2019学年浙江省高二上学期期末数学试卷【含答案及解析】(1)
- 格式:docx
- 大小:621.67 KB
- 文档页数:24
2020-2021学年浙江省湖州市高二(上)期末数学试卷一、选择题(共10小题).1.点(﹣1,0)到直线x+y﹣1=0的距离是()A.B.C.1D.2.圆x2+y2﹣2x+2y+1=0的半径是()A.1B.C.D.23.在空间直角坐标系中,若直线l的方向向量为,平面α的法向量为,则()A.l∥αB.l⊥αC.l⊂α或l∥αD.l与α斜交4.“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,l∥α,则l⊥βB.若l∥α,l∥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,E是BC的中点,则直线ED1与直线BD所成角的余弦值是()A.B.C.D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.18.过点(1,0)作斜率为﹣2的直线,与抛物线y2=8x交于A,B两点,则弦AB的长为()A.2B.2C.2D.29.在四棱柱ABCD﹣A1B1C1D1中,侧棱DD1⊥底面ABCD,点P为底面ABCD上的一个动点,当△D1PC的面积为定值时,点P的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分10.已知三条直线l1:mx+ny=0,l2:nx﹣my+3m﹣n=0,l3:ax+by+c=0,其中m,n,a,b,c为实数,m,n不同时为零,a,b,c不同时为零,且a+c=2b.设直线l1,l2交于点P,则点P到直线l3的距离的最大值是()A.B.C.D.二、填空题(共有7小题,其中多空题每空3分,单空题每空4分,共36分)11.双曲线的离心率是,渐近线方程是.(两条都写出)12.在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为,其外接球的表面积是.13.已知圆C的圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2),则圆C的方程为,它被直线3x﹣4y﹣9=0截得的弦长为.14.已知点F是椭圆的右焦点,AB为椭圆的一条过F的弦,点A在x轴上方.若直线AB与x轴垂直,则|AB|=;若|AF|=2|BF|,则直线AB的斜率是.15.过点(2,3)且与直线l:x﹣2y+1=0垂直的直线方程是.16.已知动点A,B分别在圆C1:x2+(y﹣2)2=1和圆C2:(x﹣4)2+y2=4上,动点P 在直线x+y+1=0上,则|PA|+|PB|的最小值是.17.已知三棱锥P﹣ABC的各棱长均相等,点E在棱BC上,且CE=2EB,动点Q在棱BP 上,设直线EQ与平面ABC所成角为θ,则sinθ的最大值是.三、解答题(共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.在平面直角坐标系xOy中,点A的坐标为(1,1),动点P满足.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)若直线l过点Q(4,6)且与轨迹C相切,求直线l的方程.19.在所有棱长均为2的直棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且∠BAD=60°,O,M分别为BD,B1C的中点.(Ⅰ)求证:直线OM∥平面DB1C1;(Ⅱ)求二面角D1﹣AC﹣D的余弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交C于A(x1,y1),B(x2,y2)两点,且x1x2+y1y2=﹣3.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C的弦PQ与以M(4,0)为圆心、半径为r(r>0)的圆M相切于点N (x0,1),且N恰为弦PQ的中点,求圆M的半径r的值.21.如图,四边形ABCD为梯形,AB∥CD,∠C=60°,AB=2,BC=3,CD=6,点M 在边CD上,且.现沿AM将△ADM折起至△AQM的位置,使QB=3.(Ⅰ)求证:QB⊥平面ABCM;(Ⅱ)求直线BM与平面AQM所成角的正弦值.22.在平面直角坐标系xOy中,已知椭圆的离心率是,且点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)将椭圆C上每点横坐标和纵坐标都扩大到原来的两倍,得到椭圆M的方程.直线y=kx+m(m≠0)与椭圆M交于A,B两点,与椭圆C的一个公共点为点P,连接PO,并延长PO至交椭圆M于点N.设△NAB的面积为S1,△OAB的面积为S2.(ⅰ)求的值;(ⅱ)求S1的最大值.参考答案一、选择题(共10小题).1.点(﹣1,0)到直线x+y﹣1=0的距离是()A.B.C.1D.解:由点到直线的距离公式可得:点(﹣1,0)到直线x+y﹣1=0的距离是d=.故选:A.2.圆x2+y2﹣2x+2y+1=0的半径是()A.1B.C.D.2解:根据题意,圆x2+y2﹣2x+2y+1=0即(x﹣)2+(y+1)2=3,则圆的半径为.故选:C.3.在空间直角坐标系中,若直线l的方向向量为,平面α的法向量为,则()A.l∥αB.l⊥αC.l⊂α或l∥αD.l与α斜交解:由=2×1+(﹣2)×3+1×4=0,可知⊥.∴l∥α或l⊂α.故选:C.4.“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行,所以,解得a=2或a=﹣3,故“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的充分不必要条件.故选:A.5.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,l∥α,则l⊥βB.若l∥α,l∥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β解:由l为直线,α,β是两个不同的平面,知:在A中,若α⊥β,l∥α,则l与β相交、平行或l⊂β,故A错误;在B中,若l∥α,l∥β,则α与β相交或平行,故B错误;在C中,若l⊥α,l∥β,则α与β相交或平行,故C错误;在D中,若l⊥α,l⊥β,则由面面平行的判定定理得α∥β,故D正确.故选:D.6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,E是BC的中点,则直线ED1与直线BD所成角的余弦值是()A.B.C.D.解:连接B1D1,EB1,∵BB1∥DD1,BB1=DD1,∴四边形BB1D1D为平行四边形,∴BD∥B1D1,∴∠ED1B1或其补角为直线ED1与直线BD所成角,在△ED1B1中,B1D1=2,B1E=,D1E=,由余弦定理知,cos∠ED1B1===,∴直线ED1与直线BD所成角的余弦值是.故选:C.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=×1×1=,高为1,故棱锥的体积V==,故选:A.8.过点(1,0)作斜率为﹣2的直线,与抛物线y2=8x交于A,B两点,则弦AB的长为()A.2B.2C.2D.2解:不妨设A,B两点坐标分别为(x1,y1),(x2,y2),其中x1>x2.由直线AB斜率为﹣2,且过点(1,0),用点斜式求得直线AB的方程为y=﹣2(x﹣1).代入抛物线方程y2=8x,可得4(x﹣1)2=8x.整理得x2﹣4x+1=0,解得x1=2+,x2=2﹣,代入直线AB方程得y1=﹣2﹣2,y2=2﹣2.故A(2+,﹣2﹣2),B(2﹣,2﹣2).|AB|==2,故选:B.9.在四棱柱ABCD﹣A1B1C1D1中,侧棱DD1⊥底面ABCD,点P为底面ABCD上的一个动点,当△D1PC的面积为定值时,点P的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分解:∵侧棱DD1⊥底面ABCD,P为底面ABCD内的一个动点,△D1PC的面积为定值,∴点P到线段D1C的距离为定值,则点P在以D1C所在直线为轴,固定长为底面半径的圆柱的侧面与平面ABCD的交线上,∴运动轨迹为椭圆的一部分.故选:B.10.已知三条直线l1:mx+ny=0,l2:nx﹣my+3m﹣n=0,l3:ax+by+c=0,其中m,n,a,b,c为实数,m,n不同时为零,a,b,c不同时为零,且a+c=2b.设直线l1,l2交于点P,则点P到直线l3的距离的最大值是()A.B.C.D.解:由题可知:a+c=2b,∴直线l3:ax+y+c=0过定点E(1,﹣2),直线l1,l2交点P(,),点P到直线l3的距离的最大值为P到定点的距离,即|PE|,|PE|==,当m=0时,|PE|=2,当n=0时,|PE|=,设=t,当m≠0时,|PE|==,令y=26﹣,由判别式法可得:(4﹣y)t2﹣4t+26﹣y=0,则△=16﹣4(4﹣y)(26﹣y)≥0,解得y≤15+5,∴|PE|≤+.故选:D.二、填空题(本题共有7小题,其中多空题每空3分,单空题每空4分,共36分)11.双曲线的离心率是,渐近线方程是y=±2x.(两条都写出)解:双曲线,可知a=1,b=2,所以双曲线的离心率是==.渐近线方程为:y=±x,即y=±2x.故答案为:;y=±2x.12.在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为5,其外接球的表面积是50π.