初一上学期期中数学试卷
- 格式:doc
- 大小:81.56 KB
- 文档页数:2
一、选择题(每题2分,共20分)1. 下列数中,正数是()A. -3B. 0C. 1.5D. -2.52. 下列各数中,有理数是()A. πB. √2C. 3/4D. 无理数3. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 14. 下列各数中,有最小整数解的是()A. 3x - 5 = 1B. 2x + 4 = 10C. 5x - 3 = 8D. 4x + 2 = 125. 下列各数中,是二次根式的是()A. √9B. √16C. √-4D. √256. 下列各数中,是立方根的是()A. ∛8B. ∛27C. ∛-27D. ∛-87. 下列各数中,能被3整除的是()A. 15B. 18C. 21D. 248. 下列各数中,是质数的是()A. 14B. 15C. 16D. 179. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 610. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 5二、填空题(每题2分,共20分)11. 2的平方根是______,3的立方根是______。
12. 下列各数的倒数分别是:1/2=______,1/3=______,1/4=______。
13. 下列各数的平方分别是:2的平方=______,3的平方=______,4的平方=______。
14. 下列各数的立方分别是:2的立方=______,3的立方=______,4的立方=______。
15. 下列各数的绝对值分别是:|-3|=______,|0|=______,|5|=______。
16. 下列各数的相反数分别是:-3的相反数是______,0的相反数是______,5的相反数是______。
17. 下列各数的最大公约数分别是:6和8的最大公约数是______,12和18的最大公约数是______。
18. 下列各数的最小公倍数分别是:6和8的最小公倍数是______,12和18的最小公倍数是______。
七年级上学期数学期中考试卷(含答案)一.选择题(共30分)1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.在有理数﹣1,﹣2,0,2中,最小的是()A.﹣1B.﹣2C.0D.23.如果|x|=2,那么x=()A.2B.﹣2C.2或﹣2D.2或4.计算(﹣3)+(﹣2)的结果等于()A.﹣5B.﹣1C.5D.15.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃6.若a,b互为相反数,c的倒数是4,则3a+3b﹣4c的值为()A.﹣8B.﹣5C.﹣1D.167.与2÷3÷4运算结果相同的是()A.2÷(3÷4)B.2÷(3×4)C.2÷(4÷3)D.3÷2÷48.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()A.0.4×108B.4×107C.4.0×108D.4×106 9.下列结论不正确的是()A.abc的系数是1B.多项式1﹣3x2﹣x中,二次项是﹣3x2C.﹣ab3的次数是4D.-3xy不是整式410.当x=﹣2时,式子3x2+ax+8的值为16,当x=﹣1时,这个式子的值为()A.2B.9C.21D.311.下列说法正确的是()A.﹣3xy的系数是3B.xy2与﹣xy2是同类项C.﹣x3y2的次数是6D.﹣x2y+2x﹣3是四次三项式12.化简3xy2﹣xy2结果正确的是()A.2xy B.2xy2C.2x2y D.2y213.下列添括号正确的是()A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)14.一个长方形的长是a+b,宽是a,其周长是()A.2a+b B.4a+b C.4a+2b D.2a+2b15.如果a和﹣4b互为相反数,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是()A.﹣3B.﹣1C.1D.3二.填空题(共30分)16.若x=﹣3,则|x|的值为.17.数轴上的点A、B分别表示﹣3、2,则点离原点的距离较近(填“A”或“B”).18.已知|m|=5,|n|=2,且n<0,则m+n的值是.19.中秋节当天,高州市的最高气温是32℃,而在我国最北端的漠河市的最高气温是﹣3℃,则两城市中最大的温差是℃.20.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则代数式a﹣b+2c=.21.若代数式2x2+3x+7的值是8,则代数式2x2+3x﹣7的值是.22.若单项式﹣5x2y m与x n y是同类项,则m﹣n=.23.﹣x2﹣2x+3=﹣()+3.24.某校购买价格为a元/个的排球100个,价格为b元/个的篮球50个,则该校一共需支付元.25.“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行加减乘除混合运算(每张牌只能使用一次),使得运算结果是24或者是﹣24,现抽出的牌所对的数字是4,﹣5,3,﹣1,请你写出刚好凑成24的算式.三.解答题(共40分)26.(12分)计算:+(﹣2);(1)(﹣1)×(﹣4)+(﹣9)÷3×13)﹣|﹣1﹣5|;(2)﹣12022+(﹣2)3×(﹣12(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].27.(5分)将下列各数在给出的数轴上表示出来,并用“<”把它们连接起来:﹣1,﹣(﹣3.5),﹣|﹣3|,0,|﹣5|.228.(5分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求a+b+m﹣2022cd的值.29.(5分)如图,请用两种不同的方法求阴影部分的面积.30.(8分)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.31.(5分)已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.参考答案一.选择题1.C.2.B.3.C.4.A.5.D.6.C.7.B.8.B.9.D.10.B.11.B.12.B.13.C.14.C.15.B.二.填空题16.3.17.B.18.3或﹣7.19.35.20.﹣2.21.﹣6;22.﹣1.23.x2+2x.24.(100a+50b).25.3×[4﹣(﹣5)﹣1](答案不唯一).三.解答题26.解:(1)(﹣1)×(﹣4)+(﹣9)÷3×1+(﹣2)3﹣2=4﹣3×13=4﹣1﹣2=1;)﹣|﹣1﹣5|(2)﹣12022+(﹣2)3×(﹣12)﹣6=﹣1﹣8×(﹣12=﹣1+4﹣6=﹣3;(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3=(4﹣3)a3+(﹣3+1)a2b+(5﹣5)ab2=a3﹣2a2b;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)]=5x2﹣7x﹣(3x2+2x2﹣8x+2)=5x2﹣7x﹣3x2﹣2x2+8x﹣2=x﹣2.27.解:如图所示:,从左到右用“<”连接为:.28.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,a+b+m﹣2022cd=0+2﹣2022×1=2﹣2022=﹣2020;当m=﹣2时,a+b+m﹣2022cd=0﹣2﹣2022×1=﹣2﹣2022=﹣2024.29.解:方法1:(2a+3b)(2a+b)﹣2a×3b=4a2+2ab+6ab+3b2﹣6ab=4a2+2ab+3b2;方法2:2a×a×2+b(2a+3b)=4a2+2ab+3b2.30.解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.31.解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1.。
一、选择题(每题2分,共20分)1. 下列各数中,绝对值最小的是()。
A. -3B. -2C. 0D. 12. 下列运算中,正确的是()。
A. (-3)² = -9B. 5 - 2 = 3C. (a + b)² = a² + b²D. (a - b)² = a² - b²3. 下列图形中,是轴对称图形的是()。
A. 长方形B. 等腰三角形C. 平行四边形D. 梯形4. 若a > b,则下列不等式中正确的是()。
A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 15. 一个长方形的长是8cm,宽是4cm,它的周长是()cm。
B. 16C. 24D. 326. 下列各数中,有理数是()。
A. √2B. πC. 1/3D. √97. 下列函数中,是正比例函数的是()。
A. y = 2x + 3B. y = 3x²C. y = 4xD. y = x³8. 若x² - 5x + 6 = 0,则x的值为()。
A. 2 或 3B. 1 或 4C. 3 或 2D. 1 或 39. 一个等腰三角形的底边长是10cm,腰长是8cm,它的面积是()cm²。
A. 40B. 48C. 6410. 下列图形中,是圆的是()。
A. 正方形B. 等边三角形C. 圆形D. 梯形二、填空题(每题2分,共20分)11. 有理数a的相反数是________。
12. 2的平方根是________。
13. 若a > 0,b < 0,则a + b的符号是________。
14. 一个正方形的周长是16cm,它的边长是________cm。
15. 下列函数中,是反比例函数的是________。
16. 若x = 2,则x² - 4x + 4的值为________。
武汉市东西湖区2024-2025学年度上学期期中考试七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号抹黑.1.若水位升高5米记作+5米,则水位下降6米记作( )A.-6米B.-8米C.+6米D.6米2.一个数的相反数是它本身,则这个数( )A.0B.1C.-1D.不存在3.(-3)8的底数是( )A.3B.8C.-3D.-84.单项式-4a2b4的系数和次数分别是( )A.-4和6B.6和-4C.-4和2D.6和45.下列各式中正确的是( )A.-42=16B.(-4)2=16C.|-4|=-4D.|-(-4)|=-46.用代数式表示“a的2倍与b的差的平方”,正确的是( )A.2(a-b)2B.2a-b2C.(2a-b)2D.(a-2b)27.下列整式中,不是同类项的是( )A.m2n与-nm2B.1与-2C.3xy2和−13x2y D.13a2b与13b2a8.下列各对相关联的量中,不成反比例关系的是( )A.车间计划加工800个零件,加工时间与每天加工的零件个数B.社团共有50名学生,按各组人数相等的要求分组,组数与每组的人数C.圆柱的体积为6m3,圆柱的底面积与高D.计划用100元购买苹果和香蕉两种水果,购买苹果的金额与购买香蕉的金额9.若x2=9,|-y|=4,且x>y,则x+y的值是( )A.-1B.1C.-1或7D.-1或-710.图1是我国古代传说中的“洛书”,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之“.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3中:若A=a,B=2a-1,C=9a+7,整式F是( )A.-4a+5B.-4a-5C.-5a-4D.-5a+4二、填空题(共6小题,每小题3分,共18分)11.-2的相反数是________,倒数是__________,绝对值是__________.12.2024年6月2日6时23分,“嫦娥六号”着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为__________.13.