L L x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』『方法技巧』 本题的关键是选取积分弧段本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑为1++=x y z 的法向量与各坐标轴正向夹锐角的侧面解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy 面的区域{}(,)1=+≤xy D x y x y ,故,故233(1)∑∑∑++==--⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy x y dxdy21(1)22003(1)3(1)-=--=--⎰⎰⎰⎰xyx D x y dxdy dx x y dy 1401(1)2=-⎰x dx 04111(1)30=---=⎰t x t t dt『方法技巧』『方法技巧』 由于积分曲面由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑+∑=-+-+-⎰⎰x ydydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy 123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故 222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰g g xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰g hh h h d d h『方法技巧』『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求..本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号例8 计算曲线积分()()()-+-+-⎰ÑLz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰ÑL dydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量曲线或曲面形物体的质量. . (2) 曲线或曲面的质心(形心)曲线或曲面的质心(形心). . (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论:(1)平面曲线形物体)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体空间曲线形物体 (,,)ρ=⎰LM x y z ds 曲面形构件曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标质心坐标平面曲线形物体的质心坐标:平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰LLLLx x y dsy x y dsx y x y dsx y ds空间曲线形物体的质心坐标:空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y L L I y x y ds I x x y ds 空间曲线形物体的转动惯量:空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y L LI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds11 / 13曲面形物体的转动惯量:曲面形物体的转动惯量: 2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰zI x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度的散度div A ∂∂∂=++∂∂∂P Q R x y z 矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1.曲线积分或曲面积分应用题的计算步骤: i j k12 / 13 (1)根据所求物理量,代入相应的公式中;)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分)计算曲线积分或曲面积分. .例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功(其中22,=+r x y k 为常数)为常数) 解 积分曲线积分曲线L 如图11.7所示. 场力所做的功为场力所做的功为»(,)(,)=+⎰ABW P x y dx Q x y dy »22=-⎰AB y xk dx dy r r 令22,==-y x P Q r r ,则22224()(0)∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y xW k dx dy kk r r 『方法技巧』 本题的关键是另取路径本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如U AO OB ,但不可以选取此路径,,但不可以选取此路径,因为因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线21(12)0⎧⎪=+≤≤⎨=⎪⎩y z z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy 2sin ∑=+⎰⎰xz dydz xdxdy1L A B o y L x 图11.713 / 13 1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分. .。
高数下十一章重点总结+例题第十一章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法。
3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。
4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。
5.知道散度与旋度的概念,并会计算。
6.会用曲线积分及曲面积分求一些几何量与物理量。
【教学重点】1.两类曲线积分的计算方法;2.格林公式及其应用;3.两类曲面积分的计算方法;4.高斯公式、斯托克斯公式;5.两类曲线积分与两类曲面积分的应用。
【教学难点】1.两类曲线积分的关系及两类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3.应用格林公式计算对坐标的曲线积分;4.应用高斯公式计算对坐标的曲面积分;5.应用斯托克斯公式计算对坐标的曲线积分。
6.两类曲线积分的计算方法,两类曲线积分的关系;7.格林公式及其应用格林公式计算对坐标的曲线积分;8.两类曲面积分的计算方法及两类曲面积分的关系;9.高斯公式、斯托克斯公式,应用高斯公式计算对坐标的曲面积分;10.两类曲线积分与两类曲面积分的应用;11.应用斯托克斯公式计算对坐标的曲线积分。