解:∵在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为:=5,故其外接球的直径为:5,∴其外接球的表面积是4π•()2=50π.故答案为:5,50π.13.已知圆C的圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2),则圆C的方程为(x﹣1)2+(y+4)2=8,它被直线3x﹣4y﹣9=0截得的弦长为4.解:过切点P(3,2)且与x+y﹣1=0垂直的直线为y+2=x﹣3,即y=x﹣5,与直线y=﹣4x联立,解得x=1,y=﹣4,∴圆心为(1,﹣4),∴半径r=,∴所求圆的方程为(x﹣1)2+(y+4)2=8;圆心(1,﹣4)到直线3x﹣4y﹣9=0的距离d=,∴圆被直线3x﹣4y﹣9=0截得的弦长为.故答案为:(x﹣1)2+(y+4)2=8;4.14.已知点F是椭圆的右焦点,AB为椭圆的一条过F的弦,点A在x轴上方.若直线AB与x轴垂直,则|AB|=;若|AF|=2|BF|,则直线AB的斜率是.解:由椭圆的方程可得:a=3,b=,c=2,所以F(2,0),当直线AB⊥x轴时,A(2,y),且y>0,所以,解得y=,所以|AB|=,当|AF|=2|BF|,设直线AB的方程为:x=my+2,(m<0),代入椭圆方程可得:(9+5m2)y2+20my﹣25=0,设A(x1,y1),B(x2,y2),则y,y,由|AF|=2|BF|可得:y1=﹣2y2,所以联立方程解得m=﹣,所以直线AB的方程为:x=﹣,即y=﹣,故直线AB的斜率为﹣,故答案为:.15.过点(2,3)且与直线l:x﹣2y+1=0垂直的直线方程是2x+y﹣7=0.解:设所求直线的方程为2x+y+m=0,将点(2,3)代入方程,可得m=﹣7,故所求直线方程为2x+y﹣7=0.故答案为:2x+y﹣7=0.16.已知动点A,B分别在圆C1:x2+(y﹣2)2=1和圆C2:(x﹣4)2+y2=4上,动点P 在直线x+y+1=0上,则|PA|+|PB|的最小值是5﹣3.解:根据题意,圆C1:x2+(y﹣2)2=1的圆心C1为(0,2),半径R=1,圆C2:(x﹣4)2+y2=4,其圆心C2为(4,0),半径r=2,设圆N与圆C1:x2+(y﹣2)2=1关于直线x+y+1=0对称,其圆心N的坐标为(a,b),则有,解可得,即N(﹣3,﹣1),|NC2|==5,当P在线段NC2上时,|PA|+|PB|取得最小值,则|PA|+|PB|的最小值为|NC2|﹣R﹣r=5﹣3,故答案为:5﹣3.17.已知三棱锥P﹣ABC的各棱长均相等,点E在棱BC上,且CE=2EB,动点Q在棱BP 上,设直线EQ与平面ABC所成角为θ,则sinθ的最大值是.解:设棱长为3a,QB=x(0<x≤3a),由余弦定理得QE=.则正四面体的高PO==a,设P到平面BCD的距离为h,则,x=,∴sinθ===,∴x=2a时,sinθ的最大值为.故答案为:.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.在平面直角坐标系xOy中,点A的坐标为(1,1),动点P满足.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)若直线l过点Q(4,6)且与轨迹C相切,求直线l的方程.【解答】解(Ⅰ)设P(x,y),∵点A的坐标为(1,1),则由,得,∴动点P的轨迹C的方程为(x﹣2)2+(y﹣2)2=4.(Ⅱ)当直线l的斜率存在时,设l:y﹣6=k(x﹣4),即kx﹣y+6﹣4k=0,∵直线l过点Q(4,6)且与轨迹C相切,∴圆心C(2,2)到l的距离d=,当直线l的斜率不存在时,l的方程为x=4,显然满足条件,∴l的方程为x=4或3x﹣4y+12=0.19.在所有棱长均为2的直棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且∠BAD=60°,O,M分别为BD,B1C的中点.(Ⅰ)求证:直线OM∥平面DB1C1;(Ⅱ)求二面角D1﹣AC﹣D的余弦值.【解答】(Ⅰ)证明:连BC1,则M为BC1的中点,又O为BD的中点,所以OM∥C1D,因为OM⊄平面DB1C1,C1D⊂平面DC1B1,所以直线OM∥平面DB1C1;(Ⅱ)解:连D1O,因为ABCD是菱形,所以DO⊥AC,又ABCD﹣A1B1C1D1为直棱柱,所以D1A=D1C,而O为AC中点,所以D1O⊥AC,所以∠D1OD为二面角D1﹣AC﹣D的平面角,因为ABCD是边长为2的菱形,且∠BAD=60°,所以DO=1,又DO=2,所以,所以.二面角D1﹣AC﹣D的余弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交C于A(x1,y1),B(x2,y2)两点,且x1x2+y1y2=﹣3.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C的弦PQ与以M(4,0)为圆心、半径为r(r>0)的圆M相切于点N (x0,1),且N恰为弦PQ的中点,求圆M的半径r的值.解:(Ⅰ)抛物线C的焦点,可设直线,代入y2=2px,得y2﹣2pty﹣p2=0,已知A(x1,y1),B(x2,y2),则y1+y2=2pt,,∴,解得p=2,∴抛物线C的方程为y2=4x;(Ⅱ)设P(x3,y3),Q(x4,y4),则依题知x3+x4=2x0,y3+y4=2,由,得(y3+y4)(y3﹣y4)=4(x3﹣x4),即2(y3﹣y4)=4(x3﹣x4),得,∵MN⊥PQ,∴MN的斜率为,得x0=2,∴圆M的半径.21.如图,四边形ABCD为梯形,AB∥CD,∠C=60°,AB=2,BC=3,CD=6,点M 在边CD上,且.现沿AM将△ADM折起至△AQM的位置,使QB=3.(Ⅰ)求证:QB⊥平面ABCM;(Ⅱ)求直线BM与平面AQM所成角的正弦值.解:(Ⅰ)证明:因为BC=3,CD=6,∠C=60°,所以由余弦定理得,从而BD2+BC2=CD2,所以DB⊥BC,由已知得AB=MC,AB∥MC,所以ABCM为平行四边形,所以DB⊥AM,设DB∩AM=O,则折后可得AM⊥平面QOB,所以QB⊥AM,因为,即QB2+BO2=QO2,所以QB⊥BO,因为AM∩BO=O,AM,BO⊂平面ABCM,所以QB⊥平面ABCM;(Ⅱ)作BP⊥QO于P,则由AM⊥平面QOB知BP⊥平面AQM,连MP,则MP是BM在平面AQM上的射影,所以∠BMP即是BM与平面AQM所成的角.因为,BM===,所以.∴直线BM与平面AQM所成角的正弦值为.22.在平面直角坐标系xOy中,已知椭圆的离心率是,且点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)将椭圆C上每点横坐标和纵坐标都扩大到原来的两倍,得到椭圆M的方程.直线y=kx+m(m≠0)与椭圆M交于A,B两点,与椭圆C的一个公共点为点P,连接PO,并延长PO至交椭圆M于点N.设△NAB的面积为S1,△OAB的面积为S2.(ⅰ)求的值;(ⅱ)求S1的最大值.解:(Ⅰ)由题意得,所以a2=4,b2=1,即椭圆C的方程为.(Ⅱ)(ⅰ)依题意得椭圆M的方程为,从而O到AB的距离是N到AB距离的,所以.(ⅱ)联立,得(1+4k2)x2+8kmx+4m2﹣16=0,设A(x1,y1),B(x2,y2),则,所以,所以.联立,得(1+4k2)x2+8kmx+4m2﹣4=0,由,所以,即(当且仅当时取得等号),从而.。
红星区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.抛物线y=4x2的焦点坐标是()A.(0,1)B.(1,0)C.D.2.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.4.设集合,,则( )ABCD5.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}6.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π7.定义在R上的奇函数f(x),满足,且在(0,+∞)上单调递减,则xf(x)>0的解集为()A.B.C.D.8.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x9. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件10.实数x ,y满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3) C.(,2) D.(,0)11.如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P ﹣DCE 三棱锥的外接球的体积为( )A. B. C. D.12.已知向量=(﹣1,3),=(x ,2),且,则x=( )A. B.C.D.二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .14.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.15.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos2)a n +sin2,则该数列的前16项和为 .16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.18.