比较大小:−56−−67.14.德国数学家莱布尼茨是世界上第一个提出二进制记数法的人.计算机和依赖计算机设备里都使用二进制,二进制数只使用数字0,1,计数的进位方法是“途二进一”,如,二进制数1101记为(1101),(1101)通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿上面的转换,将二进制数(100111)转换为十进制数是______.15.在新年联欢会上,小明和小亮表演了一个扑克牌游戏:小明背对着小亮,让小亮把一副扑克牌按下列四个步骤操作:第一步,把部分扑克牌分发为左、中、右三堆,每堆不少于2张牌,且各堆牌的张数相同;第二步,从左边一堆中拿出两张,放入中间一堆;第三步,从右边一堆中拿出一张,放入中间一堆;第四步,从中间一堆中拿出与左边一堆张数相等的牌放入左边一堆.这时小明准确说出了中间一堆牌现有的张数,这个张数是__________.16.有下列说法:①若单项式2a3b(m+1)与-3anb3是同类项,则(-m)n=-8.②已知a,b,c是不为0的有理数且a<0,abc<0,则|a|a +|b|b+|c|c−3的值为-2或-6.③已知有理数a,b满足ab≠0,且|a-b|=4a-3b,则ab 的值为23.④若|a+3|=-3-a,|b-2|=b-2,则化简|b+3|-|a-2|的结果为a+b+1.其中正确的说法有_________.(请填写序号)三、解答题(共6小题,共72分)17.(本题满分8分)计算:(1)16+(-25)+24+(-35)(2)-12022×[2-(-)2]+3÷(3/4)18.(本题满分8分)先化简,再求值:x2-5xy-3x2-2(1-2xy-x2),其中x=−19,y=92.19.(本题满分8分)已知a,b互为相反数,c,d互为倒数,m是绝对值最小的数,且(x-2)2+|y-4|=0.求3(a+b)+6cd-5xy+m的值.20.(本题满分8分)如图是某居民小区的一块长为a米,宽为2b米的长方形空地为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)求美化这块空地共需多少元?(用含有a,b,π的式子表示)(2)当a=7,b=2,π取3时,美化这块空地共需多少元?21.(本题满分8分)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a+b_______0,c-a______0,b+2______0.(2)化简:3|a+b|-2|c-a|-|b+2|.22.(本题满分10分)出租车司机刘师傅某天上午从A 地出发,在东西方向的公路上行驶营运,如表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).(1)刘师傅走完第6次里程后,他在A 地的什么方向?离A 地有多少千米?(2)已知出租车每千米耗油约0.08升,刘师傅开始营运前油箱里有8升油,若少于3升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油;(3)已知载客时3千米以内收费10元,超过3千米后每千米收费1.8元,问刘师傅这天上午走完6次里程后的营业额为多少元?次数123456里程-3-15+16-1+5-12载客×○O ×O O23.(本题满分10分)观察下面有规律排列的三行数:第一行数:-2,4,-8,16,-32,64,…,第二行数:1-3,3,-9,15,-33,63,…,第三行数:6,|-6,18,|-30,66,-126,…(1)第一行数中,第7个数是_____,第二行数中,第7个数是_____,第三行数中,第7个数是_____;(2)取每行数的第2024个数,计算这三个数的和是多少?(3)如图,在第二行、第三行数中,用两个长方形组成“阶梯形”方框,框住4个数,左右移动“阶梯形”方框,是否存在框住的4个数的和为-5118,若存在,求这四个数,若不存在,请说明理由.24.(本题满分12分)[阅读材料]在数轴上点A表示的数为a,B点表示的数为b,则点A到点B的距离记为AB,若a>b,线段AB的长度可以表示为AB=a-b;若a<b,线段AB的长度可以表示为AB=b-a.[问题探究](1)如图,点A在数轴上表示的数是8,点B在数轴上表示的数是-10,则AB=_____;(2)在(1)的条件下,动点P从点A出发,以每秒2个单位长度的速度沿数轴匀速向右运动;同时动点O从点B出发,以每秒4个单位长度的速度沿数轴匀速向右运动,设P,Q两点的运动时间为t秒,当PQ=10时,求t的值;(3)在(1)的条件下,动点M从点A出发,以每秒2个单位长度的速度向点B匀速运动;同时点N从点B出发,以每秒3个单位长度的速度向点A运动.当点M到达点B后,立即以原速返回,到达点A停止运动,当点N到达点A后,立即速度变为原速的一半返回,到达点B停止运动,请问:当点M运动时间为多少秒时,MN=7.。
初一上学期数学期中试卷带答案完整一、选择题1.“49的平方根是7±”的表达式正确的是() A .497±=±B .497=C .497=±D .497±=2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.坐标平面内的下列各点中,在y 轴上的是( ) A .()0,3B .()2,3--C .1,2 D .3,04.下列命题是假命题的是( ) A .两个锐角的和是钝角B .两条直线相交成的角是直角,则两直线垂直C .两点确定一条直线D .三角形中至少有两个锐角 5.下列几个命题中,真命题有( ) ①两条直线被第三条直线所截,内错角相等; ②如果1∠和2∠是对顶角,那么12∠=∠; ③一个角的余角一定小于这个角的补角; ④三角形的一个外角大于它的任一个内角. A .1个B .2个C .3个D .46.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )A .3B .33C .3D .327.如图,小明从A 处出发沿北偏东60︒方向行走至B 处,又沿北偏西20︒方向行走至C 处,则ABC ∠的度数是( )A .100︒B .90︒C .80︒D .70︒8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.324-=________.10.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 15.在平面直角坐标系中,已知线段3,AB =且//AB x 轴,且点A 的坐标是()1,2,则点B 的坐标是____.16.如图,在平面直角坐标系中,一动点从原点O 出发,每次移动1个单位长度,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0)⋯,则P 2020的坐标是___.三、解答题17.计算: (1)(3201931232(1)-(2)3339368(1)116--+18.求下列各式中x 的值: (1)9x 2-25=0; (2)(x +3)3+27=0. 19.完成下列证明:已知:如图,△ABC 中,AD 平分∠BAC ,E 为线段BA 延长线上一点,G 为BC 边上一点,连接EG 交AC 于点H ,且∠ADC +∠EGD =180°,过点D 作DF ∥AC 交EG 的延长线于点F .求证:∠E =∠F .证明:∵AD 平分∠BAC (已知), ∴∠1=∠2( ), 又∵∠ADC +∠EGD =180°(已知),∴EF ∥ (同旁内角互补,两直线平行).∴∠1=∠E (两直线平行,同位角相等),∠2=∠3( ). ∴∠E = (等量代换). 又∵AC ∥DF (已知), ∴∠3=∠F ( ). ∴∠E =∠F (等量代换).20.三角形ABC 在平面直角坐标系中的位置如图所示,点O 为坐标原点,()2,3-A ,()3,1B -,()1,2C -.(1)将ABC 向右平移4个单位长度得到111A B C △,画出平移后的111A B C △; (2)将ABC 向下平移5个单位长度得到222A B C △,画出平移后的222A B C △; (3)直接写出三角形ABC 的面积为______平方单位.(直接写出结果)21.22的小数部分我们不可能全部写出来,122<212.请解答下列问题: (117的整数部分是________,小数部分是________.(25a 13b ,求5a b +. (3)已知:103x y =+,其中x 是整数,且01y <<,求x y -的相反数.22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.23.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由; (3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)24.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.【参考答案】一、选择题 1.A 解析:A 【分析】根据平方根的表示方法,即可得到答案. 【详解】解:“49的平方根是7±”表示为:497±=±. 故选A . 【点睛】本题主要考查平方根的表示法,掌握正数a的平方根表示为2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点()0,3符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.A【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题.【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°,而它们的和是50°,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题.故选: A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.B【分析】利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次y值.【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3.符合题意,即输出的y故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.7.A【分析】根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.【详解】AE BF,解:由题意可得:∠A=60°,∠CBF=20°,//AE BF,∵//∴∠A+∠ABF=180°,∴∠ABF=180°﹣∠A=180°﹣60°=120°,∴∠ABC=∠ABF﹣∠CBF=120°﹣20°=100°,故选:A.【点睛】本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.8.C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,∴OA4n=2n,∵2021=505×4+1,∴点A2021在x轴上,且OA2021=505×2+1=1011,∴△OA2A2021的面积=12×1×1011=10112(cm2).故选:C.【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】 故答案为:6. 【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6 【分析】根据算术平方根、有理数的乘方运算即可得. 【详解】32826-= 故答案为:6. 【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标. 