中考数学专题复习 与轴对称相关的线段之和最短问题 有答案
- 格式:doc
- 大小:233.00 KB
- 文档页数:10
与轴对称相关的线段之和最短问题我们经常在考试当中看到求线段之和最小的问题,每当我们看到这样的题型,同学们从今往后就要高兴了,因为我把它们出现的模型整理如下。
首先来看下这几个数学模型:模型1:两点之间线段最短。
要在l找点P,使得PA+PB最短,这模型最简单,两点之间线段最短。
模型2:将军饮马问题。
在l上找一点P,使得PA+PB最短,作对称。
其中BA’就是最短的值模型3:两动点找三角形周长最小在OA,OB上找点M、N,使得△PMN周长最小,把P关于OA,OB分别作对称,然后连接两个对称点,交点记为所求,然后周长最小值为P’P’’,模型4:两动点加垂线段最短,在OA上找一点M,使得M到OB的距离与M到P的距离之和最短。
作P关于OA的对称点,然后在对称点P’上作OB的垂线,交点即为所求,P’N就是最短值。
模型4:如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
理解?好吧!我们看看下面这些例题该怎样套上我们的模型!题型1:直线类例题1.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?作点B关于直线CD的对称点B',连接AB',交CD Array于点M则AM+BM = AM+B'M = AB',水厂建在M点时,费用最小如右图,在直角△AB'E中,AE = AC+CE = 10+30 = 40EB' = 30所以:AB' = 50总费用为:50×3 = 150万例题2.求代数式x 2+ 1 + (4-x)2+ 4 (0≤x ≤4)的最小值 如右图,AE 的长就是这个代数式的最小值在直角△AEF 中 AF = 3 EF = 4则AE = 5所以,这个代数式的最小值是5 题型2:角类例题3.如图∠AOB = 45°,P 是∠AOB 内一点,PO = 10,Q 、P 分别是OA 、OB 上的动点,求△PQR 周长的最小值.分别作点P 关于OA 、OB 的对称点P 1、P 2,连接P 1P 2,交OA 、OB 于点Q ,R ,连接OP 1,OP 2, 则OP = OP 1 = OP 2 = 10且∠P 1OP 2 = 90°由勾股定理得P 1P 2 = 10 2 题型3:三角形类例题4.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小作点B 关于AC 的对称点B',连接B'E ,交AC 于点P ,则B'E = PB'+PE = PB+PE B'E 的长就是PB+PE 的最小值在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 10 例题5.如图,在△ABC 中,AC =BC =2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。
B CD AL 中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化) 三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。
请在图中找出点P 的位置,并计算PA+PB 的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。
四、练习题(巩固提高)张村李庄ABCD 图(2)EBDACP图(3)D OP(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。
4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN的最小值为 。
第4题 第5题 第6题 第7题5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
与轴对称相关的线段之和最短问题在中考复习课中,有一种题型我们不可避免地要帮学生复习,即求:某种情节下的最短距离、最短路线;以何种情况下由3点围成的三角形、由4点围成的四边形的周长最小,等等。
试题虽然花样翻新,但其实质还是一样的。
当这类题目呈现在学生面前时,学生的感觉往往是一个字——难,不善于做这类题。
现以“用轴对称知识解决最值问题”的题组为例,通过几个强有力的数学模型,例说相关中考试题的解决方法,供老师们参考。
一、基本模型【数学模型1】:已知一条直线l与这条直线同侧的两点A、B,如图(1),在直线上找出一点P,使得这点与已知两点的距离和PA+PB最短。
作为题组的“基石”,中考复习时,我们重在让学生明白相关的解题策略。
如何解决线段的和的最短的问题?我们需要寻求和其中一条线段长度相等的线段,充分利用轴对称的有关性质,从而将线段的和最短转化为线段最短的问题。
让学生记住这个模型,并理解其中相关的数学原理,从而利用这个基本模型,轻松解决“最短”问题,这才是我们的最终目的。
二、变式模型通过基本问题结构的局部灵活重组,或者结论的拓展延伸,或者与其他问题的有机组合,加深学生对相关知识的理解,同时强化策略及思想等高层次的能力。
拓展延伸型问题也可以通过设问方式的改变,丰富问题设计的立意及内涵。
【数学模型2】:已知两条平行直线l1,l2及位于这两条直线上的两点A、B(线段AB与直线l1,l2不垂直),如图(3),分别在这两条直线上找出两点N、M,使得路径A-M-N-B最短。
解决方法:如图(3),分别作出A、B两点关于直线l2,l1的对称点A′、B′,连接 A′B′,分别交直线l2,l1于点M、N,有轴对称的有关性质,则路径A-M-N-B的长度就是线段A B′的长度,最短。
对比图(4),折线A-M-N-B的长度不是最短。
从一条定直线上的一个动点到分布在两条直线上的两个动点,孤立地看,变量增多(AM、MN、NB),问题较模型1复杂。
中考数学复习《轴对称》专项练习题-带含有答案一、单选题1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.若点与关于x轴对称,则点的坐标为()A.B.C.D.3.在中,和的度数如下,能判定是等腰三角形的是()A.B.C.D.4.如图,PD垂直平分AB,PE垂直平分BC,若PA的长为7,则PC的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.B.BC=2DE C.∠ABE=15°D.DE=2AE7.如图,矩形中,对角线的垂直平分线分别交,于点,若AM=1,BN=2,则的长为()A.B.C.D.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM、MC下列结论:①DF=DN;②ABE≌△MBN;③△CMN 是等腰三角形;④AE=CN;,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.10.已知等腰三角形ABC,其中两边,满足,则ABC的周长为.11.在中,点D为斜边上的一点,若为等腰三角形,那么的度数为.12.如图,在中AB=AC,∠A=120°,AB的垂直平分线分别交,于D,E,BE=3,则的长为.13.如图,在中,∠ACB=90°,∠A=30°,将绕点C逆时针旋转得到,点M是的中点,点N是的中点,连接,若,则线段的最大值是.三、解答题14.如图,在正方形网格上的一个△ABC.(其中点A. B. C均在网格上)①作△ABC关于直线MN的轴对称图形△A′B′C′;②以P点为一个顶点作一个与△ABC全等的△EPF(规定点P与点B对应,另两顶点都在图中网格交点处).③在MN上画出点Q,使得QA+QC最小。