【教学课时分配】(14学时)第1 次课§1第2 次课§2 第3 次课§3第4 次课§4 第5次课§5 第6次课§6第7次课习题课【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量.把曲线分成n 小段, ?s 1, ?s 2, ? ? ?, ?s n (?s i 也表示弧长); 任取(ξi , ηi )∈?s i , 得第i 小段质量的近似值μ(ξi , ηi )?s i ; 整个物质曲线的质量近似为i i i ni s M ?≈=∑),(1ηξμ;令λ=max{?s 1, ?s 2, ? ? ?, ?s n }→0, 则整个物质曲线的质量为 i i i ni s M ?==→∑),(lim 10ηξμλ.这种和的极限在研究其它问题时也会遇到.定义设函数f (x , y )定义在可求长度的曲线L 上, 并且有界.,将L 任意分成n 个弧段: ?s 1, ?s 2, ? ? ?, ?s n , 并用?s i 表示第i 段的弧长; 在每一弧段?s i 上任取一点(ξi , ηi ), 作和i i i ni s f ?=∑),(1ηξ; 令λ=max{?s 1, ?s 2, ? ? ?, ?s n }, 如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(?, 即i i i ni L s f ds y x f ?==→∑?),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.曲线积分的存在性: 当f (x , y )在光滑曲线弧L 上连续时, 对弧长的曲线积分ds y x f L ),(?是存在的. 以后我们总假定f (x , y )在L 上是连续的.根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分ds y x L ),(?μ的值, 其中μ(x , y )为线密度.对弧长的曲线积分的推广:i i i i ni s f ds z y x f ?==→Γ∑?),,(lim ),,(10ζηξλ. 如果L (或Γ)是分段光滑的, 则规定函数在L (或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和. 例如设L 可分成两段光滑曲线弧L 1及L 2, 则规定ds y x f ds y x f ds y x f L L LL ),(),(),(2121+=+.闭曲线积分: 如果L 是闭曲线, 那么函数f (x , y )在闭曲线L 上对弧长的曲线积分记作ds y x f L ),(?.对弧长的曲线积分的性质: 性质1 设c 1、c 2为常数, 则ds y x g c ds y x f c ds y x g c y x f c L L L ),(),()],(),([2121+=+;性质2 若积分弧段L 可分成两段光滑曲线弧L 1和L 2, 则ds y x f ds y x f ds y x f L LL ),(),(),(21+=;性质3设在L 上f (x , y )≤g (x , y ), 则??≤L L ds y x g ds y x f ),(),(. 特别地, 有≤L L ds y x f ds y x f |),(||),(|二、对弧长的曲线积分的计算法根据对弧长的曲线积分的定义, 如果曲线形构件L 的线密度为f (x , y ), 则曲线形构件L 的质量为L ds y x f ),(.另一方面, 若曲线L 的参数方程为x =?(t ), y =ψ (t ) (α≤t ≤β),则质量元素为dt t t t t f ds y x f )()()]( ),([),(22ψ?ψ?'+'=,曲线的质量为?'+'βαψ?ψ?dt t t t t f )()()]( ),([22.即'+'=βαψ?ψ?dt t t t t f ds y x f L)()()]( ),([),(22.定理设f (x , y )在曲线弧L 上有定义且连续, L 的参数方程为x =?(t ), y =ψ(t ) (α≤t ≤β), 其中?(t )、ψ(t )在[α, β]上具有一阶连续导数, 且?'2(t )+ψ'2(t )≠0, 则曲线积分dsy x f L ),(?存在, 且dt t t t t f ds y x f L )()()](),([),(22ψ?ψ?βα'+'=??(α<β).应注意的问题: 定积分的下限α一定要小于上限β. 讨论:(1)若曲线L 的方程为y =ψ(x )(a ≤x ≤b ), 则ds y x f L ),(?=?提示: L 的参数方程为x =x , y =ψ(x )(a ≤x ≤b ),dx x x x f ds y x f baL ??'+=)(1)](,[),(2ψψ.(2)若曲线L 的方程为x =?(y )(c ≤y ≤d ), 则ds y x f L ),(?=?提示: L 的参数方程为x =?(y ), y =y (c ≤y ≤d ),dy y y y f ds y x f dcL ??+'=1)(]),([),(2??.(3)若曲Γ的方程为x =?(t ), y =ψ(t ), z =ω(t )(α≤t ≤β), 则ds z y x f ),,(?Γ=?提示:dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψ?ωψ?βα'+'+'=??Γ.例1 计算ds y L, 其中L 是抛物线y =x 2上点O (0, 0)与点B (1, 1)之间的一段弧.解曲线的方程为y =x 2 (0≤x ≤1), 因此'+=1222)(1dx x x ds y L ?+=10241dx x x )155(121-=.例2 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度为μ=1).解取坐标系如图所示, 则?=L ds y I 2. 曲线L 的参数方程为x =R cos θ, y =R sin θ (-α≤θ<α). 于是 ?=L ds y I 2?-+-=ααθθθθd R R R 2222)cos ()sin (sin-=ααθθd R 23sin =R 3(α-sin α cos α).例3 计算曲线积分ds z y x )(222++?Γ, 其中Γ为螺旋线x =a cos t 、y =a sin t 、z =kt 上相应于t 从0到达2π的一段弧.解在曲线Γ上有x 2+y 2+z 2=(a cos t )2+(a sin t )2+(k t )2=a 2+k 2t 2, 并且 dt k a dt k t a t a ds 22222)cos ()sin (+=++-=, 于是ds z y x )(222++?Γ?++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=.小结用曲线积分解决问题的步骤: (1)建立曲线积分;(2)写出曲线的参数方程 ( 或直角坐标方程) , 确定参数的变化范围;(3)将曲线积分化为定积分;(4)计算定积分.教学方式及教学过程中应注意的问题在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。
第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。
11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。
11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。
11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。
11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。
11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。