【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对 解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标. 【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对称点的坐标为:(3,-5) 故答案为(3,-5). 【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.11.90° 【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n︒【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠. 【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD , ∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q , ∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°; 同理可得:∠P 2=14(∠AEF +∠CFE )=45°,∠P 3=18(∠AEF +∠CFE )=22.5°,..., ∴902n nP ︒∠=, 故答案为:90°,902n︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.100 【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解. 【详解】如图,作CE ∥AD ,则CE ∥BF . ∵CE ∥AD ,∴=65°. ∵CE ∥BF ,∴=35°.解析:100 【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC=∠DEF ,从而求出∠DEC 的度数,即可得到∠EDC .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC =∠DEF ,从而求出∠DEC 的度数,即可得到∠ED C .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =44°,∠B =90°,∴∠BEF =46°,∴∠DEC =12(180°-46°)=67°,∴∠EDC =90°-∠DEC =23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.5由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】 由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】 解:1()1f x x=+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 15.或【分析】设点B 的坐标为,然后根据轴得出B 点的纵坐标,再根据即可得出B 点的横坐标.【详解】设点B 的坐标为,∵轴,点A (1,2)∴B 点的纵坐标也是2,即 .∵,或 ,解得或 ,∴点解析:()4,2或()2,2-【分析】设点B 的坐标为(,)a b ,然后根据//AB x 轴得出B 点的纵坐标,再根据3,AB =即可得出B 点的横坐标.【详解】设点B 的坐标为(,)a b ,∵//AB x 轴,点A (1,2)∴B 点的纵坐标也是2,即2b = .∵3AB =,13a ∴-=或13a -= ,解得4a =或2a =- ,∴点B 的坐标为()4,2或()2,2-.故答案为:()4,2或()2,2-.【点睛】本题主要考查平行于x 轴的线段上的点的特点,掌握平行于x 轴的线段上的点的特点是解题的关键.16.(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n (2n ,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P 6(2,0),P 12(4,0),即可得到P 6n (2n ,0),P 6n +4(2n +1,-1),再根据P 6×336(2×336,0),可得P 2016(672,0),进而得到P 2020(673,-1).【详解】解:由图可得,P 6(2,0),P 12(4,0),…,P 6n (2n ,0),P 6n +4(2n +1,-1), ∵2016÷6=336,∴P 6×336(2×336,0),即P 2016(672,0),∴P 2020(673,-1).故答案为:(673,-1).【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P 6n (2n ,0).三、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案. 【详解】(1)原式=;(2)原式=解析:(1)-5;(2)7 4 -【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式1315-=-;(2)原式= -6+2+1+54=74-.故答案为:(1)-5;(2)7 4 - .【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义. 18.(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=53±;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)29250x -=解:2925x =2259x = 53x =±(2)3(3)270x ++=解:3(3)27x +=-33x +=-6x =-【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.19.角平分线的定义;AD ;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF ∥AD ,运用平行线的性质和等量代换得到∠E =∠3,解析:角平分线的定义;AD ;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF ∥AD ,运用平行线的性质和等量代换得到∠E =∠3,继而由AC ∥DF 证出∠3=∠F ,从而得到最后结论.【详解】证明:∵AD 平分∠BAC (已知),∴∠1=∠2(角平分线的定义),又∵∠ADC +∠EGD =180°(已知),∴EF ∥AD (同旁内角互补,两直线平行).∴∠1=∠E (两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等). ∴∠E =∠3(等量代换).又∵AC ∥DF (已知),∴∠3=∠F (两直线平行,内错角相等).∴∠E =∠F (等量代换).故答案为:角平分线的定义;AD ;两直线平行,同位角相等;∠3;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键. 20.(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应解析:(1)见解析;(2)见解析;(3)32【分析】(1)把三角形ABC 的各顶点向右平移4个单位长度,得到A 、B 、C 的对应点1A 、1B 、1C ,再顺次连接即可得到三角形111A B C ;(2)把三角形ABC 的各顶点向下平移5个单位长度,得到A 、B 、C 的对应点2A 、2B 、2C ,再顺次连接即可得到三角形222A B C ;(3)三角形ABC 的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.【详解】解:(1)平移后的三角形111A B C 如下图所示;(2)平移后的三角形222A B C 如下图所示;(3)三角形ABC的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,∴S△ABC11122212111=⨯-⨯⨯-⨯⨯-⨯⨯2221411=---23=.2【点睛】本题考查了作图-平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.21.(1)4, −4;(2)1;(3)−12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求解即可;(3)先估算出的范围,求出x、y的解析:(1)174;(2)1;(3)−3【解析】【分析】(117的范围,即可得出答案;(2513的范围,求出a、b的值,再代入求解即可;(3x、y的值,再代入求解即可.【详解】(1)∵,∴4,小数部分是4,故答案为:−4;(2)∵,∴2,∵,∴b=3,∴;(3)∵1<3<4,∴,∴,∵,其中x是整数,且0<y<1,∴1,∴∴x−y的相反数是−【点睛】此题考查估算无理数的大小,解题关键在于掌握估算方法.22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为2x厘米,即得正方形纸板的边长是2x 厘米,根据题意得:x x⋅=,2162∴281x=,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP ,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP +∠FBP ,理由见解析;(3)①∠P =2∠P 1,理由见解析;②∠AP 2B=11802β︒-. 【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM =∠DAP ,再根据平行公理求出CD ∥EF 然后根据两直线平行,内错角相等可得∠MPB =∠FBP ,最后根据∠APM +∠MPB =∠DAP +∠FBP 等量代换即可得证;(2)结论:∠APB =∠DAP +∠FBP .(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM =∠DAP .(两直线平行,内错角相等),∵CD ∥EF (已知),∴PM ∥CD (平行于同一条直线的两条直线互相平行),∴∠MPB =∠FBP .(两直线平行,内错角相等),∴∠APM +∠MPB =∠DAP +∠FBP .(等式性质) 即∠APB =∠DAP +∠FBP =40°+70°=110°. (2)结论:∠APB=∠DAP +∠FBP .理由:见(1)中证明.(3)①结论:∠P=2∠P 1;理由:由(2)可知:∠P =∠DAP +∠FBP ,∠P 1=∠DAP 1+∠FBP 1,∵∠DAP =2∠DAP 1,∠FBP =2∠FBP 1,∴∠P =2∠P 1.②由①得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,∵AP 2、BP 2分别平分∠CAP 、∠EBP ,∴∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP ,∴∠AP 2B =12∠CAP +12∠EBP , = 12(180°-∠DAP )+ 12(180°-∠FBP ),=180°- 12(∠DAP +∠FBP ),=180°- 12∠APB ,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线. 24.(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60°;(2)15°;(3)30°或15°【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒;(2)由(1)知,60BAN ∠=︒,45EDF ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45EDF ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.。