(﹣2)7的展开式中,x 2的系数是 .三、解答题19.等差数列{a n }的前n 项和为S n .a 3=2,S 8=22. (1)求{a n }的通项公式; (2)设b n=,求数列{b n }的前n 项和T n .20.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围; (Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n , 求证:当n ≥2,n ∈N 时 f()+f()+L+f()<n •()(e 为自然对数的底数,e ≈2.71828).21.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=. (1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.22.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元. (1)写出y 与x 之间的函数关系式; (2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.23.如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ; (Ⅱ)求点D 到平面AMP 的距离.24.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?红星区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:抛物线y=4x 2的标准方程为 x 2=y ,p=,开口向上,焦点在y 轴的正半轴上,故焦点坐标为(0,),故选C .【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x 2的方程化为标准形式,是解题的关键.2. 【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.3.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.【答案】C【解析】送分题,直接考察补集的概念,,故选C。
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
浙江省中职卓越联盟2023学年第一学期2022级期末考试数学试卷本试卷共三大题.全卷共4页.满分100分,考试时间90分钟。
注意事项:1.所有试题均须在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分.在试卷和草稿纸上作答无效。
2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。
3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的错涂、多涂或未涂均无分。
1.下列说法:(1)零向量是没有方向的向量;(2)单位向量的方向是任意的; (3)零向量与任意一个向量共线;(4)方向相同的向量叫平行向量 其中,正确说法的个数是( )A .0B .1C .2D .3 2.设x ∈R ,则“2x >22x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知两点(3,5),(2,1)A B −−,则与向量AB 同向的单位向量为( ) A .6161⎛⎝B .6161⎛ ⎝C .6161D .61614.某班有男生23人,女生15人,从中选一名同学为数学课代表,则不同的选法的种数为( ) A .345 B .23 C .15 D .38 5.若()2*P 56n n =∈N ,则5C n =( )A .21B .50C .56D .126 6.cos104cos16sin104sin16︒︒−︒︒的值为( ) A .12 B .12− C .3 D .37.抛物线220y x =的焦点到其准线的距离为( ) A .20 B .10 C .5 D .528.如图所示.在ABC △中、6BD DC =,则AD =( )A .1677AB AC + B .6177AB AC + C .1566AB AC + D .5166AB AC + 9.将(1)(2)(4)(5)x x x x −+−−展开,则3x 的系数等于( ) A .10− B .8− C .8 D .1010.已知中心在坐标原点,离心率为53的双曲线的焦点在x 轴上,则它的渐近线方程为( ) A .43y x =± B .45y x = C .43y x =− D .34y x =±1l .已知tan 2θ=,则cos 2θ=( )A .35− B .817 C .817− D .817−或81712.在ABC △中,已知3223a b c bc =+,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒13.美丽的新疆让不少旅游爱好者神往,某人计划去新疆旅游、在火焰山、喀纳斯村、卧龙满、观鱼台、阿克库勒湖、那仁草原、天山天池、赛里木湖、那拉提、葡萄沟这10个景点中选择4个作为目的地.已知天山天池必选,则不同的选法种数为( )A .210B .120C .84D .36 14.函数π3sin 6y x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .ππ2π,2π,22k k k ⎛⎫−+∈ ⎪⎝⎭Z B .(2π,2ππ),k k k +∈Z C .2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z D .π5π2π,2π,66k k k ⎛⎫−+∈ ⎪⎝⎭Z15.若地物线24y x =上的点M 到焦,点F 的距离为10,则M 到y 轴的距离为( ) A .10 B .9 C .8 D .716.二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为( )A .15−B .6−C .6D .1517.双曲线2212y x −=的离心率为( ) A 6 B .32 C .62D 318、已知圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,则p =( ) A .1 B .2 C .6 D .8二、填空题(本大题共6小题,每小题3分,共18分)19.已知向量(4,3),(,1)a b x ==,且a b ∥,则实数x 的值为__________.20.现有甲、乙、丙、丁在内的6名同学在比赛后站成一排合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有__________种.(用数字作答)21.设点12,F F 为椭圆22159x y +=的两个焦点,P 为椭圆上一点,则12PF F △的周长为__________. 22.若4sin 5α=−,且α是第三象限角,则2sin 2cos αα−=_________. 23.已知双曲线过点(2,3),渐近线方程为3y =±,则该双曲线的标准方程为__________.24.已知函数21()sin cos cos 2f x x x x =−+,则()f x 的最小值为__________. 三、解答题(本大题共7小题,共46分)解答时应写出必要的文字说明、证明过程或演算步骤.25.(本题6分)已知nx x ⎛ ⎝二项展开式中,二项式系数之和是64,求:(1)n 的值;(3分) (2)含3x 的项.(3分)26.(本题6分)已知α为第一象限角,且π3sin 25α⎛⎫−= ⎪⎝⎭,求: (1)sin 2cos 2αα−的值;(3分) (2)πtan 4α⎛⎫−⎪⎝⎭的值.(3分) 27(本题6分)设a 为实数,已知双曲线223:1x y C a −=与椭圆22215x y a+=有相同的焦点12,F F .(1)求a 的值;(2分)(2)若点P 在双曲线C 上,且12PF PF ⊥,求12F PF △的面积.(4分) 28(本题6分)已知函数2()2sin cos 12sin f x x x x =+−,求: (1)()f x 的最小正周期;(3分)(2)()f x 的最小值以及取得最小值时x 的集合(3分)29.(本题7分)已知抛物线2:2(0)C y px p =−>过点(1,2)A −. (1)求抛物线的方程,并求其准线方程;(3分)(2)过该抛物线的焦点,作倾斜角为135︒的直线,交抛物线于A ,B 两点,求弦AB 的长度.(4分)30.(本题7分)设椭圆2222:1(0)x y M a b a b+=>>的离心率与双曲线22:1E x y −=的离心率互为倒数,且椭圆的右顶点是抛物线2:8C y x =的焦点. (1)求椭圆M 的方程;(3分)(2)已知点(1,0)N ,若点P 为椭圆M 上任意一点,求||PN 的最值.(4分)31.(本题8分)如图所示,已知村庄B 在村庄A 的东北方向,且村庄A ,B 之间的距离是4(31)千米,村庄C 在村庄A 的西偏北15︒方向,且村庄A ,C 之间的距离是8千米.现要在村庄B 的北偏东30︒方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B 3D 到村庄B ,C 的距离之和.