5考研专题解析第十一章 曲线积分与曲面积分1.(98年数一)设L 为椭圆,13422=+y x 其周长为a ,则._______)432(22=++⎰ds y x xy L179解析 L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上22222213412(34)121243LLx y x y x y ds ds a +=⇒+=⇒+==⎰⎰.因此,原式=222(34)12LLxyds x y ds a ++=⎰⎰.2.(09年数一)已知曲线2:(0L y x x =≤,则_______L xds =⎰180解析 直接代公式化第一类平面曲线积分为定积分得Lxds ==⎰1222014)(14)8x d x =++ 32212113(14)(271)83126x =⋅+=-=.1.(00年数一) 计算曲线积分,422⎰+-=L y x ydxxdy I 其中L 是以点(1,0)为中心,R 为半径的圆周(1>R ),取逆时针方向.181解析 记2222,44y xP Q x y x y-==++,则L I Pdx Qdy =+⎰直接计算较繁琐,想借助格林公式.当220x y +≠时,222224(4)Q P y x x y x y ∂∂-==∂∂+, 记L 围成的圆域为D ,因D 内含原点(0,0),而P Q 、在(0,0)无意义,所以不能直接在D 上用格林公式.现作一小椭圆C ε(取逆时针方向):2224x y ε+=,0ε>充分小,使C ε位于D 内,记L 与C ε围成区域D ε,在D ε上用格林公式得()0LC D Q PPdx Qdy Pdx Qdy dxdy x yεε∂∂+-+=-=∂∂⎰⎰⎰⎰, 即222222222241122442L C C x y xdy ydx xdy ydx ydx xdy dxdy x y x y εεεεπεπεεε+≤--==-+===++⎰⎰⎰⎰⎰. 2.(04年数一) 设L 为正向圆周222x y +=在一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为_______182解析 已知L的参数方程,x t y t =,t 从0到2π.直接代公式得202)()]Lxdy ydx t t t t dt π-=-⎰⎰,2220322sin 242dt tdt πππππ=+=+⋅=⎰⎰. 3.(08年数一)计算曲线积分2sin 22(1)LI xdx x ydy =+-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.183解析 将曲线L 的方程代入直接计算2sin 222LLI xdx ydy x ydy =-+⎰⎰(,0)220(0,0)1(cos 2)2sin cos 2x y x x xdx ππ=--+⎰221sin 2cos 22x xdx x d x ππ==-⎰⎰2001cos 2cos 22x x x xdx ππ=-+⎰201sin 222xd x ππ=-+⎰ 220011sin 2sin 22222x x xdx ππππ=-+-=-⎰.1.(97年数一)计算积分⎰-+-+-Cdz y x dy z x dx y z )()()(,其中C 是曲线⎩⎨⎧=+-=+,2,122z y x y x 从z 轴正向往z 轴负向看C 的方向是顺时针的.184 解析 用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围成有限部分,由L 的定向,按右手法则S 取下侧.()()()2CS dydz dzdx dxdy z y dx x z dy x y dz dxdy x y z z y x z x y∂∂∂-+-+-==∂∂∂---⎰⎰⎰, S 在xoy 平面上的投影区域22{(,)1}xy D x y x y =+≤.将第二类曲面积分化为二重积分得22Sdxdy π==-⎰⎰原积分.这里S 取下侧,故公式取负号. 2.(01年数一)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 为平面2x y z ++=与柱面1=+y x 的交线,从z 轴正向看去,L 为逆时针方向.185解析 用斯托克斯公式来计算,记S 为平面2xy z ++=上L 所围部分.由L 的定向,按右手法则S==S 的单位法向量(cos ,cos ,cos )n a r β==,于是由斯托克斯公式得222222cos cos cos 23Sa r I ds x y z y z z x x y β∂∂∂=∂∂∂---⎰⎰([(24(2622Sy z z x x y ds =----+--⎰⎰(423)2(6)S Sx y z dS x y z x y dS =++++=+-⎰⎰. 将第一类曲面积分化为二重积分得(62(6)S SI x y x y dxdy =+-=-+-⎰⎰, 其中D 为S 在xoy 平面上的投影区域1x y +≤.由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰,所以21224DI dxdy =-=-=-⎰⎰.专题二、求曲面积分与高斯公式∑体222x y x +≤内的部分.179解析 将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰首先确定被积函数(,)f x y==, 对锥面z =而言,==, 其次确定积分区域即∑在xOy 平面的投影区域22{(,)(1)1}xy D x y x y =-+≤xyD I =⎰⎰作极坐标变换cos ,sin x r y r θθ==,则{(,)02cos ,}22r D r r θππθθθ=≤≤-≤≤. 2cos 2cos 322000213I d r rdr r d θππθπθθ-=⋅==⎰2.(07年数一)设曲面:1x y z ∑++=,则()______x y dS ∑+=⎰⎰187 解析 ∑关于yoz 平面对称,x 对x 为奇函数⇒0xdS ∑=⎰⎰,由变量的轮换对称性⇒x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰,⇒()111()1333I x y dS y dS x y z dS dS ∑∑∑∑=+==++==⋅∑⎰⎰⎰⎰⎰⎰⎰⎰曲面的面积 记∑在第一卦限部分的面积为111cos ,2r σσ==即,因此118833I σ=⋅==1.(05年数一) 设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则______xdydz ydzdx zdxdy ∑++=⎰⎰192解析 在Ω上用高斯公式得(111)31I dV dV ΩΩ=++=⎰⎰⎰⎰⎰⎰作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθρϕθρϕ===,{(,,)0,0,02}4RπρϕθρϕθπΩ=≤≤≤≤≤≤,所以22240003sin (2RI d d d R ππθϕρϕρπ==⎰⎰⎰.2.(06年数一) 设∑是锥面1)z z =≤≤的下侧,则23(1)_____x d y d z y d z d x z d x d y ∑++-=⎰⎰192解析 添加辅助面221:1(1)z x y ∑=+≤,法向量朝上,123(1)0000xdydz ydzdx z dxdy ∑++-=++=⎰⎰,∑与1∑围成区域Ω,用高斯公式得123(1)(123)623xdydz ydzdx z dxdy dV ππ∑∑Ω++-=++=⋅=⎰⎰⎰⎰⎰,原式202ππ=-=. 3.(08年数一)设曲面∑是z =的上侧,则2_________xydydz xdzdx x dxdy ∑++=⎰⎰193解析 直接代入公式将第二类曲面积分化为二重积分,曲面∑的方程是,)z x y D =∈,其中22{(,)4}D x y x y =+≤,z z x y ∂∂==∂∂所以22()()00D D z zxy x x dxdy x dxdy x y ⎡⎤∂∂-+-+=++⎢⎥∂∂⎣⎦⎰⎰⎰⎰221()42Dx y dxdy π=+=⎰⎰.1.(01年数一)设222z y x r ++=则(1,2,2)()______div gradr -=195解析 先求(,,)x y zgradr r r r =,再求()()()()x y zdiv gradr x r x r x r∂∂∂=++∂∂∂.2223331112()()()x y z r r r r r r r=-+-+-=.所以(1,2,2)2()3div gradr -=.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars.The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