2022-2023学年九年级数学中考复习《轴对称最短路径问题》选择题专题训练(附答案)1.如图,在△ABC中,AB=AC=13,AB的垂直平分线交AB于点N,交AC于点M,P是直线MN上一动点,点H为BC中点,若BC=10,则PB+PH的最小值为()A.B.10C.12D.132.如图,在等腰Rt△ABC中,斜边AB的长为4,D为AB的中点,E为AC边上的动点,DE⊥DF交BC于点F,P为EF的中点,连接P A,PB,则P A+PB的最小值是()A.3B.C.D.3.在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=2+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是()A.2+2B.+3C.2+2D.+44.如图,菱形ABCD的边长是4,∠B=120°,P是对角线AC上一个动点,E是CD的中点,则△PDE的周长的最小值为()A.6B.C.8D.5.在矩形ABCD中,AB=5,AD=6,动点P满足,则点P到A,B 两点距离之和最小值为()A.B.C.D.6.如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°7.如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD 和AE上的动点,则DQ+PQ的最小值为()A.B.C.D.28.如图,河道m的同侧有M、N两个村庄,计划铺设一条管道将河水引至M,N两地,下面的四个方案中,管道长度最短的是()A.B.C.D.9.如图,矩形ABCD中,AB=,BC=3,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.2+3B.2C.2D.10.如图,已知∠ACB=30°,M为∠ACB内部任意一点,且CM=5,E,F分别是CA,CB上的动点,则△MEF的周长的最小值为()A.2.5B.3C.4D.511.如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.312.如图,在菱形ABCD中,AB=4,E在BC上,BE=2,∠BAD=120°,P点在BD上,则PE+PC的最小值为()A.6B.5C.4D.213.如图,在正方形ABCD中,AB=3,点B在CD边上,且DE=2CE,点P是对角线AC 上的一个动点,则PE+PD的最小值是()A.B.C.9D.14.如图,在矩形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA上的动点(不与端点重合),若四点运动过程中满足AE=CG,BF=DH,且AB=10,BC=5,则四边形EFGH周长的最小值等于()A.10B.10C.5D.515.如图,正方形ABCD的边长为3,点E,F分别是BC,CD边上的动点,并且满足BE =CF,则AE+AF的最小值为()A.6B.C.D.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=3,ON=5,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是()A.B.C.﹣2D.﹣217.如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.3B.5C.2D.18.如图,在五边形ABCDE中,∠BAE=α(∠BAE为钝角),∠B=∠E=90°,在BC,DE上分别找一点M,N,当△AMN周长最小时,∠MAN的度数为()A.B.α﹣90°C.2α﹣180°D.α﹣45°19.已知三点,当MA﹣MB的值最大时,m的值为()A.﹣1B.1C.﹣2D.220.在矩形ABCD中,AB=10,AD=6,点N是线段BC的中点,点E,G分别为射线DA,线段AB上的动点,CE交以DE为直径的圆于点M,则GM+GN的最小值为()A.B.C.5D.6参考答案1.解:连接AP,AH,∵MN是AB的垂直平分线,∴PB=P A,∴PB+PH的最小值为AH的长,∵AB=AC,点H为BC的中点,∴BH=BC=5,在Rt△ABH中,由勾股定理得,AH===12,∴PB+PH的最小值为12,故选:C.2.解:连接PC,PD,∵在Rt△CEF中,P为EF的中点,∴CP=EF,在Rt△EDF中,DP=,∴CP=DP,∴点P在CD的垂直平分线上运动,作A关于CD垂直平分线的对称点A',∴P A+PB的最小值为A'B,在Rt△AA'B中,A'B==2,故选:C.3.解:如图,作点Q关于BD的对称点H,则PQ=PH.∴CP+PQ=CP+PH,∴当C、H、P三点在同一直线上,且CH⊥AB时,CP+PQ=CH为最短.∵∠ABC=60°,∴∠BCH=30°,∴BH===,∴CH==3+.故选B.4.解:∵四边形ABCD是菱形,∴点B与点D关于直线AC对称,如图,连接BE与AC相交于点P,由轴对称确定最短路线问题,BE的长度即为PE+PD 的最小值,连接BD,∵∠ABC=120°,∴∠BCD=180°﹣120°=60°,∵BC=CD,∴△BCD是等边三角形,∵E是CD的中点,∴∠CBE=30°∠BEC=90°,∵BC=4,∴CE=2,∴,即PE+PD的最小值为2,∵E为CD的中点,CD=4,ED=2,∴△PDE的周长的最小值为PE+PD.故选:B.5.解:如图,∵四边形ABCD是矩形,∴∠ABC=90°,由题意得,h AB=,∴h AB=AD=2,∴点P在距离AB两个单位且与AB平行的两条直线上,作点B关于l的对称点B′,连接AB′,在Rt△ABB′中,AB=5,BB′=4,∴AB′==,故选:B.6.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.∵∠C=40°,∴∠DAB=140°,∴∠AA′E+∠A″=40°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°﹣40°=100°,故选:A.7.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,∵AP′=P′D',2P′D′2=AD′2=4,∴P′D′=,即DQ+PQ的最小值为.故选:A.8.解:作点M关于直线m的对称点M′,连接M′N交直线m于点P,则MP+NP=M′N,此时管道长度最短.故选:C.9.解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===2,∴AC=2AB,∴∠ACB=30°,AC=2AB=2,∵∠BCE=60°,∴∠ACE=90°,∴AE===,故选:D.10.解:分别作点M关于CA、CB的对称点P、Q,连接PQ,分别交CA、CB于点E、F,连接CP、CQ、MP、MQ.∵点M关于CA的对称点为P,关于CB的对称点为Q,∴ME=PE,CM=CP,∠PCA=∠MCA;∵点M关于OB的对称点为Q,∴ME=QE,CM=CQ,∠QCB=∠MCB,∴CP=CQ=CP=5,∠PCQ=∠PCE+MCE+QCF+∠MCF=2∠ACB=60°,∴△PCQ是等边三角形,∴PQ=CP=CQ=5cm.∴△PMN的周长的最小值=ME+MF+EF=PE+EF+QF≥PQ=5.故选:D.11.解:∵直线MN为线段AD的垂直平分线,P为MN上的一个动点,∴点A与点D关于直线MN对称,∴AC与这些MN的交点即为点P,PC+PD的最小值=AC的长度=1,故选:A.12.解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AE交BD于P,则PE+PC=PE+AP=AE,根据两点之间线段最短,AE的长即为PE+PC的最小值.∵∠BAD=120°,∴∠ABE=∠BAC=60°,∴△ABC为等边三角形,又∵BE=CE,∴AE⊥BC,∴AE==2.故选:D.13.解:连接BP,BE,∵四边形ABCD是正方形,∴DP=BP,∴DP+PE=BP+PE,∴BP+PE的最小值为BE的长,∵AB=3,DE=2CE,∴CE=1,BC=3,在Rt△BCE中,由勾股定理得,BD===,∴PE+PD的最小值是,故选:A.14.解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G==5.∴C四边形EFGH=2E′G=10.故选:A.15.解:连接DE,根据正方形的性质及BE=CF,∴△DCE≌△ADF(SAS),∴DE=AF,∴AE+AF=AE+DE,作点A关于BC的对称点A′,连接BA′、EA′,则AE=A′E,即AE+AF=AE+DE=A'E+DE,当D、E、A′在同一直线时,AE+AF最小,AA′=2AB=6,此时,在Rt△ADA′中,DA′===3,故AE+AF的最小值为3.故选:C.16.解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,OM′=OM=3,ON′=ON=5,在Rt△M′ON′中,M′N′==.故选:A.17.解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A.18.解:作点A关于BC对称点A',作点A关于DE对称点A'',则A''E=AE,A'B=AB,连接A'A'',分别交线段BC和线段DE于点M和点N,连接AM,AN,这时候△AMN的周长取最小值.∵∠B=∠E=90°,∴A'M=AM,∴AN=A''N,∴∠AA'M=∠A'AM,∠AA''N=∠A''AN,∴∠AMN=2∠A'AM,∠ANM=2∠A''AN,∴∠MAN+∠MAB+∠NAE=α,∠MAN+∠AMN+∠ANM=180°,∴∠MAN+2∠BAM+2∠EAN=180°,∴∠BAM+∠EAN=180°﹣α,∴∠MAN=α﹣(180°﹣α)=2α﹣180°,故选:C.19.解:如图,在平面直角坐标系中作直线:y=x,作B(0,1)关于直线y=x的对称点B'(1,0),则直线AB'与直线y=x交于点M,此时MA﹣MB的值最大,∵M(m,m),∴点M在直线y=x上,∵B(0,1),∴B(0,1)关于直线y=x的对称点B'(1,0),∵A(2,),∴设直线AB'的解析式为y=kx+b(k≠0),∴,∴,∴直线AB'的解析式为:y=,联立得:,∴,∴M(﹣1,﹣1),∴m的值为﹣1,故选:A.20.解:如图所示,作N关于AB的对称点N',取DC中点F,连接DM,FM,GN'.可得GN=GN',∵M在以DE为直径的圆上,∴DM⊥EC,∴△DMC为直角三角形,∵F为Rt△DMC斜边的中点,∴MF===5,此时当MF,MG,GN'三边共线时,有MF+MG+GN'长度的最小值等于FN',∵F,N分别是DC,CB的中点,∴FC==5,BN'=BN==3,∴CN'=BC+BN'=9,∴FN'==,∴MF+MG+GN'长度的最小值为,∵MF=5,GN=GN′∴GM+GN的最小值为﹣5,故选:A.。