23年秋初一湖南师大附中期中考试数学试卷一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖 +马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6,那么支出2元记 作( ) A .2−B .2C .4−D .4 2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 () 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .33.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32 4.(3分)下列各式正确的是() −−=−A .853 B .+=C 437a b ab .−=x x x 54−−−=D .2(7)55.(3分)下列方程中是一元一次方程的是 () x y A .+=x x ++=B 341.560 2C .−=D 342x x .+=x5036.(3分)下列说法正确的是()A .ab a bc 22−−521是四次三项式B .单项式xy 的系数是0C .x x 231−−的常数项是1x y xy 23D .231−+ 2x y 最高次项是27.(3分)下列方程变形中,正确的是()A .由 y =30y =,得323x =B .由,得 x =32 C .由−=23a a a =,得3b b D .由−=+2131b =,得2−2xy m 8.(3分)若和 x y n 3是同类项,则m 和n 的值分别为( )m =1A ., n =1m =1B ., n =3m =3C .,n =1m =3D .,n =3A 向左移动29.(3分)如图,数轴上一动点个单位长度到达点B ,再向右移动5个单位长C 表示的数为1C 度到达点.若点,则与点A 表示的数互为相反数的是() −A .7B .3−C .3D .2x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3 二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是.12.(3分)单项式 − 3x yz 523的系数是.a b +=13.(3分)若23742,则b a ++=. 14.(3分)如图是一个计算程序,若输入−a 的值为1,则输出的结果应为.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为 a ,则圈出的三个数之和为.(用含a 的式子表示)16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算2[5(2)](|4|)1⨯+−−−−÷3.218.(6分)化简求值:222()3(2)a ab a ab−−−,其中2a=−,3b=.19.(6分)解方程:(1)54(31)13x x+−=.(2)27231 32x x−−−=.20.(8分)阅读材料:对于任意有理数a,b,规定一种新的运算:()1a b a a b=+−,例如,252(25)113=⨯+−=;(1)计算3(2)−;(2)若(2)5x−=,求x的值.21.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,a b−0,c a−0.(2)化简:||||||c b a b c a−+−−−.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.24.(10分)定义:若关于x的方程0(0)ax b a+=≠的解与关于y的方程0(0)cy d c+=≠的解满足||(x y m m−=为正数),则称方程0(0)ax b a+=≠与方程0(0)cy d c+=≠是“m差解方程”.(1)请通过计算判断关于x的方程2512x x=−与关于y的方程3(1)1y y−−=是不是“2差解方程”;(2)若关于x的方程213x mx n−−=−与关于y的方程2(2)3(1)y mn n m−−−=是“m差解方程”,求n的值;(3)关于x,y的两个方程2(1)31x m−=−与方程3y mn n=+,若对于任何数m,都使得它们不是“2差解方程”,求n的值.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.23年秋初一湖南师大附中期中考试数学试卷参考答案与试题解析一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖+马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6 ,那么支出2元记 作() A .2−B .2C .4−D .4【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.+【解答】解:收入6元记作6−2元,则支出2元记作元,故选:B .【点评】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 ( ) 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .3a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,a 要看把原数变成时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n<是正整数;当原数的绝对值1时,n是负整数.=⨯【解答】解:468000 4.68105.B 故选:.a ⨯10n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32【分析】先算出 −−3||2,再求其相反数即可.【解答】解:22||33−−=−,23−的相反数为23, 故选:C .【点评】用到的知识点为:a 的相反数是a −;负数的绝对值是正数;负数的相反数是正数.4.(3分)下列各式正确的是( )A .853−−=−B .437a b ab +=C .54x x x −=D .2(7)5−−−=【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A 、85−−应等于13−,故本选项错误;B 、4a 和3b 不是同类项,不能合并,故本选项错误;C 、5x 和4x 指数不同,不是同类项,不能合并,故本选项错误;D 、2(7)5−−−=,故本选项正确.故选:D .【点评】此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.此题难度不大,属于基础题.5.(3分)下列方程中是一元一次方程的是( )A .341x y +=B .2560x x ++=C .342x x −=D .350x+= 【分析】根据一元一次方程的定义,逐个判断.【解答】解:方程341x y +=含有两个未知数,不是一元一次方程;方程2560x x ++=含有未知数的二次项,不是一元一次方程;方程342x x −=符合一元一次方程的定义,是一元一次方程; 方程350x+=不是整式方程,不是一元一次方程. 故选:C .【点评】本题考查了一元一次方程的定义,一元一次方程需满足以下三条:①只含有一个未知数;②未知数的次数是1;③整式方程.6.(3分)下列说法正确的是( )A .22521ab a bc −−是四次三项式B .单项式xy 的系数是0C .231x x −−的常数项是1D .23231x y xy −+最高次项是22x y【分析】直接利用多项式的项数、次数确定方法分别分析得出答案.【解答】解:A 、22521ab a bc −−是四次三项式,正确;B 、单项式xy 的系数是1,故此选项错误;C 、231x x −−的常数项是1−,故此选项错误;D 、23231x y xy −+最高次项是33xy −,故此选项错误;故选:A .【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.(3分)下列方程变形中,正确的是( )A .由03y =,得3y =B .由23x =,得23x = C .由23a a −=,得3a = D .由2131b b −=+,得2b =【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【解答】解:A 、由03y =,得0y =,故A 不符合题意; B 、由23x =,得32x =,故B 不符合题意; C 、由23a a −=,得3a =,故C 符合题意;D 、由2131b b −=+,得2b =−,故D 不符合题意;故选:C .【点评】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.(3分)若2m xy −和3n x y 是同类项,则m 和n 的值分别为( )A .1m =,1n =B .1m =,3n =C .3m =,1n =D .3m =,3n =【分析】相同字母的指数要相同可求出m 与n 的值.【解答】解:由题意可知:1n =,3m =,故选:C .【点评】本题考查同类项的概念,属于基础题型.9.(3分)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C A 表示的数为1.若点C ,则与点表示的数互为相反数的是 () −A .7B .3−C .3D .2【分析】先求出A 点表示的数,根据相反数的定义即可求解.【解答】解:数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C ,表示的数为1点C ,∴点B −表示的数为4,∴点A −表示的数为2,∴则与点A表示的数互为相反数的是2,故选:D.【点评】本题考查了相反数的定义,本题的解题关键是求出A 点表示的数.x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k.【解答】解:原式=+−−−x k xy y 22(13)38,因为不含xy 项,故−=k 130,解得: k =31 . C 故选:. 【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是16.【分析】直接利用绝对值的定义得出答案. −【解答】解:16的绝对值是:16.故答案为:16.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.12.(3分)单项式 −3x yz 523的系数是 −53.【分析】利用单项式系数定义可得答案.【解答】解:单项式2335x yz −的系数是35−, 故答案为:35−. 【点评】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.(3分)若23a b +=,则742b a ++= 13 .【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【解答】解:23a b +=,242(2)236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.14.(3分)如图是一个计算程序,若输入a 的值为1−,则输出的结果应为 5− .【分析】将1a =−代入计算程序中进行计算.【解答】解:当1a =−时,2[(1)(2)](3)4−−−⨯−+(12)(3)4=+⨯−+3(3)4=⨯−+94=−+5=−, 故答案为:5−.【点评】本题考查代数式求值,准确理解程序图,掌握有理数混合运算的运算顺序和计算法则是解题关键.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为 3a .(用含a 的式子表示)【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a ,∴其他两个数分别表示为7a −,7a +.