- -第十一章 曲线积分与曲面积分一 、内容提要(一)曲线积分1.第一类曲线积分(对弧长)(1)定义:设),(y x f 是光滑曲线L 上的有界函数,把L 分成n 段,设i 段的弧长为i s ∆(最长者记{}i s ∆=max λ),在其上任取一点),(i i ηξ,则),(y x f 在L 上的第一类(对弧长)曲线积分为 ∑⎰=>-∆=ni i i i Ls f ds y x f 1),(lim ),(ηξλ.(2) 几何意义与物理意义几何意义是柱面面积,该柱面以L 为准线、其母线平行于z 轴、介于平面0=z 和曲面),(y x f z =之间的部分(图10.1). 物理意义是线密度为),(y x f 的物质曲线L 的质量. (3)计算方法 : 即“定限、代入”两步法第一步(定限):写出L 的方程及自变量的变化范围,用不等式表示,例如 βα≤≤t ,并且一定有βα<.第二步(代入):计算出弧长的微分式ds .将L 的方程和ds 一并代人曲线积分公式,即转变为定积分.共有三种形式: 参数式 L : ⎩⎨⎧≤≤==,),(),(βαψϕt t y t x ds t t ds 22))(())((ψϕ'+'=⎰⎰'+'=Ldt t t t t f ds y x f βαψϕψϕ22))(())(())(),((),(;直角坐标 把L :)()(b x a x y ≤≤=ψ看做曲线参数表达式⎩⎨⎧==)(x y xx ψ可以得到如下公式:⎰⎰'+=Lb adx x x x f ds y x f 2))((1))(,(),(ψψ;极坐标 L :,),(βθαθ≤≤=r r θθθd r r ds 22))(()('+=,⎰⎰'+=Ld r r r r f ds y x f βαθθθθθθθ22))(()()sin )(,cos )((),(.2.第二类曲线积分(对坐标)(1)定义 : 设),(y x P 和),(y x Q 是有向光滑曲线L 上的有界函数,把L 分成n 段,设第i段的- -分点为),(i i i y x M ,在弧 ⋂-i i M M 1上任取一点),(i i ηξ,设1--=∆i i i x x x , 1--=∆i i i y y y ,则),(y x P 在L 上对坐标x 的曲线积分是⎰∑=>-∆=Lni i i i x P dx y x P 1),(lim ),(ηξλ;而),(y x Q 在L 上对坐标y 的曲线积分是⎰∑=>-∆=Lni iiiyQ dy y x Q 1),(lim ),(ηξλ;在应用上往往表现为两者的和:⎰⎰⎰+=+LLLdy y x Q dx y x P dyy x Q dx y x P ),(),(),(),((记为).(2)物理意义第二类曲线积分的物理意义是变力j y x Q i y x P F),(),(+=沿有向曲线L 移动所作的功,即⎰⋅=Lr d F W⎰+=L dy y x Q dx y x P ),(),(.其中 j dy i dx r d+= .由微分三角形知ds dy dx r d =+=22,向量r d在切线上.(4)计算方法直接计算 即“定向、代入”两步法. 第一步(定向):写出L 的方程及自变量的变化范围,α和β分别对应L 的起点(下限)和终点(上限).即变量“t 由α向β”积分.与第一类曲线积分不同,在这里可能出现βα>的情况.第二步(代入):把L 的方程及dy dx ,代入被积分式中,即变为定积分,α和β分别是下限和上限.例如, (定向)L :⎩⎨⎧==βαψϕ向由t t y t x ),(),(.(代入)⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),((([.间接计算 主要使用两个重要定理.格林定理 设:① D 是由分段光滑曲线L 围成,L 的方向为正;② ),(y x P 和),(y x Q 在D 上具有一阶连续偏导数.则⎰⎰⎰=⎪⎪⎭⎫⎝⎛∂∂-∂∂=+L D dxdy y P x Q Qdy Pdx dxdy QP y x D⎰⎰∂∂∂∂. 注意 : 如果D 是单连通域,则L 逆时针方向为正.如果D 是复连通域,则 L 的外周界逆时针方向为正,而内周界顺针方向为正.如果L 的方向为负,那么在使用格林时时一定要补加一个负号.与路径无关定理 设:① D 是单连通域,有向曲线L ∈D ;② ),(y x P 和),(y x Q 在D 中有- -连续的偏导数.则⎰+LQdy Pdx 与路径无关<=>yPx Q ∂∂=∂∂ 对于一个第二类曲线积分计算题,如果不宜直接计算或直接计算较繁,就需要计算yPx Q ∂∂∂∂和,依不同情况,或使用格林定理或改变积分路径.(5)曲线积分与全微分的关系设D 是单连通域;P 和Q 具有连续偏导数.则在D 中存在),(y x u 使yPx Q Qdy Pdx du ∂∂=∂∂⇔+= .其计算公式是 ⎰⎰⎰+=+=xx yy y x y x dy y x Q dx y x P dy y x Q dx y x P y x u 000),(),(),(),(),(0),(),(⎰⎰+=y y x x dx y x P dy y x Q 0),(),(0. 3.两类曲线积分之间的转换设曲线了L :)(),(t y t x ψϕ==.在曲线上L 任一点的切向量是=t {)(),(t t ψϕ''},容易求出单位切向量{}ααsin ,cos 0=t,由微分三角形知ααsin ,cos ds dy ds dx ==.将这两式代入第二类曲线积分中得⎰⎰+=+LLds Q P Qdy Pdx ]sin cos [αα如用向量表示,{}{}{}{}ds t ds ds dy dx r d y x r Q P A 0sin ,cos ,,,,, =====αα,于是ds t A r d A LL⎰⎰⋅=⋅0(此式在三维空间也正确).4.常用计算技巧代人技巧 若计算⎰Lds y x f ,),(而L 的方程恰是a y x f =),(,则⎰⎰==LLal ads ds y x f ),((l 是l 的长度).注意: 这种代入技巧在两类曲线积分和两类曲面积分中都适用.但是绝不可以用在重积分上.例如,设D 是由222a y x =+围成的区域,则下面的“代入”是错误的:⎰⎰⎰=+DDdxdy a dxdy y x 222)( 错误的原因是在D 的内部222a y x <+.利用奇偶对称性 第一类曲线积分的奇偶对称性与二重积分类似.设L 关于y 轴对称,则- -⎰⎰⎪⎩⎪⎨⎧=LL x y x f x y x f ds y x f 为偶函数,关于当为奇函数,关于当),(2),(,0),(1其中1L 是L 在y 轴右边的部分.若L 关于x 对称,则有结果类似. 第二类曲线积分的奇偶对称性与第一类曲线积分相反.设L 关于y 轴对称,(1L 是L 在y 轴右边的部分)则⎰⎰⎪⎩⎪⎨⎧=LL x Q x Q dy y x Q 为偶函数。
第十一章 曲线积分与曲面积分内容要点一、引例 设有一曲线形构件所占的位置是xOy 面内的一段曲线L (图10-1-1),它的质量分布不均匀,其线密度为),(y x ρ,试求该构件的质量. 二、第一类曲线积分的定义与性质性质1 设α,β为常数,则⎰⎰⎰+=+L L L ds y x g ds y x f ds y x g y x f ),(),()],(),([βαβα;性质2设L 由1L 和2L 两段光滑曲线组成(记为=L 21L L +),则.),(),(),(2121⎰⎰⎰+=+L L LL ds y x f ds y x f ds y x f注: 若曲线L 可分成有限段,而且每一段都是光滑的,我们就称L 是分段光滑的,在以后的讨论中总假定L 是光滑的或分段光滑的.性质3 设在L 有),(),(y x g y x f ≤,则ds y x g ds y x f LL⎰⎰≤),(),(性质4(中值定理)设函数),(y x f 在光滑曲线L 上连续,则在L 上必存在一点),(ηξ,使s f ds y x f L⋅=⎰),(),(ηξ其中s 是曲线L 的长度.