电磁学习题案1-3章
- 格式:doc
- 大小:811.00 KB
- 文档页数:20
程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。
学号 班级 姓名 成绩第一章 真空中的静电场 (一)一、选择题 1、关于电场强度定义式E=F/q 0,指出下列说法中的正确者[ ].A .场强E 的大小与检验电荷q 0的电量成反比;B .对场中某点,检验电荷受力F 与q 0的比值不因q 0而变;C .检验电荷受力F 的方向就是场强E 的方向;D .若场中某点不放检验电荷q 0,则F =0,从而E =0。
图6-12、如图6-1所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >〉a 时,该点场强的大小为[ ]。
A 。
204y q επ; B.202y q επ; C 。
302y qa επ; D. 304yqaεπ。
3、无限大均匀带电平面电荷面密度为σ,则距离平面d 处一点的电场强度大小为[ ]. A .0; B .02σε; C .02d σε; D .04σε。
4、如图6-2所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度E的大小与距轴线的距离r 关系曲线为[ ]。
图6—25、在真空中,有一均匀带电细圆环,半径为R,电荷线密度为λ,则其圆心处的电场强度为( )A 、0ελ;B 、R 02πελ;Rr EARrEBRrECRrEDC 、202R πελ; D 、0v/m6、下列哪一说法正确?( )A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大B 、在某一点电荷附近的一点,如果没有把试验电荷放进去,则这点的电场强度为零C 、电力线上任意一点的切线方向,代表正点电荷在该点处获得的加速度方向D 、如果把质量为m 的点电荷放在一电场中,由静止状态释放,电荷一定沿电场线运动二、填空题1、两个正点电荷所带电量分别为q 1和q 2,当它们相距r 时,两电荷之间相互作用力为F = ,若q 1+q 2=Q ,欲使两电荷间的作用力最大,则它们所带电量之比q 1:q 2= 。
A.变大 C.不变
A.1∶1
C.2∶1
9、一台理想降压变压器从10 kV的线路中降压并提供
A.升压变压器的原线圈中的电流与用户用电设备消耗的功率无关B.输电线中的电流只由升压变压器原、副线圈的匝数比决定
A.当S闭合瞬间,小灯泡将慢慢变亮
B.当S闭合瞬间,小灯泡立即变亮
C.当S断开瞬间,小灯泡慢慢熄灭
13、如图所示,变压器原线圈匝数
圈的交变电压U1
(1)副线圈的交变电压U2为多大;
(2)副线圈的交变电流I2为多大.
14、电磁炉是利用高频电流在电磁炉内部线圈中产生磁场,磁化铁质锅底,使之形成无数个小涡流,加快锅底分子运动,
其工作原理如图所示.
(1)使用微型电脑控制的电磁炉加热时不产生明火、
A.变大 C.不变
A.1∶1
C.2∶1
【答案】B [正弦交变电流的有效值为
A.升压变压器的原线圈中的电流与用户用电设备消耗的功率无关B.输电线中的电流只由升压变压器原、副线圈的匝数比决定
A.当S闭合瞬间,小灯泡将慢慢变亮
B.当S闭合瞬间,小灯泡立即变亮
C.当S断开瞬间,小灯泡慢慢熄灭
[解析] 由法拉第电磁感应定律知,在时间E ==B =ΔΦΔt ΔS Δt (1)副线圈的交变电压U 2为多大;
(2)副线圈的交变电流I 2为多大.