初二数学:轴对称专题线段之和最短常见题型,建议收藏【知识梳理】路径最短问题:运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解。
所以最短路径问题,需要考虑轴对称。
典故:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?【精华提炼】下列给出常考解题作图方法:这里一定要注意审题,是在线段上找最值点还是直线上找最值点。
①线段之和最大值对称轴为线段时,在两个端点处取到最大值对称,然后连线,与对称轴交点即为最小值时的情况这里有一个易错题型,求两条线段之差绝对值的最下值。
我们可以这样理解,任意一个量的绝对值都是大于等于0的,所以绝对值的最小是就是0.即PA=PB的时候,那么怎么确定这个最值点呢,我们说线段垂直平分线上的点到线段两端点距离相等,所以点p必然在线段AB的垂直平分线上。
那么线段之差的最小值点就是线段AB的垂直平分线与直线的交点。
这里可以这样理解:p点与AB两点不共线时,由两边差小于第三边的原理可知,PA-PB的绝对值必然小于线段AB的长度。
所以最大值即为三点共线时,此时PA-PB的绝对值等于线段B。
求三角形PAB的周长最小值,常见于下面两种题型:第一种:已知定点A点和B点,在直线上确定一点p,使三角形PAB周长最短。
这里直接应用的是将军饮马模型,因为线段AB长度是定值,所以实际上点p就是P使A+PB的最小值点。
如下图第一个图片。
第二种:在一个角的内部有一个定点P,在角的两边上确定两点A 点和B点,使三角形PAB周长最短,这里需要做两次对称。
如上图第二个图片。
第三种题型,一定两动,求两条线段之和的最短值。
常见作图方法有两种,第一种先做A点关于其中一条边的对称点,然后直接过这个对称点向另一条边做垂线,垂足和交点即为所求。
--B CD AL 中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。
(构建“对称模型”实现转化) 三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B 处,则它爬行的最短路径是 。
②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。
②如图,直线L 同侧有两点A 、B,已知A 、B 到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使P A+PB 的和最小。
请在图中找出点P的位置,并计算PA+PB 的最小值。
③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。
张村李庄ABCD 图(2)ED ACP图(3)D OP四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,B C=3,CD=4,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。
2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。
3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B处吃到食物,知圆柱体的高为5 c m,底面圆的周长为24c m,则蚂蚁爬行的最短路径为 。
4、正方形AB CD 的边长为8,M 在D C上,且DM=2,N是AC 上的一动点,D N+MN 的最小值为 。
第4题 第5题 第6题 第7题 5、在菱形A BCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。
2021-2022学年人教版九年级数学中考专题复习之轴对称确定最短路径专题训练(附答案)1.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,∠ABC的平分线交AC于点D,点E,F分别是BD、AB上的动点,则AE+EF的最小值为()A.2B.2.4C.2.5D.32.如图,在△ABC中,AB⊥AC,AB=3,BC=5,AC=4,EF垂直平分BC,点P为直线EF上的任意一点,则△ABP周长的最小值是()A.12B.6C.7D.83.如图,四边形ABCD中,∠A=∠C=90°,点M、N分别是BC、AB边上的动点,∠B =56°,当△DMN的周长最小值时,则∠MDN的度数是()A.124°B.68°C.60°D.56°4.如图,点P是∠AOB内任意一点,OP=9,M、N分别是射线OA和OB上的动点,若△PMN周长的最小值为9,则∠AOB=°.5.如图,已知正方形ABCD的边长为6,点F是正方形内一点,连接CF,DF,且∠ADF =∠DCF,点E是AD边上一动点,连接EB,EF,则EB+EF长度的最小值为.6.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y 轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为.7.如图,在正方形ABCD中,点M,N在CB,CD上运动,且∠MAN=45°,在MN上截取一点G,满足BM=GM,连接AG,取AM,AN的中点F,E,连接GF,GE,令AM,AN交BD于H,I两点,若AB=4,当GF+GE的取值最小时,则HI的长度为.8.如图,在正方形ABCD中,E,F为AD和BC的中点,P为对角线BD上的一个动点,则图中线段的长等于AP+EP最小值的是.9.如图,已知AB=8,点P为线段AB上的一个动点,分别以AP、BP为边在AB同侧作正方形APDC、PBFE,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是CD、EF的中点,点O是GH的中点,当P点从M点到N点运动过程中,OM+OB的最小值为.10.如图,正方形ABOD的边长为4,OB在x轴上,OD在y轴上,点A在第二象限内,且AD∥OB,AB∥OD,点C为AB的中点,直线CD交x轴于点F,过点C作CE⊥DF 于点C,交x轴于点E,则点E坐标为,点P是直线CE上的一个动点,当点P的坐标为时,PB+PF有最小值.11.如图,正方形ABCD的边长为6,E是边AB的中点,F是边AD上的一个动点,EF=GF,且∠EFG=90°,则GB+GC的最小值为.12.如图,在边长为2的正方形ABCD中,点M在边AB上,点N在对角线AC上,连接DM,DN.若AM=CN,则(DM+DN)2的最小值为.13.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△P AB的周长最小时,求∠APB的度数.14.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小;(3)四边形BCC1B1的面积为.15.尺规作图:用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l.(1)在直线l上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB <QA+QB.16.如图,点P、Q为∠MON内两点,分别在OM与ON上找点A、B,使四边形P ABQ的周长最小.17.如图,△ABC三个顶点的坐标分别为A(1,1)、B.