∴三个数的和为+++−=a a a a 773.3故答案为:a . 【点评】本题考查列代数式,关键是注意每一竖列相邻两个数之间的关系,都是差7.16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是小师.【分析】因为10次对决中没有平局,那么小师6次剪刀只能对应小滨的2次石头和4次布,这6局中小师赢4局;同理,小师3次石头和1次布只能对应小滨4次剪刀,这4局中小师赢3局,由此推断出结论.【解答】解:因为10次对决中没有平局,所以小师6次剪刀只能对应小滨的2次石头和4次布,所以这6局中小师赢4局,同理,小师3次石头和1次布只能对应小滨4次剪刀,所以这4局中小师赢3局,所以小师共赢了+=局,小滨赢了3437局.故答案为:小师.【点评】本题考查的是推理论证,根据已知条件做出正确分析,注意每一步都有根据和理由.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算22[5(2)](|4|)1 ⨯+−−−−÷3.【分析】先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:22[5(2)](|4|)1⨯+−−−−÷3=⨯+−−−⨯ ==−+=⨯−−−2[5(8)](42)2(3)(8)682.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(6分)化简求值:−−−a ab a ab 2()3(2)22a =−,其中2b =3,.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:−−−a ab a ab 2()3(2)22=−−+=−+4a ab a ab a ab 2263222,a =−2把,=−22b =3代入得:原式.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(6分)解方程:(1)54(31)13x x +−=.(2)2723132x x −−−=. 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)去括号,得512413x x +−=,移项,得512134x x +=+,合并同类项,得1717x =,系数化为1,得1x =;(2)去分母,得2(27)3(23)6x x −−−=,去括号,得414696x x −−+=,移项,得496146x x +=++,合并同类项,得1326x =,系数化为1,得2x =.【点评】本题考查了解一元一次方程,能正确根据等式的基本性质进行变形是解此题的关键.20.(8分)阅读材料:对于任意有理数a ,b ,规定一种新的运算:()1ab a a b =+−,例如,252(25)113=⨯+−=; (1)计算3(2)−;(2)若(2)5x −=,求x 的值.【分析】(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案.【解答】解:(1)3(2)3(32)12−=⨯−−=;(2)由题意可得:(2)5x −=,2(2)15x −⨯−+−=,则4215x −−=,解得:1x =−. 【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.21.(8分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,故答案为:>,<,>;(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 15xy 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.【分析】(1)住房的总面积=长4y 宽2x 的客厅的面积+长2y 宽x 的厨房的面积+长x 宽y 的浴室的面积+长2x 宽2y 的卧室的面积;(2)将4x =, 2.5y =代入算出小明家住房面积,再乘以每平方米装修成本,即可得出全部装修完的成本.【解答】解:(1)42222y x y x x y x y ⨯+⨯+⨯+⨯824xy xy xy xy =+++15xy =(平方米). 故小明家住房面积为15xy 平方米;(2)4x =, 2.5y =,15154 2.5150xy ∴=⨯⨯=,150********⨯=(元).答:全部装修完的成本为90000元.故答案为:15xy ;90000.【点评】本题考查了整式的混合运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 ①③ (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.【分析】(1)根据定义列式计算后进行判断即可;(2)根据定义列得方程,解方程即可;(3)将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)8.190.9−+=−,8.1(9)0.9−÷−=,则①是“差商等数对”;11022−=,11122÷=,则②不是“差商等数对”; 11122−+=,11(1)22−÷−=,则③是“差商等数对”; 故答案为:①③;(2)由题意可得22a a −=,解得:4a =; (3)222(3)(52)a a a a −−+−222652a a a a =−++−234a a =+,当4a =时,原式23444481664=⨯+⨯=+=.【点评】本题考查整式的化简求值及实数的运算,结合已知条件列得正确的算式是解题的关键.24.(10分)定义:若关于x 的方程0(0)ax b a +=≠的解与关于y 的方程0(0)cy d c +=≠的解满足||(x y m m −=为正数),则称方程0(0)ax b a +=≠与方程0(0)cy d c +=≠是“m 差解方程”.(1)请通过计算判断关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是不是“2差解方程”;(2)若关于x 的方程213x m x n −−=−与关于y 的方程2(2)3(1)y mn n m −−−=是“m 差解方程”,求n 的值;(3)关于x ,y 的两个方程2(1)31x m −=−与方程3y mn n =+,若对于任何数m ,都使得它们不是“2差解方程”,求n 的值.【分析】(1)分别求解两个方程,根据定义判断即可;(2)分别求出方程的解,根据题意可得332334||22n m n m mn m −−−++−=,解出n 的值即可;(3)分别求出方程2(1)31x m −=−与方程3y mn n =+的解,再根据对于任何数m ,都使得它们不是“2差解方程”,即与m 无关,则可列出关于n 的一元一次方程,解出方程即可求解.【解答】解:(1)关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”,理由如下:2512x x =−的解为4x =,3(1)1y y −−=的解为2y =,|||42|2x y −=−=,∴关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”; (2)方程213x m x n −−=−的解为3322n m x −−=, 方程2(2)3(1)y mn n m −−−=的解为3342n m mn y −++=, 两个方程是“m 差解方程”,332334||22n m n m mn m −−−++∴−=, |34|2n ∴+=,14n ∴=−或54n =−; (3)2(1)31x m −=−化简得:231x m =+,解得:312m x +=, 3y mn n =+,解得:3mn n y +=, 3123m mn n x y ++∴−=−,9322(92)3266m mn n m n n +−−−+−==; 对于任何数m ,都使2(1)31x m −=−与3y mn n =+不是“2差解方程”,920n ∴−=,解得:92n =. 【点评】本题考查一元一次方程的解,绝对值方程,熟练掌握一元一次方程的解法,绝对值方程的解法,理解新定义是解题的关键.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 1.5 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.【分析】(1)先由非负数的性质求出5c =,2d =−,进而可得CD 的中点N 所对应的数;(2)首先依题意求出点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,然后根据R 为PQ 的中点,R 到点C 的距离为2,得∴22522t t −++−=,由此解出t 即可; (3)①依题意可得出M 对应的数;②由(2)可知:点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,再求出点E 所表示的数为735t −,点F 所表示的数为52t −,进而求出73||5t OE −=,|5|2t OF =−,从而得514|73||707|OE OF t t +=−+−,然后根据绝对值的意义进行分类讨论即可得出答案.【解答】解:(1)由非负数的性质得:30c d −+=,20d +=,解得:5c =,2d =−, CD ∴的中点N 所对应的数为:25 1.52−+=, 故答案为:1.5.(2)P 点从C 点出发,以每秒1个单位的速度向左运动,∴运动6秒后,点Q 开始运动,运动t 秒后,点P 所表示的数为:5(6)1t t −+=−−, Q 点从D 点出发,以每秒2个单位的速度向右运动,t ∴秒时,点Q 所表示的数为:22t −+, R 为PQ 的中点,则点R 所表示的数为:221322t t t −+−−−=, 又点R 到点C 的距离为2,∴3|5|22t −−=, 整理得:|13|4t −=,解得:9t =,或17t =即9或17秒时,R 到点C 的距离为2.(3)①M 为AB 靠近A 的三等分点时,M 对应的数为23x y +, M 为AB 靠近A 的四等分点时,M 对应的数为34x y +, 以此类推,⋯,M 为AB 靠近A 的5等分点时,M 对应的数为45x y +, 故答案为:45x y +. ②由(2)可知:点P 所表示的数为:1t −−,点Q 所表示的数为:22t −+, E 是PQ 最靠近Q 的五等分点,∴点E 所表示的数为:4(22)17925t t t −+−−−=,F 为PC 中点,∴点F 所表示的数为:15222t t −−+=−, 79||5t OE −∴=,|2|2t OF =−, 795145||14|2||79||287|52t t OE OF t t −∴+=⨯+⨯−=−+−, 当79t <时,514972873714OE OF t t t +=−+−=−,79t <,则1418t −>−,3714371819t ∴−>−=,即51419OE OF +>,当9728t 时,5147928719OE OF t t +=−+−=,当728t >时,514797281437OE OF t t t +=−+−=−,728t >,则1456t >,1437563719t ∴−>−=,即51419OE OF +>,综上所述:514OE OF +的最小值为19,此时9728t ,即947t , 故得当514OE OF +的最小值为19时,t 的取值范围是:947t . 【点评】此题主要考查了有理数与数轴,绝对值的意义,理解题意,读懂题目中新定义的分点公式,熟练掌握绝对值的意义,运用分类讨论思想进行分类讨论是解决问题的关键.。
初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
答案:4或-412. 如果一个数除以3余1,这个数可能是______。
答案:413. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的倒数是1/3,这个数是______。