[解析] (1)由=得U 2=U 1U 2n 1n 2U (2)因为P 入=P 出,所以U 1I 1
(1)使用微型电脑控制的电磁炉加热时不产生明火、
高效节能,是现代家庭中理想的灶具.请写出电磁炉在使用中触及到的物理知识(只写两点):________和________。
电磁学习题答案第一、二章静电场(一)填空题0111 引,引,引,不受静电0211 带电小球不是点电荷,库仑定律不适用0322 小0423 1∶50522 q=Q/20622 小0721 移到大地,不会移动0821 不会改变0911 同号等量1023 物质在引力场中1111 电力线的方向是电场的方向,即正电荷受力的方向而不是运动方向和轨迹1211 空过高斯曲面的电通量,电场E1311 不一定为零,必为零1423 不会成立这时 ∮E·dS=∫1/4π0q/rn1/ε0qrn-21522 能,不能1621 q/(6ε),在体内时不变,体外为零1723 恒为零,恒为一定值,由定值变为零1823 1/4πε4Qa21924 5/22022 2q/(4πεR2)2122 不能,能2222 能,不能2322 无限远或大地,整机外壳,并不一定相等2422 零,常数,2524 g,gh,mgh2611 -q2724 4.0×106N/C,02824 7.1×10-5C·m-22923 16∶253024 6.9×10-19J 、3112 升高3222 有,有,无,有3322 均匀分布,仍然为均匀3422 相等3523 rA ∶rB3624 2md/(et 2),2md 2/t 2 3722 1∶53824 EM <EN3923 W0/εr4024 600V(二)选择题0132 (B) 0222 (C) 0322 (B) 0422 (B)0523 (D) 0622 (A) 0724 (D) 0824 (D)0924 (D) 1023 (B) 1122 (B) 1222 (B)1321 (C) 1421 (C) 1521 (C) 1622 (C)1724 (D) 1834 (D) 1921 (D) 2022 (A)2123 (C) 2224 (C) 2322 (B) 2424 (CD)2523 (C) 2624 (D) 2724 (C) 2824 (C)2923 (C) 3034 (C) 3122 (A) 3222 (C)3322 (A) 3422 (B) 3523 (C) 3624 (C) 3734BF,D,AC 3824 (D) 3924 (C) 4024 (A)第三章稳恒电流(一)填空题0111 非保守力非静电场0211 非静电力将单位正电荷在电源内部由负极移到正极所作的功0322 不一定相同,不同,相同0423 x=l/2(1±n-4)0532 e2/(4πr0621 2nevS0721 2I/30821 l/2和l/20922 60V1034 92.5V1121 1159kW1223 1∶3,1∶1,3∶161333 并,2.71424 U3>U2>U1,相等,相等1534 闭路式,因为开路式当开关在触点间跨越时可能烧坏表头1622 灯泡点亮时电阻变大1722 零,增大,R>r时将减小,R<r时将增大,R=r时功率最大1822 新旧电池的电动势变化不大而内阻变化很大,故输出功率大大减小 1922 nε,nr2022 ε,r/n(二)选择题0122 (B) 0223 (C) 0321 (C) 0423 (C) 0522 (C) 0621 (B) 0722 (D) 0823 (B) 0922 (A) 1033 (D) 1134 (C) 1234 (B)1334 (A) 1424 (D) 1534 (B) 1622 (D)1723 (B) 1823 (C) 1923 (C) 2023 (B)第四、五章稳恒磁场(一)填空题0111 在与x轴的两个相交点处B=0,在与y轴相交的两点处B=μ0/4πidR2,但分别沿k和-k方向0211 μI/2R0312 μI0411 沿x方向0511 因引力而靠近0612 一方面朝两环电流方向相同的方位转动,同时相互平动靠近0711 电场或磁场,磁场,电场0811 相等0922 μ0I/(2π)1022 2μ0I/(πa)1121 零,μI/2πR (1+π/4),零1224 弱1311 零1411 μ0nI,μ0nI1512 能,不能1623 μ0Ir2πr2 μI/2πr ,零1722 无源有旋1821 μev/4πr21922 靠近导线平移,转动且平移靠近导线,转动且平移靠近导线2024 零2122 零,不一定为零2234 大,不变2324 右2424 ne(IB/b)2523 2mEk/(qr)2623 以半径R=mv2/(qvB)作圆周运动;以较小的半径反方向作圆周运动 2722 收缩变短2823 自上而下俯视为逆时针2932 向下偏移3024 