(4,2)、C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为:A1,B1,C1;(2)若P为x轴上一点,则P A+PB的最小值为;(3)计算△ABC的面积.18.在一平直的河岸l同侧有A、B两村.A村位于河流l正南4km,B村位于A村东8km 南7km处.现要在河岸边建一水厂C为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.19.如图,△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.连接MB,若AB=8cm,△MBC的周长是14cm.(1)求BC的长;(2)在直线MN上是否存在点P,使PB+CP的值最小?若存在,直接写出PB+CP的最小值;若不存在,说明理由.20.已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;(2)求出(1)中PC+PD的最小值.21.如图,在Rt△AOC中,∠A=30°,点O(0,0),C(1,0),点A在y轴正半轴上,以AC为一边作等腰直角△ACP,使得点P在第一象限.(1)求出所有符合题意的点P的坐标;(2)在△AOC内部存在一点Q,使得AQ、OQ、CQ之和最小,请求出这个和的最小值.22.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC于点D,垂足为E,AD 平分∠BAC.(1)求∠B的度数;(2)求证:CD=BC;(3)若AC=2,点P是直线AD上的动点,求|PB﹣PC|的最大值.参考答案1.解:作点A关于BD的对称点M,∵BD平分∠ABC,∴M落在BC上.∴BM=BA=4,过M作MF⊥AB于F,交BD于E,则AE+EF的最小值是MF的长.∵∠MFB=∠CAB=90°,∴MF∥CA,∴MF=2.4,∴AE+EF=MF=2.4.故选:B.2.解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∵AB=3,AC=4,∴△ABP周长的最小值是AB+AC=3+4=7.故选:C.3.解:延长DA到E使DA=AE,延长DC到F,使CF=DC,连接EF交AB于N,交BC 于M,此时,△DMN的周长最小,∵AB⊥AD,BC⊥DC,∴∠DAB=∠DCB=90°,DM=FM,DN=EN,∴∠E=∠ADN,∠F=∠CDM,∵∠B=56°,∴∠ADC=124°,设∠MDN=α,∴∠ADN+∠CDM=124°﹣α∴∠DNM+∠DMN=2(124°﹣α),∴α+2(124°﹣α)=180°,解得:α=68°,故选:B.4.解:作P点关于OB的对称点P',连接OP',作点P关于OA的对称点P'',连接OP'',连接P'P''与OB交于N,与OA交于M,∵PN=P'N,P''M=PM,∴PN+PM+MN=P'P'',此时△PMN周长的最小,∵△PMN周长的最小值为9,∴P'P''=9,∵OP'=OP,∠P'ON=∠PON,ON=ON,∴△OP'N≌△OPN(SAS),∴PO=OP',同理可证,△OP''M≌△OPM(SAS),∴PO=OP'',∴OP'=OP'',∴△OP'P''是等边三角形,∴∠P'OP''=60°,∴∠MON=30°,故答案为30.5.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠FDC=90°,∵∠ADF=∠FCD,∴∠FDC+∠FCD=90°,∴∠DFC=90°,∴点F在以DC为直径的半圆上移动,如图,设DC的中点为O,作正方形ABCD关于直线AD对称的正方形AB'C'D,则点B 的对应点是B',连接B'O交AD于E,交半圆O于F,则线段B'F的长即为BE+EF的长度最小值,OF=3,∵∠C'=90°,B'C'=C'D=CD=6,∴OC'=9,∴B'O===3,∴B'F=3﹣3,∴EB+FE的长度最小值为3﹣3,故答案为:3﹣3.6.解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).7.解:如图1中,将△ADN绕点A顺时针旋转90°得到△ABJ,则AN=AJ,∠DAN=∠BAJ,∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,∵∠MAN=45°,∴∠MAJ=∠MAB+∠BAJ=∠MAB+∠DAN=45°,∴∠MAJ=∠MAN,∵AM=AM,AJ=AN,∴△AMJ≌△AMN(SAS),∴∠AMB=∠AMN,∵MA=MA,MB=MG,∴△MAB≌△MAG(SAS),∴AB=AG=4,∠ABM=∠AGM=90°,∵AF=FM,AE=EN,∴FG=AM,EG=AN,∴GF+GE=(AM+AN),下面证明当AM=AN时,AM+AN的值最小,如图2中,过点A在直线l∥MN,作点N 关于直线l的对称点N′,连接AN′,MN′.∵N,N′关于直线对称,∴AN=AN′,∴AM+AN=AN′+AM,∴当A,M,N′共线时,AM+AN的值最小,此时∵AN=AN′,∴∠ANN′=∠AN′N,∵MN∥直线l,NN′⊥直线l,∴NN′⊥MN,∴∠MNN′=90°,∴∠AMN+∠AN′N=90°,∠ANM+∠ANN′=90°,∴∠AMN=∠ANM,∴AN=AM,∴当AM=AN时,AM+AN的值最小,如图1中,当AM=AN时,可知BH=DI,过点H作HP⊥AB于P,在AP上截取一点K,使得AK=KH,连接KH,设PH=PB=x,∵∠BAM=∠DAN=22.5°,KA=KH,∴∠KAH=∠KHA=22.5°,∴∠PKH=∠KAH+∠KHA=45°,∴PK=PB=PH=x.AK=KH=x,∵AB=4,∴2x+x=4,∴x=4﹣2,∴BH=DI=PB=4﹣4,∵BD=4,∴HI=4﹣2(4﹣4)=8﹣4,故答案为8﹣4.8.解:连接CE,交BD于点P,∵四边形ABCD是正方形,∴A点与C点关于对角线BD对称,∴AP=PC,∴AP+EP=PC+EP≥EC,∴当AP+EP=EC时,AP+EP的值最小,∵E,F为AD和BC的中点,∴ED=BF,在Rt△CDE和Rt△ABF中,,∴Rt△CDE≌Rt△ABF(HL),∴CE=AF,故答案为AF.9.解:如图1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH 为梯形.∵点O为中点,∴OS=(GR+HT)=(AP+PB)=4,即OS为定值,∴点O的运动路径在与AB距离为4的平行线上.如图2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.由轴对称性质可知,此时OM+OB=BM′最小.在Rt△BMM′中,MM′=2×4=8,BM=7,由勾股定理得:BM′==.∴OM+OB的最小值为.故答案为:.10.解:∵C是AB的中点,∴AC=BC,∵四边形ABOD是正方形,∴∠A=∠CBF=90°,在△ACD和△BCF中,∴△ACD≌△BCF(ASA),∴CF=CD,BF=AD=4∵CE⊥DF,∴CE垂直平分DF,∴D、F关于直线CE对称,∵∠CBF=∠CBE=∠FCE=90°,∴∠CFB+∠FCB=∠FCB+∠ECB=90°,∴∠CFB=∠BCE,∴BE=1,∴OE=OB﹣BE=4﹣1=3,∴E点坐标为(﹣3,0);如图,连接BD交直线CE于点P,∵点D与点F关于直线CE对称,∴PD=PF,∴PB+PF=PB+PD≥BD,此时PF+PE的值最小,∵直线CE的解析式为y=﹣2x﹣6,直线BD的解析式为y=x+4,由,解得,∴P(﹣,).故答案为(﹣3,0),(﹣,).11.解:如图,取AD的中点M,连接GM,延长MG交BC的延长线于J,在AB上截取AN,使得AN=AF,连接FN.作点C关于GJ的对称点K,连接GK,BK.∵四边形ABCD是正方形,∴AD=AB,∵AM=MD.AE=EB,∴AM=AE,∵AF=AN,∴FM=NE,∵∠A=∠GFE=90°,∴∠AFE+∠AEF=90°,∠AFE+∠GFM=90°,∴∠GFM=∠FEN,∵FG=FE,∴△FGM≌△EFN(SAS),∴∠GMF=∠ENF,∵∠ANF=∠AFN=45°,∴∠GMF=∠FNE=135°,∴∠DMG=45°,设MJ交CD于R,∵∠D=∠JCR=90°,∴∠DMR=∠DRM=∠CRJ=∠CJR=45°,∴DM=DR=CR=CJ=3,∵C,K关于MJ对称,∴KJ=CJ=2,∠MJK=∠MJC=45°,GC=GK,∴∠KJB=90°,∴BK===3,∵GC+GB=GK+GB≥BK,∴GC+GB≥3,∴GC+GB的最小值为3.故答案为3.12.解:如图,在AB的下方作∠BAR=45°,且AR=CD=2,连接MR,DR,过点R作RT⊥DA交DA的延长线于T.