三、第一类曲线积分的计算:)(),(),(βα≤≤⎩⎨⎧==t t y y t x xdt t y t x t y t x f ds y x f L)()(])(),([),(22'+'=⎰⎰βα(1.10)如果曲线L 的方程为 b x a x y y ≤≤=),(,则dx x y x y x f ds y x f ba L )(1])(,[),(2'+=⎰⎰ (1.11)如果曲线L 的方程为 d y c y x x ≤≤=),(,则dy y x y y x f ds y x f dcL )(1]),([),(2'+=⎰⎰ (1.12)如果曲线L 的方程为 βθαθ≤≤=),(r r ,则θθθθθβαd r r r r f ds y x f L)()()sin ,cos (),(22'+=⎰⎰例5(E03)计算,||⎰Lds y 其中L 为双纽线(图10-1-4))()(222222y x a y x -=+的弧.解 双纽线的极坐标方程为 .2cos 22θa r =用隐函数求导得 ,2sin ,2sin 22ra r a r r θθ-='-='.2sin 2224222θθθθd r a d ra r d r r ds =+='+= 所以 .)22(2sin 4sin 4||2402402a d a d ra r ds y L -==⋅=⎰⎰⎰ππθθθθ 内容要点一、引例:设有一质点在xOy 面内从点A 沿光滑曲线弧L 移动到点B ,在移动过程中,这质点受到力j y x Q i y x P y x F ρρρ),(),(),(+= (2.1)的作用,其中),(y x P ,),(y x Q 在L 上连续. 试计算在上述移动过程中变力),(y x F ρ所作的功. 二、 第二类曲线积分的定义与性质:j y x Q i y x P y x A ρρϖ),(),(),(+=⎰⎰+=⋅LLds Q P ds t A )cos cos (βαϖϖ平面上的第二类曲线积分在实际应用中常出现的形式是⎰+L dy y x Q dx y x P ),(),(⎰⎰+=L L dy y x Q dx y x P ),(),(性质1 设L 是有向曲线弧, L -是与L 方向相反的有向曲线弧,则⎰⎰+-=+-L L dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(;即第二类曲线积分与积分弧段的方向有关.性质2 如设L 由1L 和2L 两段光滑曲线组成,则⎰⎰⎰+++=+21L L L Qdy Pdx Qdy Pdx Qdy Pdx .三、第二类曲线积分的计算:),(t x x = ),(t y y =⎰+L dy y x Q dx y x P ),(),(⎰'+'=βαdt t y t y t x Q t x t y t x P )}()](),([)()](),([{. (2.9)如果曲线L 的方程为 ),(x y y =起点为a , 终点为b ,则.)}()](,[)](,[{⎰⎰'+=+ba L dx x y x y x Q x y x P Qdy Pdx如果曲线L 的方程为),(y x x = 起点为c , 终点为d ,则.]}),([)(]),([{⎰⎰+'=+dcLdy y y x Q y x y y x P Qdy Pdx内容要点一、格林公式定理1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q (3.1)其中L 是D 的取正向的边界曲线.若在格林公式(3.1)中,令,,x Q y P =-= 得⎰⎰⎰-=LDydx xdy dxdy 2,上式左端是闭区域D 的面积A 的两倍,因此有 .21⎰-=Lydx xdy A 二、平面曲线积分与路径无关的定义与条件定理2 设开区域D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则下列命题等价:(1) 曲线积分⎰+LQdy Pdx 在D 内与路径无关;(2)表达式Qdy Pdx +为某二元函数),(y x u 的全微分; (3)xQy P ∂∂=∂∂在D 内恒成立; (4)对D 内任一闭曲线L ,0=+⎰LQdy Pdx .由定理的证明过程可见,若函数),(y x P ,),(y x Q 满足定理的条件,则二元函数⎰+=),(),(00),(),(),(y x y x dy y x Q dx y x P y x u (3.3)满足 dy y x Q dx y x P y x du ),(),(),(+=, 我们称),(y x u 为表达式dy y x Q dx y x P ),(),(+的原函数.C dy y x P dx y x P y x u yy xx ++=⎰⎰00),(),(),(0或 C dy y x P dx y x P y x u yy xx ++=⎰⎰0),(),(),(0例4 计算,2dxdy e Dy ⎰⎰- 其中D 是以)1,0(),1,1(),0,0(B A O 为顶点的三角形闭区域.解 令,0=P ,2y xe Q -=则 yPx Q ∂∂-∂∂.2y e -= 应用格林公式,得dxdy e Dy ⎰⎰-2⎰++-=BOAB OA y dy xe 2⎰-=OAdy xe y 2⎰-=102dx xe x ).1(211--=e 例5(E03)计算,22⎰+-L y x ydx xdy 其中L 为一条无重点)1(, 分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向.解 记L 所围成的闭区域为,D 令,22y x y P +-=,22yx xQ += 则当022≠+y x 时,有 x Q∂∂22222)(y x x y +-=.y P ∂∂=(1) 当D ∉)0,0(时,由格林公式知;022=+-⎰L y x ydxxdy(2) 当D ∈)0,0(时,作位于D 内圆周,:222r y x l =+记1D 由L 和l 所围成,应用格林公式,得⎰⎰=+--+-L l y x ydxxdy y x ydx xdy .02222故⎰+-L y x ydx xdy 22⎰+-=l y x ydxxdy 22⎰+=πθθθ2022222sin cos d rr r ⎰=πθ20d .2π=例6(E04)求椭圆θcos a x =,θsin b y =所围成图形的面积A . 解 所求面积A ⎰-=L ydx xdy 21⎰+=πθθθ2022)sin cos (21d ab ab ⎰=πθ2021d ab.ab π=例7 计算抛物线)0()(2>=+a ax y x 与x 轴所围成的面积. 解 ONA 为直线.0=y 曲线AMO 为 ,x ax y -=].,0[a x ∈ ∴A ⎰-=AMOydx xdy 21⎰⎰-+-=AMOONAydx xdy ydx xdy 2121⎰-=AMOydx xdy 21⎰--⎪⎪⎭⎫⎝⎛-=)(1221a dx x ax dx ax a x ⎰=adx x a4.612a =例10(E06)计算,)8,6()0,1(22⎰++yx ydy xdx 积分沿不通过坐标原点的路径.解 显然,当)0,0(),(≠y x 时, 22y x ydy xdx ++,22y x d +=于是⎰++)8,6()0,1(22yx ydy xdx ⎰+=)8,6()0,1(22y x d )8,6()0,1(22y x +=.9=例 12 验证: 在整个xOy 面内, ydy x dx xy 22+是某个函数的全微分, 并求出一个这样 的函数.证2 利用原函数法求全微分函数).,(y x u 由2xy y u =∂∂ ),(2222y y x dx xy u ϕ+==⎰其中)(y ϕ是y 的待定函数.由此得).(2y y x yuϕ'+=∂∂ 又u 必须满足 y x yu2=∂∂ y x y y x 22)('=+ϕ 0)('=y ϕ ,)(C y =ϕ 所求函数为.2/22C y x u +=例13(E07)设函数),(y x Q 在xoy 平面上具有一阶连续偏导数, 曲线积分与路径无关, 并且对任意t , 总有,),(2),(2),1()0,0()1,()0,0(⎰⎰+=+t t dy y x Q xydx dy y x Q xydx求).,(y x Q解 由曲线积分与路径无关的条件知,2x xQ=∂∂ 于是),(),(2y C x y x Q +=其中)(y C 为待定函数.dy y x Q xydx t ),(2)1,()0,0(+⎰⎰+=102))((dy y C t ,)(102⎰+=dy y C tdy y x Q xydx t ),(2),1()0,0(+⎰⎰+=tdy y C 0))(1(,)(0⎰+=t dy y C t由题意可知⎰+12)(dy y C t .)