答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。
答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。
答案:1和7之间17. 一个数的平方根是2,这个数是______。
答案:418. 如果一个数的相反数是它本身,这个数是______。
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 下列哪个是等边三角形的特点?A. 有两个角相等B. 有三条边相等C. 有一个角是直角D. 所有角都小于90度3. 下列哪个是负数?A. 5B. 0C. 3D. 84. 下列哪个是最小的合数?A. 4B. 6C. 8D. 95. 下列哪个是平行四边形的性质?A. 对角线互相垂直B. 对角线互相平分C. 对边平行且相等D. 所有角都是直角二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 等腰三角形的两个底角相等。
()3. 1是质数。
()4. 平行四边形的对角线互相平分。
()5. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 3的平方是______。
3. 1千米等于______米。
4. 等边三角形的每个角都是______度。
5. 5的立方是______。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 简述平行四边形的性质。
3. 解释负数和正数的区别。
4. 什么是等腰三角形?5. 解释乘法的分配律。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个数加上它的5倍等于30,求这个数。
3. 一个等边三角形的周长是18厘米,求它的边长。
4. 一个数减去7等于10,求这个数。
5. 一个数的平方是64,求这个数。
六、分析题(每题5分,共10分)1. 小明有5个苹果,他吃掉了2个,然后又得到了3个,现在小明有多少个苹果?2. 一个长方形的长是15厘米,宽是10厘米,如果长方形的长增加5厘米,宽减少2厘米,求新长方形的面积。
七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个角。
2. 画出一个长方形,并标出它的长和宽。
八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上受到的摩擦力与物体重量之间的关系。
初一上学期期中考试(数学)(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1. 下列说法正确的是()A. 不相交的两条线段是平行线B. 不相交的两条直线是平行线C. 不相交的两条射线是平行线D. 在同一平面内,不相交的两条直线是平行线2.(4分)2. 等于()A.﹣4 B.4 C.±4D.2563.(4分)3.如图,小手盖住的点的坐标可能为()A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)4.(4分)4. 如图,已知∠1=∠2,∠3=71∘,则∠4的度数是( )A. 19∘B. 71∘C. 109∘D. 119∘5.(4分)5. 将如图所示的图案通过平移后可以得到( )A. B. C. D.6.(4分)6. 下列说法中错误的是()A 3a中的a可以是正数、负数或零.B a中的a不可能是负数.C 数a的平方根有两个.D 数a的立方根有一个.7.(4分)7. 如图,两条直线相交于一点O,则图中共有()对邻补角.A.2 B.3 C.4 D.58.(4分)8.在,﹣2,,3.14,,0.020020002中,有理数的个数是()A.2 B.3 C.4D.59.(4分)9. 将点(1,2)向左平移3个单位,再向上平移1个单位,所得的点的坐标是()A.(-2,3)B.(4,3)C.(-2,1)D.(4,1)10.(4分)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 018次运动后,动点P的坐标是()A.(2018,0)B. (2018,1)C. (2018,2)D. (2017,0)二、 填空题 (本题共计7小题,总分28分)11.(4分)11. 的相反数是12.(4分)12. 如图,∠1=∠2,∠A=60°,则∠ADC= 度(第12题图)13.(4分)13. 数轴上离原点距离是 的点表示的数是14.(4分)14.已知点P 的坐标为(2-a ,3a+6),且点P 到两坐标轴的距离相等,则a=15.(4分)16. 如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°, 则∠3= 度25 5(第16题图)16.(4分)17. 在平面直角坐标系中,已知线段AB=3,且AB ∥x 轴,且点A 的坐标 是(1,2),则点B 的坐标是17.(4分)19. 已知m 是的整数部分,n 是的小数部分,则m 2﹣n 2=三、 解答题 (本题共计9小题,总分82分)18.(4分)15. x ﹣2的平方根是±3,2x+y-7的立方根是2,则x 2+y 2的平方根是 19.(4分)18. 现要把方格纸上的小船沿图中箭头方向平移8个单位,请你在方格纸上画出小船的平移后图形.20.(4分)20. 如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2 017的坐标为21.(12分)21.算一算:(1) (2)解方程:22.(10分)22.(10分)如图,直线AB 与CD 相交于点O,OE 平分∠BOD,∠AOC=70°,∠DOF=90°.求∠EOF 的度数.23.(10分)23.(10分)如图所示,一块长为18m ,宽为12m 的草地上有一条宽为2m 的曲折的小路,求这块草地的绿地面积.0492=-x 36.03125.021+24.(10分)24.(10分)把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°,求∠1和∠2的度数。
河南省信阳市2024-2025学年七年级上学期数学期中测试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.据省统计局数据,今年上半年,我省2894家规模以上文化及相关产业企业实现营业收入965.68亿元,数据“965.68亿”用科学记数法表示为()A .8965.6810⨯B .89.656810⨯C .109.656810⨯D .110.9656810⨯3.当1x =时,代数式2x -+的值等于()A .1B .-1C .3D .-34.如图,点A 在数轴上表示的数为1,将点A 向左移动4个单位长度得到点B ,则点B 表示的数为()A .−2B .3-C .5-D .55.代数式2315,0,,33,,5x x x x y x y+--++中,整式有()A .3个B .4个C .5个D .6个6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是在计算()A .()()52-+-B .()52-+C .()52+-D .5+27.下列关于单项式223x y -的说法中,正确的是()A .系数是23-,次数是3B .系数是−2,次数是3C .系数是23-,次数是2D .系数是23,次数是38.铁棍山药是河南焦作的著名特产之一,其营养价值丰富.小豫利用网络销售山药,包装后由某快递公司发货,其收费标准:5千克以内收费a 元,超过5千克的部分每千克按3元收费.小豫寄8千克的包裹,需要支付()A .()24a +元B .()15a +元C .()9a +元D .()53a +元9.计算2322223333m n +++++⨯⨯⨯⨯L L 1444444244444431444442444443个个的结果是()A .23m n +B .23n m +C .23+m n D .32m n +10.已知整数1234,,,,a a a a ,满足下列条件:121321,2,3,a a a a a =-=-+=-+ .以此类推,2024a 的值是()A .1013-B .2025-C .1012-D .2024-二、填空题11.用“>”或“<”填空:3-1-.12.请写出一个含字母a 的三次二项式是.13.数轴上表示2的点与表示5-的点之间的距离为.14.如图,将形状、大小完全相同的“·”与线段按照一定规律摆成下列图案,其中第1个图案用了6个“·”,第2个图案用了11个“·”,第3个图案用了16个“·”,第4个图案用了21个“·”……按此规律排列下去,则第n 个图案用的“·”个数是(用含n 的代数式表示).15.定义运算:当a b ≥时,2a b a b ⊗=-;当a b <时,a b a b a b-⊗=+(其中0a b +≠).那么225⊗=(),22⊗-=.三、解答题16.(1)计算:()11112263⎛⎫-+⨯- ⎪⎝⎭.(2)计算:()3232628-+⨯-+-÷.17.已知代数式22a b -和()()a b a b +-,请你按要求解答下列问题.(1)当5,3a b ==时,计算两个代数式的值.(2)当2,6a b =-=时,计算两个代数式的值.(3)观察(1)和(2)中代数式的值,发现代数式22a b -_____()()a b a b +-.(填“>”“<”或“=”)18.某汽车上午8点从甲地出发匀速地行驶到乙地,行驶里程为400千米,汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/时).(1)用含t 的式子表示v ,并说明v 与t 成什么比例关系?(2)若行驶路段全程速度限定为不超过120千米/时,该汽车能否在当天上午11点前到达乙地?请说明理由.19.已知多项式215m x y xy n ++-是关于,x y 的五次三项式,且单项式23n x y 的次数与该多项式的次数相同.(1)求,m n 的值.(2)当1,2x y =-=时,求多项式215m x y xy n ++-的值.20.近几年,全球的新能源汽车发展迅猛,新能源汽车产销量都大幅增加.小明家将汽油车换成了一辆新能源汽车,他连续七天记录了每天行驶的路程(如下表).以20千米为标准,多于20千米的记为“+”,不足20千米的记为“-”,刚好20千米的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程/千米6+8-9-03-14+10+(1)小明家的新能源汽车这七天一共行驶了多少千米?(2)已知原汽油车每行驶100千米需用汽油6升,汽油价8.2元/升,而新能源汽车每行驶100千米耗电量为15千瓦时,电费标准为0.6元/千瓦时,请计算小明家换成新能源汽车后这七天的行驶费用比原汽油车节省多少钱?21.小新同学设计了几张如图所示的写有不同运算的卡片A B C D ,,,,小新给出一个有理数,让他的同桌小丽选择A B C D ,,,的顺序,进行一次运算(每次运算不同卡片只能用一次).例如:小新给出的数是1-,若小丽选择了D C B A →→→的顺序,则计算结果为()()()()2132213226⎡⎤--⨯-+=-⨯-+=⎣⎦.(1)当小新给出的数是5,小丽选择了A C B D →→→的顺序,列出算式并计算结果.(2)当小新给出的数是6-,小丽选择了()()__________C D →→→的顺序,若列式计算的结果刚好为160-,请判断小丽选择的顺序.22.阅读理解有一种整式处理器,能将二次多项式处理成一次多项式,处理的方法是将二次多项式的二次项系数与一次项系数的和(和为非零数)作为一次多项式的一次项系数,将二次多项式的常数项作为一次多项式的常数项.例如:多项式2328A x x =+-,经过处理器可得到多项式()32858B x x =+-=-.若关于x 的二次多项式A 经过处理器得到多项式B ,根据以上方法,解决下列问题:(1)已知多项式2256A x x =-+-,经过处理器得到多项式B =______.(2)若多项式2563A x x =-+经过处理器得到多项式B ax b =+,求2025a b 的值.(3)已知()2625,M x m x m M =-+-++是关于x 的二次多项式,经过处理器得到的一次多项式是7N kx =+,求k 的值.23.综合与实践已知多项式32412621,x y x a -++是该多项式五次项的系数,b 是该多项式四次项的系数,c 是常数项.如图,在数轴上点,,A B C 所对应的数分别是,,a b c ,O 为原点.(1)a =______,b =______,c =______.(2)数轴上有一动点M 从点A 出发,以每秒3个单位长度的速度沿数轴向终点C 运动,运动时间为t 秒.当点M 运动到点B 时,点N 从点O 出发,以每秒3个单位长度的速度沿数轴向点C 运动,当点M 到达终点C 时,点N 的运动也停止.①6t ≥时,点M 表示的数是______,点N 表示的数是______.(用含t 的代数式表示)②当点M 到达终点C 时,求此时点N 在数轴上所表示的数.③若点,M N 所对应的数分别是,m n ,当6t >时,求b m c n -+-的值.。