∵四边形ABCD是正方形,∴AD=CD=2,∠DCN=45°,∠DAB=∠BAT=90°,∴∠DCN=∠RAM=45°,在△DCN和△RAM中,,∴△DCN≌△RAM(SAS),∴DN=RM,∵∠BAR=∠RAT=45°,AR=2,∠T=90°,∴AT=RT=,∴DR===,∵DM+DN=DM+MR≥DR,∴DM+DN的最小值为,∴(DM+DN)2的最小值为8+4.故答案为:8+4.13.解:(1)①∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;②∵PO=5,∴GO=HO=5,当∠MON=90°时,∠GOH=180°,∴点G,O,H在同一直线上,∴GH=GO+HO=10;(2)如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接P A、PB,则AP=AP',BP=BP“,此时△P AB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×60°=120°,∴∠OP′P″=∠OP″P′=(180°﹣120°)÷2=30°,∴∠OP A=∠OP'A=30°,同理可得∠BPO=∠OP″B=30°,∴∠APB=30°+30°=60°.14.解:(1)如图所示:;(2)如图所示:;(3)∵每小格均为边长是1的正方形,∴CC1=4+4=8,BB1=2+2=4,BB1和CC1之间的距离为2,∴四边形BCC1B1的面积为×(8+4)×2=12,故答案为:12.15.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB>A′B,∴QA+QB>A′B即QA+QB>A′P+BP,∴QA+QB>AP+BP.∴P A+PB最小.16.解:作点P关于直线OM的对称点P′,作Q关于直线ON的对称点Q′,连接P′Q′交OM于A,ON于B,则此时四边形P ABQ的周长最小.17.解:(1)如图所示,△A1B1C1即为所求,由图知,A1的坐标为(﹣1,1)、B1的坐标为(﹣4,2)、C1的坐标为(﹣3,4);(2)如图所示:作出点A的对称点,连接A'B,则A'B与x轴的交点即是点P的位置,则P A+PB的最小值=A′B,∵A′B==3,∴P A+PB的最小值为3;(3)△ABC的面积=3×3﹣×3×1﹣×1×2﹣×2×3=,故答案为:(﹣1,1),(﹣4,2),(﹣3,4),3.18.解:方案一:如图1,连接AB,过A作AC1⊥l于C1则C1即为水厂地址,过B作BD⊥AC1交C1A的延长线于D,则AD=7km,BD=8km,AC1=4km,∴AB==km,∴所需管道长度=AC1+AB=(4+)km;方案二:作A关于直线l的对称点A′,连接A′B交直线l于C2,则C2即为水厂地址,如图2,过B作BD⊥AA′交A′A的延长线于D,则A′D=15km,BD=8km,∴所需管道长度=A′B==17km,综上所述:所需最短管道长度=(4+)km.19.解:如图:(1)∵MN垂直平分AB.∴MB=MA,又∵△MBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.(2)当点P与点M重合时,PB+CP的值最小,最小值是8cm.20.解:(1)作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求,此时PC+PD =PC+PD′=CD′,根据两点之间线段最短可知此时PC+PD最小.(2)作D′E⊥BC于E,则EB=D′A=AD,∵CD=2AD,∴DD′=CD,∴∠DCD′=∠DD′C,∵∠DAB=∠ABC=90°,∴四边形ABED′是矩形,∴DD′∥EC,D′E=AB=4,∴∠D′CE=∠DD′C,∴∠D′CE=∠DCD′,∵∠DCB=60°,∴∠D′CE=30°,∴D′C=2D′E=2AB=2×4=8;∴PC+PD的最小值为8.21.解:(1)∵C(1,0),∴OC=1,∵在Rt△AOC中,∠A=30°,∴AC=2,OA=,如图1,①当AC=AP,∠CAP=90°,过P1作P1B⊥y轴于B,则△ABP1≌△COA,∴AB=OC=1,BP1=AO=,∴OB=1+,∴P1(,1+);②当AC=CP,∠ACP=90°,过P2作P2D⊥x轴于D,同理可得:CD=OA=,P2D=1,∴P2(1+,1);③当CP=AP,∠APC=90°,过P3作P3E⊥x轴于E,则P3是AP2的中点,∴OE=OD=,P3E=(OA+P2D)=,∴P3(,);综上所述,P(,1+),(1+,1),(,);(2)如图2,任取△AOC内一点Q,连接AQ、OQ、CQ,将△ACQ绕点C顺时针旋转60°得到△A′CQ’,∴A′C=AC=2,CQ=CQ′,AQ=A′Q′,∠ACA′=∠QCQ′=60°,∴△QCQ′是等边三角形,∴CQ=QQ′,∴AQ+OQ+CQ=A′Q′+OQ+QQ’,∴当A′Q′,OQ,QQ′这三条线段在同一直线时最短,即AQ+OQ+CQ的最小值=OA′,∵∠ACO=∠ACA′=60°,∴∠A′CB=60°,过A′作A′B⊥x轴于B,∴BC=A’C=1,A′B=,∴OB=2,∴A′O==,∴AQ、OQ、CQ之和的最小值是.22.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=P A+PC,P A+PC≥AC,∴P与M重合时,P A+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.23.解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连接AB1或BA1交y轴于点P,则点P即为所求.24.解:(1)∵DE是AB的垂直平分线,∴AD=BD,∴∠BAD=∠B,∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠C=90°,∴∠B=30°.(2)∵∠CAD=∠BAD=∠B=30°,∴AD=2CD,∵AD=BD,∴BD=2CD,∴BC=BD+CD=3CD,∴CD=BC;(3)作C点关于直线AD的对称点C′,∵AD平分∠BAC.∴C′在直线AB上,连接BC′的直线就是AB,∴P点就是A点,此时|PB﹣PC|的最大值为BC′,∵AC=AC′=BC′,∴|PB﹣PC|的最大值=2.。
中考数学复习---《利用对称求最值问题》知识点总结与专项练习题(含答案)知识点总结1.基本知识点:①两点之间线段最短;②点到直线的距离最短。
2.求最值问题的类型问题基本图形解题图形解题思路与步骤如图①:如图,存在直线l 以及直线外的点P和点Q,直线l 上存在一点M,使得MP+MQ 的值最小。
解题思路:找点作对称解题步骤:①从问题中确定定点与动点。
②作其中一个定点关于动点所在直线的对称点。
通常情况下其中一个定点的关于动点所在直线的对称点存在,找出即可。
③连接对称点与另一个定点。
与动点所在直线的交点即是如图②:如图,已知∠MON 以及角内一点P,角的两边OM 与ON上存在点A与点B,使得△PAB的周长最小。
微专题1.(2022•德州)如图,正方形ABCD 的边长为6,点E 在BC 上,CE =2.点M 是对角线BD 上的一个动点,则EM +CM 的最小值是( )A .62B .35C .213D .413【分析】要求ME +MC 的最小值,ME 、MC 不能直接求,可考虑通过作辅助线转化ME ,MC 的值,从而找出其最小值求解.【解答】解:如图,连接AE 交BD 于M 点, ∵A 、C 关于BD 对称, ∴AE 就是ME +MC 的最小值,如图③:如图:已知∠AOB 以及角内两点点P 与点Q ,角的两边上分别存在M 、N 使得四边形PQMN 的周长最小。
动点的位置。
然后解题。