(0⎰+=tdy y C t两边对t 求导,得)(12t C t +=或.12)(-=t t C 所以.12),(2-+=y x y x Q例14(E08)设曲线积分⎰+Ldy x y dx xy )(2ϕ与路径无关, 其中ϕ具有连续的导数, 且,0)0(=ϕ计算.)()1,1()0,0(2⎰+dy x y dx xy ϕ解 ),(y x P ,2xy =),(y x Q ),(x y ϕ= y P ∂∂)(2xy y ∂∂=,2xy =x Q ∂∂)]([x y xϕ∂∂=).('x y ϕ= 因积分与路径无关散,xQy P ∂∂=∂∂ 由xy x y 2)('=ϕ .)(2C x x +=ϕ 由,0)0(=ϕ知0=C .)(2x x =ϕ 故⎰+)1,1()0,0(2)(dy x y dx xy ϕ⎰⎰+=1010ydy dx .21= 例15 选取b a ,使表达式dy e y x be dx ae e y x yxyy])1([])1[(++-++++为某一函数的全微分, 并求出这个函数.解 y P ∂∂])1[(y y ae e y x y +++∂∂=,y y ae e +=x Q ∂∂])1([y x e y x be x ++-∂∂=,y x e be -=若表达式全微分式,则,xQy P ∂∂=∂∂即 .y x y x e be ae e -=+得,1-=a .1=b ),(y x u +-+++=⎰xx dx e e x 00])1()10[(⎰+++-yy x C dy e y x e 0])1([C dy e y x e dx e x yy y xx +++-+-+=⎰⎰])1([]1)1[(C ye xe y e x xe yy y x x x +--+-=00][][.))((C e e y x y x +-+=例16(E09)求方程0)3()3(2323=-+-dy y x y dx xy x 的通解. 解 ,6xQxy y P ∂∂=-=∂∂原方程是全微分方程, ⎰⎰+-=yxdy y dx xy x y x u 0323)3(),(,42344224y y x x +-=原方程的通解为.42344224C y y x x =+- 例19求微分方程0)1(222=---+dy y x dx y x x 的通解.解 将题设方程改写为,02222=---+dy y x dx y x x xdx 即,0)()(2222=---+dy y x x d y x x d 将方程左端重新组合,有,0)()(222=--+y x d y x x d故题设方程的通解为 .)(322/322C y x x =-+内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i Λ=∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域 .10,11:+≤≤≤≤-x y x D xydxdz y y x xdS xdS xdS zx D z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km).解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈RAπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.内容要点二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i n ρρρργβα++= 又设k z y x R j z y x Q i z y x P z y x A ρρρϖ),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαcos cos cos R Q P n v ++=⋅ϖϖ 则∑上的第一类曲面积分⎰⎰∑⋅dS n v ϖϖ.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A ϖ在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A ρρρρ),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,ορn 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A ρρρρρο称为向量场A ρ通过曲面∑流向指定侧的通量. 而zRy Q x P ∂∂+∂∂+∂∂ 称为向量场A ρ的散度,记为A div ϖ,即zRy Q x P A div ∂∂+∂∂+∂∂=ϖ. (6.5)例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ρ⋅∇=,其中}cos ,cos ,{cos γβα=n ρ是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nu v)[()(ρρdS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.例5(E05)求向量场k z j y i x r ρρρρ++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r ρρ⎰⎰⎰=Vdv r div ρ⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r ρρ⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.cos cos cos ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A ρρρρ++= 则沿场A ρ中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A ρ沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A ρ的旋度,记为A rot ρ,即.k y P x Q j x R z P i z Q y R A rot ρρρρ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQ Pz y x k j i A rot ∂∂∂∂∂∂=ρρρρ.四、向量微分算子:,k zj y i x ρρρ∂∂+∂∂+∂∂=∇ 例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n ρ即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS 例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R r d R Rdxdy rx y x πσ==∑=⎰⎰⎰⎰≤+ 例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 gradu ⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -=div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A ϖ=grad u 为势量场或保守场,而u 称为场A ϖ的势函数.例6(E04)设一刚体以等角速度k j i z y x ϖϖϖϖωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v ϖ的旋度.