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()。
A. √9B. √-1C. πD. 0.1010010001…2. 已知a > 0,b < 0,则下列不等式中正确的是()。
A. a + b > 0B. a - b < 0C. -a < bD. a - b > 03. 下列各数中,属于正数的是()。
A. -3B. 0C. -2/3D. 24. 下列各数中,绝对值最大的是()。
A. -5B. 5C. -6D. 45. 若a = -3,b = 2,则下列代数式中值为负数的是()。
A. a + bB. a - bC. -a - bD. -a + b6. 若m,n是方程x^2 - 5x + 6 = 0的两根,则m + n的值是()。
A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()。
A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)8. 若等腰三角形底边长为6cm,腰长为8cm,则其周长是()。
A. 18cmB. 20cmC. 22cmD. 24cm9. 下列图形中,是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 长方形D. 圆10. 下列各式中,错误的是()。
A. a^2 = b^2,则a = bB. a^2 = b^2,则a = -bC. a^2 = b^2,则|a| = |b|D. a^2 = b^2,则a + b = 0二、填空题(每题2分,共20分)11. 若a = -5,b = 2,则a^2 + b^2的值是______。
12. 在直角坐标系中,点P(2,-3)关于原点的对称点是______。
13. 若等边三角形的边长为10cm,则其周长是______cm。
14. 下列各数中,负数的倒数是______。
15. 若x = 3,则代数式2x - 5的值是______。
深圳高级中学2024—2025学年第一学期期中试卷初一数学注意事项:1、答题前,考生务必在答题卡写上姓名、班级,准考证号用2B 铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回.第一部分 选择题一、单选题:(每小题3分,共24分)1.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90元,那么亏本70元记作( )A .60元B .70元C .60元D .70元2.为庆祝中华人民共和国成立75周年,10月1日、2日两天深圳举行舰艇开放日活动,市民可以在南山区蛇口邮轮母港参观“国庆回家”的深圳舰,深圳舰被称为“神州第一舰”,该舰经现代化改进后满载排水量达6600吨.数据6600用科学记数法可表示为( )A .66×102B .6.6×103C .6.6×104D .0.66×1053.下列比较大小正确的是( )A .B .C .D .4.如图,用一个平面从不同的位置,沿着不同的方向取截一个圆柱,圆柱的截面不可能是( )A .B .C .D . 5.如果,那么代数式的值是( )A .0B .5C .7D .96.若规定,则的结果为( )A .9B .C .81D .7.长方形窗户上的装饰物(遮光)如图中阴影部分所示,它是由两个半径均为的四分之一圆组成,则该窗户能射进阳光部分的面积是( )+--+±33(3)(2)->-32(2)(2)->-2332-<-(3)3-->--32a b -=-73a b -+1a b a b b -⊗=÷⨯1(9)3-⊗9-81-bA.B .C .D .8.下图是由同样大小的△按一定规律排列而成,其中第①个图形中有4个△,第②个图形中有9个△,第③个图形中有14个△,…,则第⑧个图形中△的个数为( )A .34B .39C .40D .44第二部分 非选择题二、填空题:(每小题3分,共15分)9.若互为倒数,则________.10.若与是同类项,则________.11.按照如图所示的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么________.12.数在数轴上对应的点的位置如图所示,则________.13.如果记,即当时,,那么2π2b 22πab b -2π22ab b -2π24ab b -,a b 2024()ab -=2mx y 34nx y m n +=a b +=,,a b c a c a b b +--+=22()1x f x x =+1x =2211(1)112f ==+________.(结果用含的代数式表示,为正整数)三、解答题:(本大题共7小题,其中第14题8分,第15题7分,第16题8分,第17题7分,第18题8分,第19题11分,第20题12分,共61分)14.计算:(1)(2)15.已知代数式.(1)化简;(2)当,时,求的值.16.某手工作坊计划一天生产50个布娃娃,但由于各种原因,实际每天生产布娃娃数量与计划每天生产布娃娃数量相比有出入.下表是某一周的生产情况(超过计划数量的部分记作正数,不足计划数量的部分记作负数,单位:个):星期一二三四五六日增减(1)根据记录可知前四天共生产布娃娃________个;(2)求该作坊本周实际生产布娃娃的个数;(3)该作坊实行每日计件工资制,每生产一个布娃娃可得20元,若超额完成任务,则超过部分每个另奖8元,若未能完成任务,则少生产一个扣5元,那么该作坊工人这一周的工资总额是多少元?17.劳动技术课程是基础教育的重要课程之一,其根本使命是全面提高未来国民的基本劳动技术素养,培养具有技术知识、创新思维、实践能力的一代新人.我校将利用天台劳动基地展开一系列的劳动实践操作活动.如图所示,天台上有块长为20米,宽为10米的长方形空地,现在将其余三面留出宽都是米的小路,中间余下的长方形部分做菜地.(1)用含的式子表示菜地的周长;(2)当米时,求菜地的周长.18.归纳是发现数学结论、解决数学问题的一种重要策略.“归纳”的过程,即从几种特殊情形出发,进而找到一般规律的过程.在数学的学习过程中,我们经常用这样的策略探究规律.【数学问题】平面图的顶点数、边数与区域数之间存在什么样的数量关系?【问题探究】为了解决这个问题,我们可以从类似于()、()、()、()、()五个图等具体的情形入手,借助表格探索平面图的顶点数、边数与区域数之间的一般规律.111(1)(2)()(3)(()()23f f f f f f n f n+++++++= n n 523()(24)634+-⨯-21423(1)8233---⨯-÷-22(24)2(21)M a ab ab a =+--++M 2a =3b =-M 4-5+3+6-7-12+2-x x 1.2x =a b c d e x y z图顶点数边数区域数331463694851015【问题解决】(1)将表格数据补充完整,________;________;(2)猜想:一个平面图的顶点数、边数、区域数之间的数量关系为:_________;(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中猜想的关系,确定这个图有多少条边?19.规定:是数轴上的三个点,点将线段分成和两部分,若或,则称线段互为二倍伴侣线段.点表示的数为,点所表示的数为且满足.(1)________,________;(2)若点在线段上,且线段互为二倍伴侣线段,则点表示的数为________;(3)点从点出发,同时点从点出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当线段互为二倍伴侣线段时,求的值.20.(12分)七(1)班数学项目小组为解决小琴奶奶家储物问题,计划将闲置纸板箱制作成储物盒.素材1如图1,图中是小琴奶奶家需要设置储物盒的区域,该区域可以近似看成一个长方体,底面尺寸如图2所示.x y z()a ()b ()c ()d m()e nm =n =x y z ,,A B C C AB AC BC 2BC AC =2AC BC =,AC BC A a B b ,a b 2(3)a ++50b -=a =b =C AB ,AC BC C M A N B t ,MB NB t如图是利用闲置纸板箱侧面拆解出的①,②两种宽均为cm (cm )长方形纸板,纸板的厚度忽略不计.长方形纸板①长方形纸板②分别将长方形纸板①和②以不同的方式制作储物盒.长方形纸板①的制作方式长方形纸板②制作方式素材2裁去角上4个相同的小正方形,折成一个无盖长方体储物盒.将纸片四个角裁去4个相同的小长方形,折成一个有盖的长方体储物盒.目标1熟悉材料按照长方形纸板①的制作方式制成的储物盒能够无缝隙的放入储物区域,则长方形纸板宽为________cm .利用目标1计算所得的数据,进行进一步探究.初步应用(1)按照长方形纸板①的制作方式,为了更方便地放入或取出储物盒,盒子四周需要留出1cm 宽度,求储物盒的容积.目标2储物收纳(2)按照长方形纸板②的制作方式制作储物盒,若和两边恰好重合且无重叠部分,如图,是小琴奶奶家里一个玩具机械狗的实物图和尺寸大小,请设计一个各个面均不大于600cm 2的储物盒收纳这只玩具狗.a 50a a a EF HG深圳高级中学2024-2025学年初一数学期中考试参考答案一、选择题(24分)题号12345678答案BBDBDCBB二、填空题(15分)题号910111213答案154三、解答题(61分)14.(1)解:原式=(2)解:原式15.解:(1);(2)当时,.16.(1)198解析:个,故前四天共生产布娃娃198个;(2)解法一:个,答:该厂本周实际生产布娃娃的个数为351个;解法二:个,答:该厂本周实际生产布娃娃的个数为351个;(3)解:(元),该厂工人这一周的工资总额是7085元17.(1)解:依题可得:菜地的周长为: (米)答:菜地的周长是米.(2)解:当米时,菜地周长为:(米),答:当米时,菜地的周长是52.8米.c 12n -523(24)(24)(24)20161818634⨯-+⨯--⨯-=--+=-3439()8921219232=---⨯-⨯=-+-=-2222244222244236M a ab ab a a a ab ab ab =+----=-+---=--2,3a b ==32(3)618612M =-⨯⨯--=-=(4536)504198-++-+⨯=(7122)503198351-+-+⨯+=(45367122)507351-++--+-+⨯=35120(4672)5(5312)87020951607085⨯-+++⨯+++⨯=-+=2(202)2(10)x x -+-404202x x =-+-606x =-(606)x -1.2x =60 1.2652.8-⨯=1.2x =18.解:(1);;(2);(其他答案如:,也可)(3)解:设该平面图有条边,由(2)得,解得:,所以,这个图有1997条边19.解:(1),;(2)或(3)解:当运动时间为秒时,对应的数为,对应的数为,且点在线段之间∴,当时,则,解得:当时,则,∴ 解得:.