浙江省中职卓越联盟2023学年第一学期2022级期末考试数学答案一、单项选择题(本大题共18小题,每小题2分,共36分)1.B 【解析】由零向量的定义及性质知,其方向任意,且与任意向量共线,方向相同或相反的两个非零向量称为平行向量,故(1)(2)(4)错误,(3)正确.故选B . 2.A 【解析】幂函数2y x =,当2x =±222,22,x x x =∴>⇒>∴“2x >22x >”的充分不必要条件.故选A .3.A 【解析】因为点(3,5),(2,1)A B −−,所以(5,6)AB =−,所以与AB 同向的单位向量为||6161AB AB ⎛= ⎝.故选A . 4.D 【解析】由分类加法计数原理可知,共有231538+=种选法.故选D .5.C 【解析】2P (1)56n n n =−=,即2560n n −−=,解得8n =或7n =−(舍),则558C C 56n ==.故选C .6.B 【解析】()1cos104cos16sin104sin16cos 10416cos1202︒︒−︒︒=︒+︒=︒=−.故选B . 7.B 【解析】因为220p =,所以10p =,抛物线220y x =的焦点到其准线的距离为10.故选B . 8.A 【解析】661()777AD AB BD AB AC AB AC AB =+=+−=+.故选A . 9.B 【解析】(1)(2)(4)(5)x x x x −+−−展开式中含3x 的系数为12458−+−−=−.故选B .10.A 【解析】由已知可设双曲线的标准方程为22221(0,0)x y a b a b −=>>.由已知可得53c e a ==,所以53c a =,则2222169b c a a =−=,所以43b a =,所以双曲线的渐近线方程为43b y x x a =±=±.故选A . 11.A 【解析】因为tan 2θ=,所以22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ−−=−===−++.故选A . 12.D 【解析】由2223a b c bc =++,变形为2223b c a bc +−=,22232b c a bc +−∴=,3cos A ∴=而A 为三角形内角,150A ∴=︒.故选D .13.C 【解析】因为天山天池必选,所以从另外9个景点中选3个的选法有39C 84=种.故选C .14.C 【解析】由πππ2π2π,262k x k k −≤+≤+∈Z ,得2ππ2π,2π,33x k k k ⎛⎫∈−+∈ ⎪⎝⎭Z ,即函数的单调递增区间为2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z .故选C . 15.B 【解析】由已知得抛物线的焦点(1,0)F ,准线方程1x =−,设点()00,M x y .由题意可知,||10MF =,00||1102pMF x x ∴=+=+=,09x ∴=,即M 到y 轴的距离为9.故选B . 16.D 【解析】因为二项式621x x ⎛⎫− ⎪⎝⎭的展开式通项为66316621C (1)C rr r r r rr T x x x −−+⎛⎫=−=− ⎪⎝⎭,令630r −=,则2r =,所以二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为226(1)C 15−=.故选D .17.D 【解析】由双曲线方程2212y x −=得1,2a b ==21123c b e a a ⎛⎫==+=+= ⎪⎝⎭D .18.C 【解析】圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,32p∴−=,解得6p =±.又0,6p p >∴=.故选C .二、填空题(本大题共6小题,每小题3分,共18分)19.43【解析】因为向量(4,3),(,1)a b x ==,且a b ∥,所以4130x ⨯−=,即43x =.20.144【解析】根据题意,分2步进行分析:①将甲、乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323P P 12=种情况; ②排好后,有4个空位,在其中任选2个,安排丙、丁,有24P 12=种情况. 则有1212144⨯=种排法.21.10【解析】根据题意,12PF F △的周长为226410a c +=+=. 22.35(或填0.6)【解析】因为4sin 5α=−,且a 是第三象限角,所以23cos 1sin 5αα=−−=−,所以2224333sin 2cos 2sin cos cos 25555ααααα⎛⎫⎛⎫⎛⎫−=−=⨯−⨯−−−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.2213y x −=【解析】渐近线方程为3,y x =±∴设双曲线的方程为22(0)3y x λλ−=≠,代入点(2,3),1λ∴=,∴双曲线的标准方程为2213y x −=. 24.22−因为2111cos 212π()sin cos cos sin 22222224x f x x x x x x +⎛⎫=−+=−+=− ⎪⎝⎭,所以当πsin 214x ⎛⎫−=− ⎪⎝⎭时,函数()f x 有最小值,最小值为22−. 三、解答题(本大题共7小题,共46分)25.解:1)由二项式定理可知,在nx x ⎛⎝展开式中,264n =, 2分所以6n =. 1分(2)由二项式定理可知,在6x x ⎛− ⎝展开式中,第1r +项为3662166C C (2)rr r r r r r T x xx −−+⎛=⋅⋅=⋅−⋅ ⎝, 令3632r −=,则2r =, 1分 所以6x x ⎛ ⎝展开式中含3x 的项为22336C (2)60x x ⋅−=. 2分26.解:(1)α为第一象限角,且3cos 5α=,24sin 1cos 5αα∴=−=, 1分 ()231sin 2cos 22sin cos 12sin 25ααααα∴−=−−=. 2分 (2)sin 4tan cos 3ααα==, 1分πtan tan πtan 114tan π41tan 71tan tan 4ααααα−−⎛⎫∴−=== ⎪+⎝⎭+. 2分 27.解:(1)根据题意,显然0a >,且双曲线C 的焦点在x 轴上, 故235a a +=−,即220a a +−=,即(2)(1)0a a +−=,解得2a =−或1a =,又因为0a >,所以1a =. 2分(2)由(1)可得双曲线C 的方程为2213y x −=, 如图所示,设其左、右焦点分别为12,F F ,故可得12(2,0),(2,0)F F −.根据双曲线的对称性,不妨设点P 在双曲线C 的左支上,设1PF x =.由双曲线定义可得212PF PF −=,即22PF x =+. 1分 又因为12F PF △为直角三角形,所以2221212PF PF F F +=,即22(2)16x x ++=,即22260,26x x x x +−=+=, 2分 故12F PF △的面积()211(2)2322S x x x x =+=+=. 1分 28.解:(1)2π()2sin cos 12sin sin 2cos 2224f x x x x x x x ⎛⎫=+−=+=+ ⎪⎝⎭, 1分∴函数()f x 的最小正周期2ππ2T ==. 2分 (2)π()22,24f x x A ⎛⎫=+= ⎪⎝⎭min ()2f x ∴=−, 2分此时ππ3π22π,π428x k x k +=−∴=−, ∴()f x 取得最小值时x 的集合为3ππ8x x k k ⎧⎫=−∈⎨⎬⎩⎭Z ,. 1分 29.解:(1)22(0)y px p =−>过点(1,2)A −,24p ∴=,即2p =, 1分 ∴抛物线的方程为24y x =−, 1分准线方程为1x =. 1分(2)由(1)知,抛物线的焦点为(1,0)F −,则直线:(1)AB y x =−+,设点()()1122,,,A x y B x y , 1分 由2(1),4y x y x=−+⎧⎨=−⎩得2610x x ++=, 由韦达定理可知,12126,1x x x x +=−=, 1分212||1AB k x ∴=+−()2121224x x x x =+−2364=−242=8=. 2分30.解:(1)由题意可知,双曲线22:1E x y −=2, 抛物线2:8C y x =的焦点为(2,0), 则椭圆M 的离心率222c e a ===, 1分 由2222,22a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,得2,2,2a c b === 故椭圆M 的方程为22142x y +=. 2分 (2)设点P 的坐标为()00,x y ,则()2200012242x y x +=−≤≤, ()()()222220000011||1122122PN x y x x x =−+=−+−=−+ 2分 因为022x −≤≤,所以当02x =时,||PN 取得最小值,即min ||1PN =;当02x =−时,||PN 取得最大值, 即max ||3PN =. 2分31.解:由题意可得434,8,120,3AB AC BAC CD BD =−=∠=︒=. 在ABC △中,由余弦定理可得2222cos BC AB AC AB AC BAC =+−⋅∠, 则222131)]8284(31)962BC ⎛⎫=−+−⨯⨯⨯−= ⎪⎝⎭, 2分 故46BC =即村庄B ,C 之间的距离为6 1分 在ABC △中,由正弦定理可得sin sin BC ACBAC ABC=∠∠, 则38sin 22sin 246AC BAC ABC BC ⨯∠∠===,从而45ABC ∠=︒, 故村庄C 在村庄B 的正西方向. 2分 因为农贸市场D 在村庄B 的北偏东30︒的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos D BC BD BC BD CBD =+−⋅∠,因为3CD BD =,所以2223(46)46BD BD BD =++,解得46BD =122CD = 2分 故46122BD CD +=即农贸市场D 到村庄B ,C 的距离之和为(46122)+千米. 1分。