解 取定轴l 为z 轴,点M 的内径r ρOM =,k z j y i x ρρρ++=则点M 的线速度v ρr ρρ⨯=ωzyx kji z yx ωωωρρρ=,)()()(k x y j z x i y z y x x z z y ρρρωωωωωω-+-+-=于是v ρrot x y z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=ρρρ)(2k j i z y x ρρρωωω++=.2ωρ=即速度场v ρ的旋等于角速度ωρ的 2 倍.内容要点点函数积分的概念 点函数积分的性质点函数积分的分类及其关系一、点函数积分的概念定义1 设Ω为有界闭区域, 函数))((Ω∈=P P f u 为Ω上的有界点函数. 将形体Ω任意分成n 个子闭区域,,,,21n ∆Ω∆Ω∆ΩΛ其中i ∆Ω表示第i 个子闭区域, 也表示它的度量, 在i ∆Ω上任取一点i P , 作乘积),,2,1()(n i P f i i Λ=∆Ω并作和∑=∆Ωni iiP f 1)(如果当各子闭区域i ∆Ω的直径中的最大值λ趋近于零时, 这和式的极限存在, 则称此极限为点函数)(P f 在Ω上的积分, 记为⎰ΩΩd P f )(, 即.)(lim )(1∑⎰=→Ω∆Ω=Ωni iiP f d P f λ其中Ω称为积分区域, )(P f 称为被积函数, P 称为积分变量, Ωd P f )(称为被积表达式,Ωd 称为Ω的度量微元.点函数积分具有如下物理意义: 设一物体占有有界闭区域Ω, 其密度为),)((Ω∈=P P f ρ则该物体的质量)0)((,)(≥Ω=⎰ΩP f d P f M特别地, 当1)(≡P f 时, 有).(lim 1度量Ω=∆Ω=Ω∑⎰=→Ωni id λ如果点函数)(P f 在有界闭区域Ω上连续, 则)(P f 在Ω上可积.二、点函数积分的性质设)(),(P g P f 在有界闭区域Ω上都可积, 则有 性质1 .)()()]()([⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f性质2 )()()(为常数k d P f k d P kf ⎰⎰ΩΩΩ=Ω性质3,)()()(21⎰⎰⎰ΩΩΩΩ+Ω=Ωd P f d P f d P f其中,21Ω=ΩΩY 且1Ω与2Ω无公共内点. 性质4 若,,0)(Ω∈≥P P f 则.0)(≥Ω⎰Ωd P f性质5 若,),()(Ω∈≤P P g P f 则.)()(⎰⎰ΩΩΩ≤Ωd P g d P f特别地, 有.|)(|)(⎰⎰ΩΩΩ≤Ωd P f d P f性质6 若)(P f 在积分区域Ω上的最大值为M , 最小值为m , 则.)(Ω≤Ω≤Ω⎰ΩM d P f m性质7 (中值定理)若)(P f 在有界闭区域Ω上连续, 则至少有一点,*Ω∈P 使得.)()(*Ω=Ω⎰ΩP f d P f其中ΩΩ=⎰Ωd P f P f )()(*称为函数)(P f 在Ω上的平均值.三、点函数积分的分类及其关系1.若,],[R b a ⊂=Ω这时],,[),()(b a x x f P f ∈=则.)()(⎰⎰=ΩΩbadx x f d P f (1)这是一元函数)(x f 在区间],[b a 上的定积分. 当1)(=x f 时,a b dx ba-=⎰是区间长.2.右,2R L ⊂=Ω且L 是一平面曲线, 这时,),(),,()(L y x y x f P f ∈=于是⎰⎰=ΩΩLds y x f d P f ),()( (2)当1)(≡P f 时,s ds L =⎰是曲线的弧长. (2)式称为第一类平面曲线积分.3.若,3R ⊂Γ=Ω且Γ是空间曲线, 这时,),,(),,,()(Γ∈=z y x z y x f P f 则.),,()(⎰⎰ΓΩ=Ωds z y x f d P f (3)当1)(≡P f 时,s ds =⎰Γ是曲线的弧长. (3)式称为第一类空间曲线积分.2、3的特殊情形是曲线为直线段, 而直线段上的点函数积分本质上是一元函数的定积分,这说明⎰⎰Γds z y x f ds y x f L),,(,),(可用一次定积分计算, 因此用了一次积分号.4.若,2R D ⊂=Ω且D 是平面区域, 这时,),(),,()(D y x y x f P f ∈= 则⎰⎰⎰=ΩΩDd y x f d P f σ),()( (4)(4)式称为二重积分. 当1),(=y x f 时,σσ=⎰⎰Dd 是平面区域D 的面积.5.若,3R ⊂∑=Ω且∑是空间曲面, 这时,),,(),,,()(∑∈=z y x z y x f P f 则⎰⎰⎰∑Ω=ΩdS z y x f d P f ),,()( (5)(5)式称为第一类曲面积分. 当1)(≡P f 时,S dS =⎰⎰∑是空间曲面∑的面积.由于(5)的特殊情形是平面区域上的二得积分, 说明该积分可化为两次定积分的计算, 因此用二重积分号.6.若3R ⊂Ω为空间立体, 这时,),,(),,,()(Ω∈=z y x z y x f P f 则.),,()(⎰⎰⎰⎰ΩΩ=Ωdv z y x f d P f (5)(6)式称为三重积分. 当1)(≡P f , 则V dv =⎰⎰⎰Ω是空间立体Ω的体积.更进一步, 我们还可以利用点函数积分的概念统一来表述占有界闭区域Ω的物体的重心、转动惯量、引力等物理概念, 此处不再表述.。
第十一章 曲线积分与曲面积分一、填空题:1.设L 是连接点)0,0(O 与点)2,1(B 的直线段,则⎰+L ds y x )(= 。
2.设L 是上半圆周21x y -=,则曲线积分=+⎰L ds y x 22 。
3.设L 是任意简单封闭曲线(取正向),b a ,为常数,则=+⎰L bdy adx 。
4.设k z j xy i y x a 222++=在点)1,2,1(-M 的散度a div = 。
5.设∑为球面:2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222 。
二、选择题: 1.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形的周界,则曲线积分⎰+L ds y x 1=( )。
—(A )0 (B) 2 (C) 22 (D) 242.设L 是以)1,0(),0,1(),1,0(),0,1(--D C B A 为顶点的正方形依逆时针方向的周界,则曲线积分⎰++L y x dy dx =( )。
(A ) 1 (B) 2 (C) 0 (D) 1-3.已知曲线积分⎰+L xdy ydx y x f ))(,(与积分路径无关,则),(y x f 必须满足下列条件( )。
(A )0='+'x y f y f x (B )0='-'x y f y f x(C )0='+'y x f y f x (D 0='-'y x f y f x4.设∑是平面 1963=++z y x 在第一卦限部分,则⎰⎰∑++dS z y x )236(=( )。
(A )567 (B ) 54 (C ) 1134 (D )1085.由分片光滑的封闭曲面S 所围成的立体的体积=V ( )。
(A )⎰⎰++S xdxdy zdzdx ydydz 31 (B )⎰⎰++S zdxdy ydzdx xdydz 31 >(C )⎰⎰++S ydxdy xdzdx zdydz 31 (D ) ⎰⎰-+-Szdxdy ydzdx xdydz 31 三、计算题:1.求圆心在原点、半径为a 的均匀上半圆弧段(密度为μ)对于x 轴的转动惯量。
曲线积分与曲面积分知识点【篇一:曲线积分与曲面积分知识点】曲线积分与曲面积分是考研数一考生要求掌握的内容,数二数三考生不要求掌握,老师以高数教程为例,分章节归纳所要求掌握的内容要点,希望对2016 考研人有所帮助。