综上所述或20.目标1: 40解析:储物区域的长为40,由于收纳盒可以完全放入储物区域,则图1中的四角裁去小正方形的边长为(cm ),则收纳盒的宽2小正方形的边长(cm ),目标2:(1)因为四周留出1cm 宽,所以储物盒的长为:(cm ),宽为:(cm ),高为:(cm )所以储物盒的容积为:(cm 3)(2)设裁出的小长方形的宽为cm ,长为cm ,则,所以所以储物盒的长为:(cm ),宽为: cm ,高为:cm当时,储物盒的长为:,宽为,不符合题意,舍去当时,储物盒的长为:,宽为,12m =6n =1x z y +-=1y x z =+-y 9999991y +-=1997y =3a =-5b =13-73t M 33t -+N 5t +B MN 5(33)83,BM t t BN t =--+=-=2BM BN =832t t -=85t =2BN BM =2(83)t t -=166t t -=167t =85t =167t =cm (5040)25-÷=a =+⨯302540=+⨯=40238-=30228-=(5038)26-÷=382866384⨯⨯=x y 2()1002y x y -=-252xy =+10021002(25502x y x -=-+=-(402)x -x 12x =1225312y =+=50123835-=>402121614-⨯=>3816608600S =⨯=>13x =132531.52y =+=50133735-=>4021314-⨯=3714518600S =⨯=<当时,储物盒的长为:,宽为答:可以利用纸板②裁去4个长为31.5cm ,宽为13cm 的小长方形,制作成长为37cm ,宽为14cm ,高为13cm 的储物盒:或裁去4个长为32cm ,宽为14cm 的小长方形,制作成长为36cm ,宽为12cm ,高为14cm 的储物盒,收纳这只玩具狗.14x =1425322y =+=50143635-=>4021412-⨯=3614504600S =⨯=<。
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
2024-2025学年湘教版数学初一上学期期中自测试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、小华有5个苹果,小明给了小华2个苹果,小华现在有多少个苹果?选项:A、7个B、5个C、2个D、3个2、一个长方形的长是8厘米,宽是4厘米,这个长方形的面积是多少平方厘米?选项:A、16平方厘米B、32平方厘米C、12平方厘米D、24平方厘米3、下列选项中,哪个数是负数?A. -3B. 3C. 04、如果一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,那么这个长方体的体积是多少立方厘米?A. 60B. 48C. 15D. 125、小明将一块边长为10厘米的正方形铁皮,剪去四个相同的小正方形,剩下的部分是一个边长为x厘米的长方形。
那么x的取值范围是()A、0<x<5B、5<x<10C、0<x<10D、0<x<5或10<x<206、已知一元二次方程2x^2-5x+3=0,若将方程的二次项系数乘以2,则得到的方程的解为()A、x=1或x=3B、x=2或x=3C、x=1或x=1/2D、x=2或x=1/27、下列数中,最小的正整数是()A、-3/2B、-1/2D、0.58、已知直线y=3x+2与直线y=-x+5相交于点P,下列关于点P坐标的说法正确的是()A、P点的横坐标大于1B、P点的纵坐标大于1C、P点的横坐标小于1D、P点的纵坐标小于19、一个长方形的长是5cm,宽是3cm,那么它的面积是多少平方厘米?A、12平方厘米B、15平方厘米C、18平方厘米D、20平方厘米 10、一个正方形的边长是4cm,那么它的周长是多少厘米?A、8厘米B、12厘米C、16厘米D、20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若一个长方形的长是6厘米,宽是宽的2倍,则这个长方形的面积是____ 平方厘米。
2、一个数加上它的3倍后,结果是36,求这个数。
3、若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为 ______cm。
【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。
2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。
初一上册数学期中考试卷及答案一、选择题(每题3分,共30分)1、若规定向东走为正,那么-8米表示()A、向东走8米B、向南走8米C、向西走8米D、向北走8米2、代数式(a-b)2/c的意义是()A、a与b的差的平方除cB、a与b的平方的差除cC、a与b的差的平方除以cD、a与b 的平方的差除以c3、零是()A、正数B、奇数C、负数D、偶数4、在一个数的前面加上一个―—‖号,就可以得到一个()A、负数B、一个任何数C、原数的相反数D、非正数5、如果ab=0,那么一定有()A、a=b=0 B a=0C a,b至少有一个为0D a,b至少有一个为06、在下列各数中是负数的是()A、-(-1/2) B -|-1/3|C –[+(-1/5)]D |-1/6|7、下面说法中正确是的有()(1)一个数与它的绝对值的和一定不是负数。
(2)一个数减去它的相反数,它们的差是原数的2倍(3)零减去一个数一定是负数。
(4)正数减负数一定是负数。
(5)有理数相加减,结果一定还是有理数。
A、2个B、3个C、4个D、5个8、下列各数成立的是()A、—(-0.2)=+(+1/5)B、(-3)+(+3)=6C、+(-1)= —(-1)D、-[+(-7)]=+[-(+7)]9、下列说法中,正确的是()A、存在最小的有理数B、存在最大负整数C、存在最大的负整数D、存在最小的整数10、如果一个数a的绝对值除a的商是-1,那么a一定是()A、-1B、1或-1C、负数D、正数二、填空题。
(每题3分,共30分)11、教室里有学生a人,走了b 人,又进来了C人,此时教室进而有学生()人。
12、已知两数的积为36,若其中一个数为m,则这两个数的和为()13、当x=( )时,代数式(x-4)/3的值等于0。
14、气温从a。
C下降t.C后是()15、设甲数为x,乙数为y,则―甲乙两数的积减去甲乙两数的差‖可以表示为()16、如果a>0,那么| a |= ( )17、1293400000用科学记数法表示为(),89765的有效数字是(),如果把它保留到两个有效数字是()。
初一上学期期中测试题
姓名 分数
一、填空(每空2分,计48分)
1、一个数的相反数是3,这个数是 ,比较大小:5
2___43--
. 2、一个数的绝对值是+0.5,这个数是 。
3、小明在新华书店以9折优惠,用m 元人民币买了一本书,这本书的原价是 元。
4、比-3大的负整数有 ,不大于2
1
3
的非负整数有 。
5、比-0.18小0.0018的数是 。
6、点a,b 的位置如图,则a+b 0,-a+b 0。
7、()=-⨯20012000
8125.0 。
8、4
3
43⨯-
写成幂的形式是 ,其中 为底数。
9、把数1999精确到百位是 ,把0.03096保留三个有效数字为 。
10、已知:29.1513.122=,7.145263.52=,那么()=-2
123.0 ,()=-3
63.52 。
11、最大的负整数是 ,绝对值最小的数是 。
12、若0 x ,则=+x x ,=x
x。
13、把多项式3
3
2
2
33x y xy y x -+-按x 的降幂排列为 。
14、已知:212
1
b a m -与n b a -125是同类项,则m= ,n= 。
15、若a,b 互为相反数,c,d 互为倒数,则()cd d
c
b a 3-•
+化为 。
二、选择题(每小题3分,计42分)
1、下列各式中,符合代数式书写格式的是( )
A 、2•cd
B 、2315m
C 、bc a ÷
D 、
2
xy 2、代数式b
a 8
-表示( )
A 、a -8除b 所得的商
B 、a 除以b 减去8
C 、b 除以a -8的商
D 、a 与8的差除以b 的商 3、如果一个有理数的平方是正数,那么这个数是( )
A 、正数
B 、负数
C 、不是零
D 、非负数 4、+7,+2,-12的代数和比它们的绝对值的和小( ) A 、4 B 、38 C 、-38 D 、-4 5、近似数41030.2⨯的有效数字有( )
A 、5个
B 、3个
C 、2个
D 、以上都不对
6、代数式中,x a xy xy a ,2
2
,0,75,2,12+-
+中属于单项式的有( ) A 、1个 B 、2个 C 、3个 D 、4个
7、下列各组不是同类项的是( ) A 、n a n a 2
296-与 B 、332
121xy y x -
与 C 、3
3
22bax abx 与 D 、3
2123
3
ya y a 与
8、设n 是有理数,下列代数式的值一定是正数的是( ) A 、n -2000
B 、2000n
C 、20002+n
D 、n
9、两个不为零的有理数相除,若交换被除数与除数的位置,而其商不变,则这两个数是( ) A 、一定是互为倒数 B 、一定相等
C 、一定相等或互为相反数
D 、一定互为相反数 10、下列说法正确的是( ) A 、a 的系数为0 B 、x 的指数为0 C 、232x 是五次单项式
D 、-ab 系数为-1
11、下面四个不等式中,正确的是( )
A 、()()6
4
3
103.02.0--- B 、()()3
6
4
2.010
3.0---
C 、()()4
3
6
3.02.010--- D 、()()6
3
4
102.03.0---
12、已知b a b a -==则,2,5的值是( )
A 、3
B 、7
C 、3或7
D 、73±±或
13、一个三位数,个位数字为a ,十位数字为b ,百位数字为c ,那么表示这个三位数的代数式是( )
A 、abc
B 、a+b+c
C 、100a+10b+c
D 、100c+10b+a
14、当n 为正整数时,()
()n n 21
211-+-+的值是( )
A 、-2
B 、0
C 、2
D 、不能确定
三、判断题(每小题2分,计12分)
1、a+b>a ( )
2、()()()()4
33333-=-⨯-⨯-⨯-( ) 3、
3
2
是整式( ) 4、平方得-9的数是-3( ) 5、()x 1-π是单项式( )
6、任何小于1的有理数的平方都比1小( ) 四、计算题(4+4+4+6+6+6,计30分)
1、5
2435221+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+ 2、()3
22
1.05512-⨯-⨯⎪⎭
⎫ ⎝⎛-÷-
3、()()()01.04125.08100025.0⨯-⨯⨯⨯-⨯-
4、()()()()200015125.3241325.0211-÷--⨯⎥⎦
⎤
⎢⎣⎡-÷+-÷
5、()5
1534124138
112
1
1917⨯-÷-⎪⎭
⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+-⨯
6、()
2341221125.0431218522522
+---⎪⎭
⎫ ⎝⎛--⎪⎭⎫
⎝⎛-⨯-⎪⎭⎫ ⎝⎛-÷
五、(6分)如果一个圆柱的底面直径为d ,高是h ,那么它的体积V 是多少?
若d=54 cm ,h=7.6 cm ,不查表计算此圆柱的体积。
(π取3.14,结果保留两个有效数字) 六、(6分)在高处让某一物体由静止开始落下,它落下的高度(h )与时间(t )之间的关系如下表:
1、 写出时间(t )表示物体落下高度(h )的公式。
2、 计算出当t=4.5秒时,物体落下的高度。
七、先化简,再求值(6分)
已知:a 是平方等于它本身倒数的数,并且021322
=⎪⎭
⎫ ⎝⎛+
+++c a b 试求:代数式2
22248312510a ac ab c ac a ab a +-+-+--的值。