2023-2024学年浙江省杭州市高二(上)期末数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合{}0,1,2,3,4A =,{}2540B x x x =-+≥,则A B = ()A.{}1,2,3,4 B.{}2,3 C.{}1,4 D.{}0,1,4【答案】D 【解析】【分析】求出集合B ,利用交集的定义可求得集合A B ⋂.【详解】因为{}{25401B x x x x x =-+≥=≤或}4x ≥,{}0,1,2,3,4A =,则{}0,1,4A B = .故选:D.2.已知()2i i z +=,i 为虚数单位,则z =()A.15B.13C.D.53【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得z 的值.【详解】因为()2i i z +=,则()()()i 2i i 12i 2i 2i 2i 55z -===+++-,故55z ==.故选:C.3.已知平面向量()2,0a =r ,()1,1b =- ,且()()//ma b a b -+,则m =()A.1-B.0C.1D.132±【答案】A 【解析】【分析】首先求出ma b - 、a b + 的坐标,再根据平面向量共线的坐标表示得到方程,解得即可.【详解】因为()2,0a =r,()1,1b =- ,所以()()()2,01,121,1ma b m m -=--=+- ,()()()2,01,11,1a b +=+-=,因为()()//ma b a b -+,所以()21111m +⨯=-⨯,解得1m =-.故选:A4.已知双曲线()222210,0x y a b a b-=>>左,右焦点分别为()()12,0,,0F c F c -,若双曲线左支上存在点P 使得2322PF c a =-,则离心率的取值范围为()A.[)6,∞+ B.(]1,6C.[)2,+∞ D.[)4,+∞【答案】A 【解析】【分析】根据双曲线的性质:双曲线左支上的点P 到右焦点2F 的距离:2PF a c ≥+可确定双曲线离心率的取值范围.【详解】由题意:322c a a c -≥+⇒132c a ≥⇒6ce a=≥.故选:A5.已知22cos cos 1θθ-=,()0,πθ∈,则sin θ=()A.0B.12C.2或0D.2【答案】D 【解析】【分析】由已知可得出1cosθ1-<<,解方程22cos cos 1θθ-=,可得出cos θ的值,再利用同角三角函数的基本关系可求得sin θ的值.【详解】因为()0,πθ∈,则1cosθ1-<<,由已知可得22cos cos 10θθ--=,解得1cos 2θ=-,故sin 2θ===.故选:D.6.数学家欧拉研究调和级数得到了以下的结果:当x 较大时,1111ln 23x xγ++++=+ (*x ∈N ,常数0.557γ= ).利用以上公式,可以估算111101102300++⋯+的值为()A.ln30B.ln3C.ln3-D.ln 30-【答案】B 【解析】【分析】依题意可得1111ln 30023300γ++++=+ ,1111ln10023100γ++++=+ ,两式相减,根据对数的运算法则计算可得.【详解】依题意可得1111ln 30023300γ++++=+ ,1111ln10023100γ++++=+ ,两式相减可得111ln 300ln100ln 3101102300++⋯+=-=.故选:B7.已知π,0,2αβ⎛⎫∈ ⎪⎝⎭,则“)os(1c 4αβ-<”是“1cos sin 4αβ+<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】依题意可得cos()cos cos sin sin cos sin αβαβαβαβ-=+<+,利用充分条件、必要条件的定义判断可得答案.【详解】π,0,2αβ⎛⎫∈ ⎪⎝⎭,则0cos 1β<<,0sin 1α<<,所以cos()cos cos sin sin cos sin αβαβαβαβ-=+<+,所以由)os(1c 4αβ-<不能推出1cos sin 4αβ+<,充分性不成立;反之,1cos sin 4αβ+<⇒)os(1c 4αβ-<成立,即必要性成立;π,0,2αβ⎛⎫∴∈ ⎪⎝⎭,则“)os(1c 4αβ-<”是“1cos sin 4αβ+<”的必要不充分条件.故选:B .8.已知圆22:20C x x y -+=与直线():20l y mx mm =+>,过l 上任意一点P 向圆C 引切线,切点为A和B ,若线段AB 长度的最小值为,则实数m 的值为()A.7B.7C.2D.7【答案】D 【解析】【分析】推导出PC 垂直平分AB ,分析可知,当PC 取最小值时,AB 取最小值,此时,PC l ⊥,利用点到直线的距离公式可得出关于m 的等式,解之即可.【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0C ,半径为1,如下图所示:由圆的几何性质可知AC PA ⊥,BC PB ⊥,因为PA PB =,AC BC =,PC PC =,所以,PAC PBC ≌,所以,APC BPC ∠=∠,则PC AB ⊥,设AB PC E = ,则E 为AB 的中点,由勾股定理可得PA ==由等面积法可得22PA ACAB AE PC⋅===所以,当PC 取最小值时,AB取最小值,由=,可得PC =所以,PC的最小值为,当PC 与直线l 垂直时,PC 取最小值,=0m >,解得7m =.故选:D.【点睛】方法点睛:本题考查圆的切点弦长的计算,一般方法有如下两种:(1)求出切点弦所在直线的方程,然后利用勾股定理求解;(2)利用等面积法转化为直角三角形斜边上的高,作为切点弦长的一般求解.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知一组数据:3,3,4,4,4,x ,5,5,6,6的平均数为4.7,则()A.7x =B.这组数据的中位数为4C.若将这组数据每一个都加上0.3,则所有新数据的平均数变为5D.这组数据的第70百分位数为5.5【答案】ACD 【解析】【分析】根据平均数求出x 值,再根据百分位的性质求出结果.【详解】由题意得()1334445566 4.710x +++++++++=,解得7x =,故A 正确;将这组数据从小到大排列为3,3,4,4,4,5,5,6,6,7,则中位数454.52+=,故B 错误;若将这组数据每一个都加上0.3,则所有新数据的平均数变为4.70.35+=,故C 正确;因为1070%7⨯=,所以这组数据的第70百分位数为(56)2 5.5+÷=,故D 正确.故选:ACD .10.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且5a =,6b =,7c =,下面说法正确的是()A.sin :sin :sin 5:6:7A B C =B.cos :cos :cos 5:6:7A B C =C.ABC 是锐角三角形D.ABC 的最大内角是最小内角的2倍【答案】AC 【解析】【分析】利用正弦定理可判断A 选项;利用余弦定理可判断BC 选项;利用二倍角的余弦公式可判断D 选项.【详解】对于A ,由正弦定理可得sin :sin :sin ::5:6:7A B C a b c ==,A 对;对于B ,由余弦定理可得2223649255cos 22677b c a A bc +-+-===⨯⨯,22225493619cos 225735a c b B ac +-+-===⨯⨯,2222536491cos 22565a b c C ab +-+-===⨯⨯,所以,cos :cos :cos 5:6:7A B C ≠,B 错;对于C ,因为a b c <<,则C 为最大角,又因为1cos 05C =>,则C 为锐角,故ABC 为锐角三角形,C 对;对于D ,由题意知,A 为最小角,则2251cos 22cos 121cos 749A A C ⎛⎫=-=⨯-=≠ ⎪⎝⎭,因为π0,2A ⎛⎫∈ ⎪⎝⎭,则()20,πA ∈,则2C A ≠,D 错.故选:AC.11.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PD ⊥面ABCD ,PD =,点E 是棱PB 上一点(不包括端点),F 是平面PCD 内一点,则()A.一定不存在点E ,使//AE 平面PCDB.一定不存在点E ,使PB ⊥平面ACEC.以D 为球心,半径为2的球与四棱锥的侧面PAD 的交线长为π3D.AE EF +的最小值165【答案】ACD 【解析】【分析】建立坐标系,利用空间向量判断A ,B ,把,PAB PCB 展开到同一平面内计算判断D ,求出球面与,PAD PAB 的交线,再借助对称计算判断C 即可.