∵正方形ABCD中,点E是BC上的一定点,且BE=BC﹣CE=6﹣2=4,∵AB=,∴AE==2,∴ME+MC的最小值是2.故选:C.2.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是()A.42B.25+2 C.213D.210【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A',再连接A'O,运用两点之间线段最短得到A'O为所求最小值,再运用勾股定理求线段A'O的长度即可.【解答】解:如图所示,作点A关于直线BC的对称点A',连接A'O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A'关于BC对称,∴AE=A'E,AE+OE=A'E+OE,当且仅当A',O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A'E+OE=A'O,∵正方形ABCD,点O为对角线的交点,∴,∵A与A'关于BC对称,∴AB=BA'=4,∴FA'=FB+BA'=2+4=6,在Rt△OFA'中,,故选:D.3.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为()A.1 B.2C.3D.2【分析】当MA+MF的值最小时,A、M、F三点共线,即求AF的长度,根据题意判断△ABC为等边三角形,且F点为BC的中点,根据直角三角形的性质,求出AF的长度即可.【解答】解:当A、M、F三点共线时,即当M点位于M′时,MA+MF的值最小,由菱形的性质可知,AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,∵F点为BC的中点,AB=2,∴AF⊥BC,CF=FB=1,∴在Rt△ABF中,AF==.故选:C.4.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE+PF的最小值是()A.2 B.3C.1.5 D.5【分析】如图,取AB的中点T,连接PT,FT.首先证明四边形ADFT是平行四边形,推出AD=FT=2,再证明PE+PF=PT+PF,由PF+PT≥FT=2,可得结论.【解答】解:如图,取AB的中点T,连接PT,FT.∵四边形ABCD是菱形,∴CD∥AB,CD=AB,∵DF=CF,AT=TB,∴DF=AT,DF∥AT,∴四边形ADFT是平行四边形,∴AD=FT=2,∵四边形ABCD是菱形,AE=DE,AT=TB,∴E,T关于AC对称,∴PE=PT,∴PE+PF=PT+PF,∵PF+PT≥FT=2,∴PE+PF≥2,∴PE+PF的最小值为2.故选:A.5.(2022•赤峰)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A (﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3A.3 B.5 C.22D.32【分析】根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值,求出此时的最小值即可.【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P ,此时PD +PE 有最小值为DE ',∵四边形ABCD 是菱形,∠ABC =120°,点A (﹣3,0), ∴OA =OC =3,∠DBC =60°, ∴△BCD 是等边三角形, ∴DE '=OC =3,即PD +PE 的最小值是3, 故选:A .6.(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若91=∆∆FCEDCG S S ,则MC +MN 的最小值为 .【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN +CM =MN +AM ≥AN ,所以当A 、M 、N 三点共线时,MN +CM 的值最小为AN ,先证明△DCG ∽△FCE ,再由=,可知=,分别求出DE =1,CE =3,CF =12,即可求出AN .【解答】解:如图,连接AM,∵四边形ABCD是正方形,∴A点与C点关于BD对称,∴CM=AM,∴MN+CM=MN+AM≥AN,∴当A、M、N三点共线时,MN+CM的值最小,∵AD∥CF,∴∠DAE=∠F,∵∠DAE+∠DEH=90°,∵DG⊥AF,∴∠CDG+∠DEH=90°,∴∠DAE=∠CDG,∴∠CDG=∠F,∴△DCG∽△FCE,∵=,∴=,∵正方形边长为4,∴CF=12,∵AD∥CF,∴==,∴DE=1,CE=3,在Rt△CEF中,EF2=CE2+CF2,∴EF==3,∵N是EF的中点,∴EN=,在Rt△ADE中,EA2=AD2+DE2,∴AE==,∴AN=,∴MN+MC的最小值为,故答案为:,7.(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是.【分析】延长BC到G,使CG=EF,连接FG,则四边形EFGC是平行四边形,得CE=FG,则AF+CE=AF+FG,可知当点A、F、G三点共线时,AF+CE的值最小为AG,利用勾股定理求出AG的长即可.【解答】解:延长BC到G,使CG=EF,连接FG,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG===10,∴AF+CE的最小值为10,故答案为:10.8.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为.【分析】如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.利用勾股定理求出FT=,EF=5,证明PE+PF=PF+PT≥FT,可得结论.【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.9.(2022•娄底)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.【分析】连接AQ,作AH⊥BC于H,利用SAS证明△ABQ≌△CBQ,得AQ=CQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,再求出AH的长即可.【解答】解:连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),∴AQ=CQ,∴当点A、Q、P共线,AQ+PQ的最小值为AH的长,∵AB=2,∠ABC=45°,∴AH=,∴CQ+PQ的最小值为,故答案为:.10.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=43,则PE+PB的最小值为.【分析】作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度;然后求出B′B和BE的长度,再利用勾股定理即可求出答案.【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,∵四边形ABCD为矩形,∴AB=CD=4,∠ABC=90°,在Rt△ABC中,AB=4,BC=4,∴tan∠ACB==,∴∠ACB=30°,由对称的性质可知,B'B=2BF,B'B⊥AC,∴BF=BC=2,∠CBF=60°,∴B′B=2BF=4,∵BE=BF,∠CBF=60°,∴△BEF是等边三角形,∴BE=BF=B'F,∴△BEB'是直角三角形,∴B′E===6,∴PE+PB的最小值为6,故答案为:6.11.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.【分析】如图,过点E作EH⊥BC于点H.利用相似三角形的性质求出FH,EF,设BF =x,则DE=10﹣x﹣=﹣x,因为EF是定值,所以AF+CE的值最小时,AF+EF+CE 的值最小,由AF+CE=+,可知欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于点P,连接AP,此时PA+PB的值最小,最小值为线段A′B的长,由此即可解决问题.【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时PA+PB的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∵EF⊥AC,∴AC⊥CC′,∴∠ACC=90°,∵AC′===,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+.12.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为.【分析】解法一:利用已知可以得出GC,EF长度不变,求出GE+CF最小时即可得出四边形CGEF周长的最小值,利用轴对称得出E,F位置,即可求出.解法二:设AE=x,则BF=3﹣x,根据勾股定理可得:EG+CF=+,由勾股定理构建另一矩形EFGH,根据线段的性质:两点之间线段最短可得结论.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.13.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.2B.2 C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.14.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP 长的最小值是()A.233B.235C.33D.237【分析】如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.。