9.1 第一类曲线积分内容要点:(1)第一类曲线积分的概念和性质;(2)第一类曲线积分计算测试点:计算第一类曲线积分(包含平面曲线和空间曲线)9.2 第二类曲线积分内容要点:(1)第二类曲线积分的概念和性质;(2)第二类曲线积分计算;(3)两类曲线积分之间的关系测试点:计算第二类曲线积分9.3 格林公式,平面曲线积分与路径无关的条件内容要点:(1)格林公式;(2)平面曲线积分与路径无关的条件;(3)全微分法则;(4)全微分方程测试点:(1)格林公式;(2)计算曲线积分;(3)全微分方程的求解9.4 第一类曲面积分内容要点:(1)第一类曲面积分的概念和性质;(2)第一类曲面积分计算测试点:计算第一类曲面积分9.5 第二类曲面积分内容要点:(1)第二类曲面积分的概念和性质;(2)第二类曲面积分计算;(3)两类曲面积分之间的关系测试点:(1)直接计算第二类曲面积分(2)通过两类曲面积分之间的关系计算第二类曲面积分9.6 高斯公式与散度内容要点:(1)高斯公式;(2)散度测试点:(1)高斯公式(熟练掌握);(2)散度(记住公式即可)9.7 斯托克斯公式与旋度内容要点:(1)斯托克斯公式;(2)旋度测试点:(1)斯托克斯公式(熟练掌握);(2)旋度(记住公式即可)9.8 综合例题针对本章所学内容复习巩固,每个例题独立求解,然和和答案对比,对自己所学情况进行简单的测评。
老师以高数教程为基础,把曲线积分和曲面积分所要求掌握的知识点落实到每一章的某一节,希望考生在复习的过程中复习全面,不要出现遗漏知识点的现象。
【篇二:曲线积分与曲面积分知识点】第十章曲线积分与曲面积分一、一、重点两类曲面积分及两类曲面积分的计算和格林公式、高斯公式的应用二、二、难点对曲面侧的理解,把对坐标的曲面积分化成二重积分,利用格林公式求非闭曲线上的第二类曲线积分,及利用高斯公式计算非闭曲面上的第二类曲面积分。
第11章 曲线积分与曲面积分
一.曲线积分
1.对弧长的曲线积分 (第一类)
典型例题:
(1)圆周10{
cos x sin ≤≤==t t a t
a y
1222
22220
2
22
2)sin'(cos'()sin cos ()(x +=++=+
⎰⎰
n n n
L
a dt t a t a t a t ds a y
ππ
)
(2)线段:把线段表示出来 ds y x ⎰
+L )
( L 是(1,0)到(0,1)的直线段 原式=
2
1)11
=+-+⎰dx x x x ( 直线为:y=1-x
(3)圆弧的整个边界(分段)
ds L
y ⎰+2
2x e
2)4
2(11)sin'()cos'(12
20
40
2
2
a
2
2-+
=++++⎰
⎰⎰
+a e dx e
dt t a t a e
dx e
a a
y x a
x
π
π
(4)参数方程 (公式)
(5)利用折线围成的封闭图形 (坐标分段)ds yz ⎰Γ
2
x
A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2)
AB: 0=⎰
AB
BC:0=⎰
BC
CD:90102y 130
23
2==++=⎰⎰
y dy CD
9=++=∴
⎰
⎰
⎰⎰Γ
CD
BC
AB
2.对坐标的曲线积分 (第二类)
dt t t t Q t t t P dy y x Q dx y x L
)(')](),([)(')](),([{),(),(P ψψΦ+ΦψΦ=+⎰⎰β
α
典型例题
(1)圆周
10{cos x sin ≤≤==t t
a t
a y
dx xy ⎰
L
圆周
)0(y x 222
>=+-a a a )(及x 轴在一象限 逆时针{
{0
2acost a x asint
y 1:,)10(x x y L L t ==+==≤≤:
320
2
1
2
0)'cos (sin )cos 1(a a dx dt t a a t a t a
L L L
π
-
=+++=+=⎰⎰⎰
⎰
(2)直线: 写出函数关系
222x y :dx y -x =⎰
L L
,从(0,0)到(2,4)
原式=15
56
-dx x -x 2
04
2=⎰
)( (3)圆弧
,⎰
+L
xdy ydx L: x=rcost,y=rsint 上对应t 从0到
2
π
的一段弧 (4)参数方程 (公式) (5)利用折线围成的封闭图形
⎰Γ
+ydz dy -dx ,A(1,0,0) B(0,1,0) C(0,0,1) ABCA 封闭图形
=
2
112321]')1()'1([)]1(1[1
10
01
=++
-=+-+--+--=++⎰⎰⎰⎰
⎰
⎰
dx dz z z z dx z CA
BC
AB
二.格林公式
1.⎰⎰⎰
+=∂∂∂∂L D
Q P P
Q dy dx dx dy y
-x )(
2.面积 ⎰=L
A ydx -xdy 21
3.曲线积分;
x
y dy pdx ∂∂=∂∂⇔
+⎰
Q P Q L
与路径无关 同上),(,dy y x dx )y x (Q P + 4.
dy dx du y x u dy dx Q P Q P L
+=⇔+⎰使)
,(存在与路径无关 dy y x Q dx y x p y x y
y x
x ⎰⎰
+=
),(),(),(u 0
典型例题
(1)的正向)(1:)3(22
22=+++-⎰
b y a x L dy
e x dx e y L
y
x
解:ab 2dx dy 23x
1y p π==∴=∂∂=∂∂⎰⎰⎰
D
L
Q
,
(2)验
证
整
个xoy
面
内
存在u (x ,y )使
du=),(并求)()(y x u dy ye 12y x 8x 8y x 3y
2
3
2
2
++++dx xy
解:
存在,∴+=∂∂=∂∂x y 16x 3x
y p 2Q c e y y x y x c dy ye y x x dx y y
y +-++=++++=⎰⎰)1(124)128(0y)U(x 2230
23x
,
三.曲面积分
1.对面积的曲面积分 (第一类)
典型例题
(1)球面。
的曲面部分上是其中1z z ,4122≤+=∑+⎰⎰
∑
y x ds z
解:dxdy y x y x y x D xy
D 22222
2
xy 4414411
++++=
≤+⎰⎰
⎰⎰
∑
:
=
ππθπ
32
3
2dr r r 41d 1
220
=•
=+⎰⎰
)( (2)圆周。
按面累加
计算所围成的与平面是锥面其中)(1z ,222
2=+=
∑+⎰⎰
∑
z y x ds y x
解:锥面21
∑∑平面 投影xoy 为D :122≤+y x
dxdy y x dxdy y x D
D
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
+++=+=∑∑∑
)(2)(22222
1
dxdy y D
)()(22x 21++=⎰⎰
=
πθπ2
2
1d 2120
1
3
+=+⎰⎰dr r )( 2.对坐标的曲面积分(第二类)
ds
R Q P Rdxdy Qdzdx Pdydz dxdy R dzdx Q dydz P ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑
∑
∑
∑
∑
++=++=++)cos cos cos (γβα计算 注意侧的问题 正负号
dxdy y x z y x R dxdy z y x R Dxy
⎰⎰⎰⎰=∑
)),(,,(,,)
( yz zx 同理 典例:
1.计算
为正数下侧,是下半球面其中)(a -z ,22222222
y x a dxdy y x z y x --=∑+++⎰⎰
∑
解:dxdy y x a a
y x Dxy
⎰⎰⎰⎰
∑
+=
≤+∑2
222
2
2
x oy 投影在
=532
2
20
2
3
2
32a -a a a dr r d a
ππθπ
-=⋅⋅-=⎰
⎰
四.高斯公式
空间闭区域上具有一阶连续偏导数在,ΩΩR Q P ,,
⎰⎰⎰⎰⎰
∑
Ω
++=∂∂+∂∂+∂∂Rdxdy
Qdzdx Pdydz dv z
R
y Q x P )(=
ds R Q P ⎰⎰
∑
++)(γβαcos cos cos 典例:计算
为正数的上侧,为上半球面其中R y R zdxdy ydzdx xdydz ⎰⎰∑
=
∑++222-x -z ,
解:补上平面块⎰⎰∑=≤+=∑1
0z 2
221下侧
,:R y x
331234
213dv 31R R ππ=⋅⋅==∑∑⎰⎰⎰⎰⎰∑+∑Ω围城半球体由高斯得和
⎰⎰⎰⎰⎰⎰∑
∑+∑∑=
=
∴1
1
-32R π。