【详解】对于A ,在四棱锥P ABCD -中,PD ⊥面ABCD ,因为,⊂DA DC 面ABCD ,所以,PD DA PD DC ⊥⊥,因为底面ABCD 是正方形,所以DA DC ⊥,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴非负半轴建立如图所示的空间直角坐标系,则()()()(2,0,0,2,2,0,0,2,0,0,0,3A B C P ,设(()()2,2,32,2,3,0,1PE PB λλλλλλ==-=-∈,()(()2,2,32,0,322,2,233AE PE PA λλλλλλ=-=---=--,显然面PCD 的一个法向量为()2,0,0DA = ,而440DA AE λ⋅=-<,即,DA AE不垂直,所以AE与平面PCD 不平行,故A 正确;对于B ,又()(2,2,0,2,2,3AC PB =-=-,所以4400AC PB ⋅=-++=,即AC PB ⊥,若)44433320160AE PB λλλλ⋅=-+-=-= ,则()40,15λ=∈,所以存在点E ,使得AE PB ⊥,又,,AE AC A AE AC ⋂=⊂平面ACE ,所以PB ⊥平面ACE ,故B 错误;对于C ,由题意球面与Rt PAD △的交线如图中圆弧 IJ,而π2,3DJ DI DA PAD ===∠=,所以π6IDJ ∠=,所以圆弧 IJ的弧长为ππ263⨯=,故C 正确;对于D ,由于PD⊥面ABCD ,AB ⊂面ABCD ,所以PD AB ⊥,而AB AD ⊥,,,PD AD D PD AD =⊂ 面PAD ,所以AB ⊥面PAD ,又PA ⊂面PAD ,所以AB PA ⊥,同理CB PD ⊥,且4PA PC ===,把,PAB PCB 展开到同一平面内,要使AE EF +取得最小值,当且仅当点F 在PC 上,且AF PC ⊥,如图,因为2AB =,所以由勾股定理得PB ==所以sin 55BPA BPA ∠==∠=,而BPA BPC ∠=∠,所以4sin sin 22555APF BPA ∠=∠=⨯⨯=,所以()min416sin 455AE EF AF PA APF +==⋅∠=⨯=,故D 正确.故选:ACD.【点睛】关键点点睛:涉及空间图形中几条线段和最小的问题,把相关线段所在的平面图形展开并放在同一平面内,再利用两点之间线段最短解决是关键.12.已知函数()()e 11x x f x x x =->-,()()ln 11x g x x x x =->-的零点分别为1x 、2x ,则下列结论正确的是()A.12ln x x =B.12111x x +=C.124x x +> D.12ex x <【答案】ABC 【解析】【分析】分析可知,函数1xy x =-的图象关于直线y x =对称,利用图象的对称性可判断A 选项;由1121e 1x x x x ==-化简可判断B 选项;由基本不等式可判断C 选项;利用不等式的基本性质可判断D 选项.【详解】对于函数1x y x =-,可得()1x y x -=,可得()1x y y -=,则1y x y =-,所以,函数1xy x =-的图象关于直线y x =对称,由()()e 011x x f x x x =-=>-,得e 1x x x =-,由()()ln 011x g x x x x =-=>-,得ln 1x x x =-,作出函数e x y =、ln y x =、1xy x =-的图象如下图所示:由对称性可知,点()11,ex x 、()22,ln x x 关于直线y x =对称,对于A 选项,12ln x x =,12e xx =,A 对;对于B 选项,由1121e 1x x x x ==-,可得1221x x x x -=,所以,1221x x x x =+,故211212111x x x x x x ++==,B 对;对于C 选项,若121x x =>,由1221x x x x =+可得2112x x =,则122x x ==,这与12e xx =即2e 2=矛盾,所以,12x x ≠,()121212122111224x x x x x x x x x x ⎛⎫+=++=++>+ ⎪⎝⎭,C 对;对于D 选项,因为11x >,12e e xx =>,由不等式的基本性质可得12>e x x ,D 错.故选:ABC.【点睛】关键点点睛:解本题的关键分析出函数1xy x =-的图象关于直线y x =对称,以及同底数的指数函数和对数函数的对称性来得出等量关系,再利用不等式的基本性质求解.三、填空题:本题共4小题,每小题5分,共20分.13.过()1P +、()1Q +两点的直线的斜率为_______.【解析】【分析】利用两点间的斜率公式可得出直线PQ 的斜率.【详解】由已知可得())1131PQk -+==-14.在直三棱柱111ABC A B C -中,2AB =,AC =,4BC =,18AA =,则该直三棱柱的外接球的表面积为_______.【答案】80π【解析】【分析】将直三棱柱111ABC A B C -补成长方体1111ABDC A B D C -,求出该直三棱柱的外接球的直径,利用球体的表面积公式可求得结果.【详解】因为2AB =,AC =,4BC =,则222AB AC BC +=,则AB AC ⊥,将直三棱柱111ABC A B C -补成长方体1111ABDC A B D C -,如下图所示:所以,直三棱柱111ABC A B C -的外接球直径为2R ===,因此,该直三棱柱的外接球的表面积为()224ππ280πR R =⨯=.故答案为:80π.15.已知函数()πsin sin (0)3f x x x ωωω⎛⎫=++> ⎪⎝⎭在[]0,π上的值域为2⎣,则实数ω的取值范围是_______.【答案】12,33⎡⎤⎢⎥⎣⎦【解析】【分析】先把函数化成()()sin f x A x ωϕ=+的形式,再根据函数在给定区间上的值域求ω的取值范围.【详解】因为()πsin sin 3f x x x ωω⎛⎫=++ ⎪⎝⎭ππsin cos cos sin sin 33x x xωωω=++3sin ·cos ·22x x ωω=+π6x ω⎛⎫=+ ⎪⎝⎭.又0πx ≤≤⇒ππππ666x ωω≤+≤+.因为()2f x ≤≤⇒1πsin 126x ω⎛⎫≤+≤ ⎪⎝⎭⇒ππ5π266ωπ≤+≤⇒1233ω≤≤.故答案为:12,33⎡⎤⎢⎥⎣⎦16.已知双曲线C :()222210,0x y a b a b-=>>的右顶点,右焦点分别为A ,F ,过点A 的直线l 与C 的一条渐近线交于点P ,直线PF 与C 的一个交点为Q ,()20OA OP OF OA OP OF -+⋅+⋅= ,且5Q PF P =,则C 的离心率为________.【答案】45+【解析】【分析】先根据条件:()20OA OP OF OA OP OF -+⋅+⋅= ,可确定P 点坐标,再根据条件:5QP FP=可确定Q 点坐标,依据Q 在双曲线上可求出双曲线的离心率.【详解】如图:因为(),0A a ,(),0F c ,设00,b P x x a ⎛⎫ ⎪⎝⎭.由()20OA OP OF OA OP OF -+⋅+⋅= ⇒()()·OP OF OA a c a -=- ⇒()()00,·,0b x x c a a c a a ⎛⎫-=- ⎪⎝⎭所以:()()0c a x a c a -=-⇒0x a =.所以P 点坐标为(),a b .,所以PA x ⊥轴.过P 作x 轴的垂线,过Q 作PA 轴的垂线,相交于E 点.则~PAF PEQ ,又5QP FP =,所以()(),5,Q Q a x b y a c b --=-,可得Q 点的坐标为()54,4c a b --,因为Q 在双曲线C 上,所以()()22225441c a b a b ---=⇒225e 40e 10--=⇒417e 5=或417e 5-=(舍去).故答案为4175+.【点睛】方法点睛:求双曲线的离心率,常见的方法有两种:(1)求出a ,c ,利用e ca=求出离心率;(2)根据条件得到关于a ,b ,c 的齐次式,结合222b a c =-和e ca=,解方程可得e 的值.四、解答题:本题共6小题,第17题10分,第18-22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.设函数()()sin cos f x x x x =-∈R .(1)求函数π2y f x ⎛⎫=+⎪⎝⎭的最小正周期;(2)求函数()y f x =在π0,2⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)2π(2)1【解析】【分析】(1)化简函数()f x 的解析式,可得出函数π2y f x ⎛=+⎫⎪⎝⎭的解析式,利用正弦型函数的周期公式可求得函数π2y f x ⎛=+⎫ ⎪⎝⎭的最小正周期;(2)由π02x ≤≤求出π4x -的取值范围,再利用正弦型函数的单调性可求得函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值.【小问1详解】解:因为()πsin cos 4f x x x x ⎛⎫=-=- ⎪⎝⎭,则πππ42in 4π2f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=+ ⎪ ⎪⎢⎝⎭⎝⎭⎣+⎦+⎝⎭,故函数π2y f x ⎛=+⎫ ⎪⎝⎭的最小正周期为2π.【小问2详解】解:当π02x ≤≤时,πππ444x -≤-≤,所以,函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,故()max ππ124f x f ⎛⎫=== ⎪⎝⎭.18.如图,在ABC 中,已知2AB =,4AC =,60BAC ∠=︒,M ,N 分别为AC ,BC 上的两点12AN AC = ,13BM BC =,AM ,BN 相交于点P .