2021年中考数学复习《中考压轴题:轴对称之线段最短问题》经典题型靶向提升练习(二)1.在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD =12,试求PC+PE的最小值.2.如图,在平面直角坐标系中,A(﹣3,3),B(﹣1,﹣1)在y轴上画出一个点P,使P A+PB最小,并写出点P的坐标.3.如图,在直角坐标系中,先描点A(1,1),点B(4,3).(1)点C是x轴上的一个动点,当AC+BC最小时,画出点C的位置;(2)在本题中你认为有用到如下那些数学道理,请把它挑选出来并填在横线上.A:两点之间线段最短;B:线段垂直平分线的点到线段两个端点的距离相等;C:角平分线上的点到角两边的距离相等;D:三角形两边之和大于第三边.4.先阅读下列文字,再回答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为:P1P2=.(1)已知点P(2,4),Q(﹣3,﹣8),试求P,Q两点间的距离.(2)已知A(0,6),B(﹣3,2),C(3,2),判断线段AB,BC,AC大小关系.(3)已知点M(m,5),N(0,2)且MN=5,求m的值.(4)求代数式的最小值.5.尺规作图:用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l,(1)在直线上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB ≤QA+QB.6.在一平直的河岸l同侧有A、B两村.A村位于河流l正南4km,B村位于A村东8km南7km处.现要在河岸边建一水厂C为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.7.尺规作图用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知点A,点B和直线l.(1)在直线l上求作一点P,使P A+PB最短;(2)请在直线l上任取一点Q(点Q与点P不重合),连接QA和QB,试说明P A+PB <QA+QB.8.如图1和图2,P是直线m上一动点,A、B两点在直线m的同侧,且点A、B所在直线与m不平行.(1)当P点运动到P1位置时,距离A点最近,在图1中的直线m上画出点P1的位置;(2)当P点运动到P2位置时,与A点的距离和与B点距两相等,请在图2中作出P2位置;(3)在直线m上是否存在这样一点P3,使得到A点的距离与到B点的距离之和最小?若存在请在图3中作出这点,若不存在清说明理由.(要求:不写作法,请保留作图痕迹)9.如图1:P是∠AOB内任意一点,OP=5cm,M和N分别是射线OA和射线OB上的动点.(1)请你在图2中利用作图确定M点和N点的位置,使得△PMN的周长最小(保留作图痕迹);(2)在图2中若△PMN周长的最小值是5cm,则∠AOB的度数是多少?10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.参考答案1.解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.2.解:∵A(﹣3,3),∴点A关于y轴对称的点C(3,3),连接BC交y轴于P,则P A+PB最小,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=x,∴点P的坐标(0,0).3.解:(1)如图,A′(1,﹣1);点C为所作;(2)故选A,B,D.4.解:(1)根据两点的距离公式得,PQ=;(2)AB=,BC=,AC=,∴AB=AC<BC;(3)根据题意得,,∴m2+9=25,∴m=±4;(4)∵可以看成点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和,∴的最小值为点点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和的最小值,∵当点(x,y)在以两点(﹣3,1)和(0,﹣4)为端点的线段上时,点(x,y)到两点(﹣3,1)和(0,﹣4)的距离之和的最小值,其最小值为以两点(﹣3,1)和(0,﹣4)为端点的线段长度,∴的最小值为.5.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB≥A′B,∴QA+QB≥A′B即QA+QB≥A′P+BP,∴P A+PB≤QA+QB.6.解:方案一:如图1,连接AB,过A作AC1⊥l于C1则C1即为水厂地址,过B作BD⊥AC1交C1A的延长线于D,则AD=7km,BD=8km,AC1=4km,∴AB==km,∴所需管道长度=AC1+AB=(4+)km;方案二:作A关于直线l的对称点A′,连接A′B交直线l于C2,则C2即为水厂地址,如图2,过B作BD⊥AA′交A′A的延长线于D,则A′D=15km,BD=8km,∴所需管道长度=A′B==17km,综上所述:所需最短管道长度=(4+)km.7.解:(1)作点A关于直线l的对称点A′,连接A′B交直线l于P,则点P即为所求;(2)在直线l上任取另一点Q,连接P A、QA、QB.∵点A与A′关于直线l成轴对称,点P、Q在直线l上∴P A=P A′,QA=QA′.∵QA′+QB>A′B,∴QA+QB>A′B即QA+QB>A′P+BP,∴QA+QB>AP+BP.∴P A+PB最小.8.解:(1)过点A作直线m的垂线,垂足为P1,则P1即为所求;(2)作线段AB的垂直平分线交直线m于P2,则P2即为所求;(3)作点A关于直线m对称点A′,连接BA′交直线m于P3,则P3即为所求.9.解:(1)分别作点P关于OA、OB的对称点D,C,连接CD,分别交OA、OB于点M、N,连接PM、PN、MN,则△PMN的周长最小;(2)连接OC、OD,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.10.解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|P A﹣PB|的值最大的点,|P A﹣PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45°,∠ACB=90°,∵∠BCD=15°,∴∠ACD=75°,∴∠CAA′=15°,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15°,∴∠ACA′=150°,∵∠ACB=90°,∴∠A′CB=60°,∴△A′BC是等边三角形,∴A′B=BC=4.故答案为:4.。
与轴对称相关的线段之和最短问题我们经常在考试当中看到求线段之和最小的问题,每当我们看到这样的题型,同学们从今往后就要高兴了,因为我把它们出现的模型整理如下。
首先来看下这几个数学模型:模型1:两点之间线段最短。
要在l 找点P ,使得PA+PB 最短,这模型最简单,两点之间线段最短。
模型2:将军饮马问题。
在l 上找一点P ,使得PA+PB 最短,作对称。
其中BA ’就是最短的值 模型3:两动点找三角形周长最小在OA ,OB 上找点M 、N ,使得△PMN 周长最小,把P 关于OA ,OB 分别作对称,然后连接两个对称点,交点记为所求,然后周长最小值为P ’P ’’, 模型4:两动点加垂线段最短,在OA 上找一点M ,使得M 到OB 的距离与M 到P 的距离之和最短。
作P 关于OA 的对称点,然后在对称点P ’上作OB 的垂线,交点即为所求,P ’N 就是最短值。
模型4:如图,点P ,Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。
使四边形PAQB 的 周长最小。