(1)求AM的值;(2)求证:AM PN ⊥.【答案】(1)3(2)证明见解析【解析】【分析】(1)用AB 、AC表示AM ,再根据数量积的定义及运算律计算可得;(2)用AB 、AC表示AM 、BN ,根据数量积的运算律求出AM BN ⋅ ,即可得证.【小问1详解】因为13BM BC = ,所以()11213333AM AB BM AB BC AB AC AB AB AC =+=+=+-=+,所以222221441441116424163399999293AM AB AC AB AB AC AC ⎛⎫=+=+⋅+=⨯+⨯⨯⨯+⨯= ⎪⎝⎭ ,所以AM 【小问2详解】因为12AN AC = ,所以12BN AN A BA B AC =+=-+ ,所以22211212141603323636AM BN AB AC AB AC AB AC ⎛⎫⎛⎫⋅=+⋅-+=-+=-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,所以AM BN ⊥,即AM BN ⊥,所以AM PN ⊥.19.树人中学从参加普法知识竞赛的1000同学中,随机抽取60名同学将其成绩(百分制,均为整数)分成[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100六组后得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)补全频率分布直方图,并估计本次知识竞赛成绩的众数;(2)如果确定不低于88分的同学进入复赛,问这1000名参赛同学中估计有多少人进入复赛;(3)若从第一组,第二组和第六组三组学生中分层抽取6人,再从这6人中随机抽取2人,求所抽取的2人成绩之差的绝对值小于25的概率.【答案】(1)补全频率分布直方图见解析;估计众数为75.(2)100(3)2 3【解析】【分析】(1)根据频率分布直方图中各矩形的面积之和为1,求出[)70,80组的频率,可补全频率分布直方图,由此估计本次知识竞赛成绩的众数;(2)由频率分布直方图求出成绩不低于88的频率,由此估计进入复赛的人数;(3)根据分层抽样求出各组抽取的人数,再用古典概型求出所抽取的2人成绩之差的绝对值小于25个概率.【小问1详解】[)70,80组的频率为:()10.010.0150.0150.0250.005100.3-++++⨯=.所以补全频率分布直方图为:因为[)70,80组对应的小矩形最高,所以估计本次知识竞赛成绩的众数为7080752+=.【小问2详解】由频率分布直方图得分数不低于88分的频率为:90880.025100.005100.110-⨯⨯+⨯=.所以这1000名参赛同学中估计进入复赛的人数为:10000.1100⨯=.【小问3详解】从第一组,第二组和第六组三组同学中分层抽取6人,因为第一、二、六组的频率之比为2:3:1,所以第一组抽取2626⨯=人,第二组抽取3636⨯=人,第六组抽取1616⨯=人.设这6人分别为:12123,,,,,a a b b b c ,从这6人中任选2人的抽法有:1211121312122232121312323,,,,,,,,,,,,,,a a a b a b a b a c a b a b a b a c b b b b b c b b b c b c基本事件总数15n =,所抽取的2人成绩之差的绝对值小于25包含的基本事件有:12111213212223121323,,,,,,,,,,a a ab a b a b a b a b a b b b b b b b 基本事件个数个数10m =.所以所抽取的2人成绩之差的绝对值小于25的概率为102153m P n ===.20.如图,在多面体ABCDEF 中,四边形ABCD 是边长为2的正方形,//EF AD ,22AE EF ==,120EAD ∠= ,平面ADFE ⊥平面ABCD .(1)求证:BD CF ⊥;(2)求平面ABE 与平面BDF 所成锐角的余弦值.【答案】(1)证明见解析(2)104【解析】【分析】(1)连接AC 、AF ,推导出AF AD ⊥,利用面面垂直的性质可得出AB ⊥平面ADFE ,可得出AF AB ⊥,推导出AF ⊥平面ABCD ,可得出BD AF ⊥,利用正方形的性质可得出BD AC ⊥,可得出BD ⊥平面ACF ,再利用线面垂直的性质可证得结论成立;(2)以点A 为坐标原点,AB 、AD 、AF 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面ABE 与平面BDF 所成锐角的余弦值.【小问1详解】证明:连接AC 、AF,因为四边形ABCD 为正方形,则BD AC ⊥,AB AD ⊥,因为1EF =,2AE =,120EAD ∠= ,//EF AD ,则60AEF ∠=o ,由余弦定理可得22212cos 601421232AF EF AE AE EF =+-⋅=+-⨯⨯⨯=,所以,222AF EF AE +=,则AF EF ⊥,则AF AD ⊥,因为平面ADFE ⊥平面ABCD ,平面ADFE 平面ABCD AD =,AB AD ⊥,AB ⊂平面ABCD ,则AB ⊥平面ADFE ,因为AF ⊂平面ADFE ,则AF AB ⊥,因为AB AD A ⋂=,AB 、AD ⊂平面ABCD ,则AF ⊥平面ABCD ,因为BD ⊂平面ABCD ,则BD AF ⊥,因为AF AC A = ,AF 、AC ⊂平面ACF ,则BD ⊥平面ACF ,因为CF ⊂平面ACF ,则BD CF ⊥.【小问2详解】解:因为AF ⊥平面ABCD ,AB AD ⊥,以点A 为坐标原点,AB 、AD 、AF 所在直线分别为x 、y 、z轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()0,2,0D、(F、(0,E -,设平面ABE 的法向量为()111,,m x y z =r,()2,0,0AB =,(0,AE =- ,则11120m AB x m AE y ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,取11z =,可得()m = ,设平面BDF 的法向量为()222,,n x y z =r,()2,2,0DB =-,(0,DF =- ,则222222020n DB x y n DF y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取2y =)n = ,所以10cos ,4m nm n m n ⋅===⋅,因此平面ABE 与平面BDF 所成锐角的余弦值为104.21.如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,且满足PD =.当点P 在圆上运动时,M 的轨迹为Ω.(1)求曲线Ω的方程;(2)点()2,0A ,过点A 作斜率为()0k k ≠的直线l 交曲线Ω于点B ,交y 轴于点C .已知G 为AB 的中点,是否存在定点Q ,对于任意()0k k ≠都有OG CQ ⊥,若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)22142x y +=(2)存在,()1,0Q 【解析】【分析】(1)设点()00,P x y 、(),M x y ,则()0,0D x,根据平面向量的坐标运算可得出00x xy =⎧⎪⎨=⎪⎩,代入等式22004x y +=化简可得出曲线Ω的方程;(2)记10m k=≠,则直线l 的方程可化为2x my =+,将该直线方程与曲线Ω的方程联立,求出点B 的坐标,进而求出点G 的坐标,求出OG k 及点C 的坐标,根据CQ OG ⊥可求出直线CQ 的方程,即可得出直线CQ 所过定点的坐标,即为所求的点Q .【小问1详解】设点()00,P x y 、(),M x y ,则()0,0D x ,因为PD =,所以PD =,则())000,,y x x y -=--,则)000x x y -=-=⎪⎩,所以00x x y =⎧⎪⎨=⎪⎩,因为点P 在圆224x y +=,则2204x y +=,所以2224x y +=,整理可得22142x y +=,因此曲线Ω的方程为22142x y +=.【小问2详解】存在定点()1,0Q 满足题意,理由如下:记10m k=≠,则直线l 的方程为2x my =+,联立222240x my x y y =+⎧⎪+=⎨⎪≠⎩,得()22240m y my ++=,解得242m y m =-+,则2222442222m m x m m -=-+=++,故点222424,22m m B m m ⎛⎫-- ⎪++⎝⎭,所以点2242,22m G m m ⎛⎫- ⎪++⎝⎭,则2OG m k =-,因为OG CQ ⊥,则12CQ OGk k m=-=,在直线2x my =+中,令0x =,可得2y m =-,即点20,C m ⎛⎫- ⎪⎝⎭,所以直线CQ 的方程为()2221y x x m m m=-=-,所以存在定点()1,0Q ,使得CQ OG ⊥.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.22.已知函数()f x 和()g x 的定义域分别为1D 和2D ,若对任意01x D ∈,恰好存在n 个不同的实数122,,n x x x D ∈ ,使得()()0i g x f x =(其中*1,2,,,i n n =⋯∈N ),则称()g x 为()f x 的“n 重覆盖函数”.(1)判断()[]()221,0,4g x x x x =-+∈是否为()[]()40,5f x x x =+∈的“n 重覆盖函数”,如果是,求出n 的值;如果不是,说明理由.(2)若()()2231,211,1ax a x x g x x x ⎧+-+-≤≤=⎨->⎩,为()222log 21x x f x +=+,的“2重覆盖函数”,求实数a 的取值范围;(3)函数[]x 表示不超过x 的最大整数,如[][][]1.21,22, 1.22==-=-.若()[][),0,2h x ax ax x =-∈为()[)2,0,1x f x x x ∞=∈++的“2023重覆盖函数”请直接写出正实数a 的取值范围(无需解答过程).【答案】(1)1n =(2)2|3a a ⎧⎫≤⎨⎬⎩⎭(3)40452023,42⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据新定义,结合单调性即可求解(2)先求出()f x 的值域,然后把问题转化为()y g x =与y k =有两个交点,然后对a 分类讨论即可求解;(3)先求出()f x 的值域,作出()g x 的图象,结合函数图象可求.【小问1详解】因为()22()211g x x x x =-+=-,[]0,4x ∈,()[]()40,5f x x x =+∈,则()[]4,9f x ∈,由定义可得,对任意[]00,5x ∈,恰好存在不同的实数1x ,2x []0,4n x ⋯⋯∈,使得i 0()()g x f x =,(其中1i =,2,n ⋯,*N n ∈),即[]20(1)44,9i x x -=+∈,可得[]3,4i x ∈,所以对于任意[]00,5x ∈,能找到一个i x ,使得20(1)4i x x -=+,()g x ∴是()f x 的“n 重覆盖函数”,且1n =;【小问2详解】可得22221()log log 12121x x x f x +⎛⎫==+ ⎪++⎝⎭的定义域为R ,即对任意0R x ∈,存在2个不同的实数1x ,[)22,x ∞∈-+,使得0()()i g x f x =(其中1,2i =),20x > ,则11211011122121x x x +>⇒<<⇒<+<++,∴210log 1121x ⎛⎫<+< ⎪+⎝⎭,即()021()log 10,121i x g x ⎛⎫=+∈ ⎪+⎝⎭,即对任意01k <<,()g x k =有2个实根,当1x >时,()1g x x k =-=已有一个根,故只需21x -≤≤时,()g x k =仅有1个根,当0a =时,()31g x x =-+,符合题意,当0a >时,(2)44617g a a -=-++=,则需满足()12310g a a =+-+≤,解得203a <≤,当a<0时,抛物线开口向下,(2)44617g a a -=-++=,(0)1g =,若仅有1个根,由a<0知3212a a -≤-,当[]2,0x ∈-时,()1g x ≥,所以()g x k =无解,则只需(1)3200g a a =-≤⎧⎨<⎩,解得a<0,综上,实数a 的取值范围是2|3a a ⎧⎫≤⎨⎬⎩⎭;【小问3详解】因为()[)2,0,1x f x x x ∞=∈++,当0x =时()00f =,当0x >时()0f x >且()211112x f x x x x ==≤=++,当且仅当1x =时取等号,所以()102f x <≤,综上可得()102f x ≤≤,即00201()0,12x f x x ⎡⎤=∈⎢⎥+⎣⎦,则对于任意10,2m ⎡⎤∈⎢⎥⎣⎦,()h x m =,[)0,2x ∈要有2023个根,1,0,121,,()[]232,,ax x a ax x h x ax ax a a ax x a a ⎧⎡⎫∈⎪⎪⎢⎣⎭⎪⎪⎡⎫-∈⎪⎪⎢=-=⎣⎭⎨⎪⎡⎫⎪-∈⎪⎢⎪⎣⎭⎪⋯⎩,作出函数的图象(部分),如图:要使()h x m =,[)0,2x ∈有2023个根,则4045202322a a<≤,又0a >,则4045202342a <≤,故正实数a 的取值范围40452023,42⎛⎤ ⎥⎝⎦.【点睛】关键点点睛:对于新定义问题关键是理解定义,将其转化为方程的根的问题,第三问关键是数形结合.。
2019学年浙江省高二上学期期末数学试卷【含答案及
解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 双曲线的焦距是()
A .
B . 5___________________________________
C . 10___________________________________
D .
2. 设,则“ ”是“直线与直线
垂直”的()
A .充分但不必要条件_____________________________________
B .必要但不充分条件
C.充要条件
D .既不充分也不必要的条件
3. 设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()
A.若则 ___________
B .若则
C.若则 ___________
D .若则
4. 已知不等式的解集为.则
()
A .___________________________________
B .
_________________________________ C .___________________________________
D .
5. 直线与曲线的公共点的个数是()
A . 1
B . 2
C . 3
D . 4
6. 把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的棱锥体积最大时,直线BD和平面ABC所成的角的大小为()
A .90°______________________________
B .60°___________________________________
C .45°___________________________________
D .30°
7. 过抛物线的焦点作直线交抛物线于,若
,则的斜率是()
A .______________________________
B .
_________________________________ C .______________________________
D .
8. 已知实数x , y满足,如果目标函数z=x-y的最小值为-1 ,则
实数m等于()
A . 7____________________
B . 5_________________________________
C . 4______________________________
D . 3
9. 如图,在长方形ABCD中, AB= , BC=1 , E为线段DC上一动点,现将
AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C ,
则K所形成轨迹的长度为()
________________________
A .___________________________________
B .
___________________________________ C .
_________________________________ D .
10. 已知,,若不等式恒成立,则的最小值为()
A .____________________
B .____________________________
C .___________
D .
二、填空题
11. 一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的表面积是_________________________________ .
12. 设是一个球面上的四个点,两两垂直,且
,则该球的体积为_________________________________ .
13. 已知双曲线的左、右焦点分别为,过作
斜率为的直线交双曲线的渐近线于两点,为线段的中点.若
直线平行于其中一条渐近线,则该双曲线的离心率为______________ .
14. 如图,直线,垂足为O ,已知中,为直角,AB=2 , BC=1 ,该直角三角形做符合以下条件的自由运动:( 1 ),( 2 ).则C、O两点间的最大距离为______ .
15. 已知,且满足,则的最大值为
___________ .
16. 在平面直角坐标系内,设、为不同的两点,直线
的方程为,
设有下列四个说法:
① 存在实数,使点在直线上;
② 若,则过、两点的直线与直线平行;
③ 若,则直线经过线段的中点;
④ 若,则点、在直线的同侧,且直线与线段的延长线
相交.
在上述说法中,所有正确说法的序号是___________________________________ .三、解答题
17. 关于的方程:.
(1)若方程表示圆,求实数的范围;
(2)在方程表示圆时,若该圆与直线相交于两点,且,求实数的值.
18. 如图,在三棱锥中,平面,,
.
(1)求证:平面;
(2)求二面角的大小.
19. 已知圆经过椭圆的右焦点和上顶点,如图所示.
(1)求椭圆的方程;
(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.
20. 已知函数,且,.
(1)求、的值;
(2)已知定点,设点是函数图象上的任意一点,求的最小值;
(3)当时,不等式恒成立,求实数m的取值范围.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】。