总结一句话,要在哪找点,我们就关于谁作对称!是不是很好理解?好吧!我们看看下面这些例题该怎样套上我们的模型! 题型1:直线类例题1.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC =10千米,BD =30千米,且CD =30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?作点B 关于直线CD 的对称点B',连接AB',交CD 于点M 则AM+BM = AM+B'M = AB',水厂建在M 点时,费用最小 如右图,在直角△AB'E 中, AE = AC+CE = 10+30 = 40 EB' = 30M EB'CD A B所以:AB' = 50总费用为:50×3 = 150万例题2.求代数式x 2+ 1 + (4-x)2+ 4 (0≤x ≤4)的最小值 如右图,AE 的长就是这个代数式的最小值在直角△AEF 中 AF = 3 EF = 4则AE = 5所以,这个代数式的最小值是5 题型2:角类例题3.如图∠AOB = 45°,P 是∠AOB 内一点,PO = 10,Q 、P 分别是OA 、OB 上的动点,求△PQR 周长的最小值.分别作点P 关于OA 、OB 的对称点P 1、P 2,连接P 1P 2,交OA 、OB 于点Q ,R ,连接OP 1,OP 2, 则OP = OP 1 = OP 2 = 10且∠P 1OP 2 = 90°由勾股定理得P 1P 2 = 10 2 题型3:三角形类例题4.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小作点B 关于AC 的对称点B',连接B'E ,交AC 于点P ,则B'E = PB'+PE = PB+PE B'E 的长就是PB+PE 的最小值在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 10 例题5.如图,在△ABC 中,AC =BC =2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。
即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C',连接DC'交AB 于点E ,则线段DC'的长就是EC+ED 的最小值。
在直角△DBC'中DB=1,BC=2,根据勾股定理可得,DC'= 5 例题6.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值因为点C 关于直线AD 的对称点是点B ,所以连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2- CH 2= 62- 32= 3 321C'ACP 2OB在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12= 27题型4:正方形类例题7.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2 3 B .2 6 C .3 D . 6 即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P ,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值 BE = AB = 2 3例题8.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 即在AC 上求一点P ,使PB+PQ 的值最小因为点B 关于AC 的对称点是D 点,所以连接DQ ,与AC 的交点P 就是满足条件的点 DQ = PD+PQ = PB+PQ故DQ 的长就是PB+PQ 的最小值 在直角△CDQ 中,CQ = 1 ,CD = 2 根据勾股定理,得,DQ = 5 题型5:矩形类例题9.如图,若四边形ABCD 是矩形, AB = 10cm ,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值;作点C 关于BD 的对称点C',过点C',作C'B ⊥BC ,交BD于点P ,则C'E 就是PE+PC 的最小值直角△BCD 中,CH = 205 错误!未找到引用源。
直角△BCH 中,BH = 8 5△BCC'的面积为:BH ×CH = 160所以 C'E ×BC = 2×160 则CE' = 16 题型6:菱形类例题10.如图,若四边形ABCD 是菱形, AB=10cm ,∠ABC=45°,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PE 的最小值; 点C 关于BD 的对称点是点A ,过点A 作AE ⊥BC ,交BD 于点P ,则AE 就是PE+PC 的最小值BDADADB在等腰△EAB 中,求得AE 的长为5 2 题型7:直角梯形类例题11.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174 C 、 17178 D 、3作点A 关于BC 的对称点A',连接A'D ,交BC 于点P 则A'D = PA'+PD = PA+PD A'D 的长就是PA+PD 的最小值 S △APD = 4在直角△ABP 中,AB = 4,BP = 1 根据勾股定理,得AP =17 所以AP 上的高为:2×417= 81717题型8:圆类例题12.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ︵的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.即是在直线CD 上作一点P ,使PA+PB 的值最小作点A 关于CD 的对称点A',连接A'B ,交CD 于点P ,则A'B 的长就是PA+PB 的最小值 连接OA',OB ,则∠A'OB=90°, OA' = OB = 4根据勾股定理,A'B = 4 2例题13.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( )A 2 2B 2C 1D 2 即在MN 上求一点P ,使PA+PB 的值最小作点A 关于MN 的对称点A',连接A'B ,交MN 于点P , 则点P 就是所要作的点A'B 的长就是PA+PB 的最小值连接OA'、OB ,则△OA'B 是等腰直角三角形 所以 A'B = 2 题型9:一次函数类例题14.在平面直角坐标系中,有A (3,-2),B (4,xDCA'2)两点,现另取一点C(1,n),当n =______时,AC + BC的值最小.点C(1,n),说明点C在直线x=1上,所以作点A关于直线x=1的对称点A',连接A'B,交直线x=1于点C,则AC+BC的值最小设直线A'B的解析式为y=kx+b,则-2=-k+b2=4k+b解得:k = (4/5) b = - (6/5)所以:y = (4/5)x-(6/5)当x = 1时,y = -(2/5)故当n = -(2/5)时,AC+BC的值最小例题15.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.(1)由题意得:0 = 2x+b4 = b解得 k = -2,b= 4,所以 y = -2x+4(2)作点C关于y轴的对称点C',连接C'D,交y轴于点P则C'D = C'P+PD = PC+PDC'D就是PC+PD的最小值连接CD,则CD = 2,CC' = 2在直角△C'CD中,根据勾股定理 C'D = 2 2求直线C'D的解析式,由C'(-1,0),D(1,2)所以,有0 = -k+b2 = k+b解得 k = 1,b = 1,所以 y = x+1当x = 0时,y =1,则P(0,1)题型10:二次函数类例题16.如图,在直角坐标系中,点A的坐标为(-2,0),连结0A,将线段OA绕原点O 顺时针旋转120。
,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)(1)B(1, 3 )(2) y =33x2 +233x(3)因为点O关于对称轴的对称点是点A,则连接AB,交对称轴于点C,则△BOC的周长最小y =33x 2 + 233x ,当x=-1时,y = 33所以C(-1,33) 例题17.如图,抛物线y =x 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M(m,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.(1) y = 12x 2 - 32 -2 (3)作点C 关于x 轴的对称点C ’,连接C ’D ,交x 轴于点M ,则MC+MD 的值最小,求出直线C ’D 的解析式,即可得到M 点的坐标 m = 2441方法点拨:此类试题往往以角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等为背景,但都有一个“轴对称性”的图形共同点,解题时只有从变化的背景中提取出“建泵站问题”的数学模型,再通过找定直线的对称点把同侧线段和转换为异侧线段和,利用“两点之间线段最短”,实现“折”转“直”即可解决。