vBd,上边为正极板,下边为负极板3122 B和M都与外磁场B0同方向,B和M都与外磁场B反方向3234 磁化的铁钉与磁场间的相互作用能(磁势能),铁钉接近磁铁时磁势能减小而转化为铁钉动能3322 弹簧伸长,插入部分变长,瞬间上升而随即又伸长插入螺线管中 3422 相同电流,不变3522 加一个反向磁场,或敲击震动磁铁,或加热使温度升高到居里点以上3622 加一块衔铁将两极闭合,将两条磁铁的异性磁极靠在一起3721 南,指向地面3821 抗磁质,顺磁质3921 ②,①4034 下降,下降,上升,上升,上升,吸住(二)选择题0121 (D) 1124 (A) 2121 (C) 3121 (B)0222 (D) 1223 (C) 2221 (B) 3234 (B)0324 (B) 1334 (BC) 2322 (C) 3323 (D)0421 (D) 1433 (D) 2422 (A) 3424 (C)0522 (D) 1522 (B) 2522 (A) 3534 (B)0634 (B) 1623 (AB) 2622 (D) 3622 (B)0723 (C) 1724 (D) 2724 (C) 3722 (A)0822 (BD) 1823 (B) 2833 (C) 3821 (A)0922 (B) 1923 (C)(B) 2933 (B) 3922 (B)1021 (D) 2023 (C) 3032 (A) 4033 (BCDA)第六章电磁感应(一)填空题0111 先加速最后以一恒速度0211 一个反抗拉力0322 垂直导线而远离0422 受到较大阻力而很快停下来,受到的阻力减小而好久才能停住 0523 变化的B在薄片上产生涡电流,由椤次定律知,涡流磁场总是阻碍原磁场变化,而具屏蔽作用0621 0,Blv,bωl 2/2,00721 0.1,a→d→c→b→a0834 右0921 增大1022 ωBR2/21122 0.05T1222 电能1323 ε/Bl1422 产生电流而不运动1523 μ0N21a2/2R,μ0N22a2/2R,μN1N2a2/2R1621 使二线圈的半径基本相等,同轴紧套在一起1721 两线圈互相垂直放置1821 同轴顺向紧密连接1921 先将电阻丝折成双线再绕在绝缘筒上而使电流相反 2021 交流电源,减少,焦耳热(二)选择题0121 (B) 0632 (AD) 1124 (D) 1623 (C) 0223 (D) 0732 (BD) 1223 (D) 1723 (D)0323 (A) 0824 (C) 1323 (D) 1823 (C)0421 (A) 0934 (C) 1423 (C) 1924 (D)0534 (C) 1021 (B) 1523 (D) 2024 (B)第七章电磁场和电磁波(一)填空题0111 涡旋电场和位移电流0211 变化的电场,电位移通量的变化率dφD/dt0312 位移电流产生于变化的电场且无焦耳热,而传导电流产生于电荷的运动且有焦耳热0422 是横波,S=E×H,E和H同位相、同周期变化,εE=μH2, v=(εμ)-1/2等0533 独立客观存在,有能量动量,有粒子性,与实物粒子可相互转换等 0622 传导,位移,传导0722 变化的电场和变化的磁场0833 不会产生,仍不产生0922 发射电磁波必须是高频的开放型振荡电路1033 实验规律中直接归纳,积分形式通过数学推演1121 3×1018 ,5. 09×1014 , 2.19×108 ,1.07×106Hz1221 2.0×108 m/s1321 7.0×10-2A1421 3.33×10-12T1522 3.95×1026W1623 1.74×10-2V/m, 5.8×10-11T1724 2.68×102W/m21824 3m,108Hz,2.0×10-9cos〔2π×108(t-x/c)〕1924 4.3×10-13~3.9×10-10F2023 1.6×10-5W/m2(二)选择题0121 (AC) 0322 (AC) 0522 (C) 0721 (D)0222 (AD) 0422 (AD) 0621 (D) 0821 (D)0924 (D) 1223 (A) 1524 (C) 1824 (D)1024 (A) 1323 (C) 1622 (C) 1924 (B)1123 (B) 1422 (C) 1723 (B) 2034 (D)。
第一部分 习题 第一章 静电场基本规律1.2.1在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们个距2510-⨯米时,相互排斥力为1.6牛顿。
问它们相距0.1米时,排斥力是多少?两点电荷的电量各为多少?解:设两点电荷中一个所带电量为q ,则另一个为4q :(1) 根据库仑定律:r r q q K F ˆ221 = 得:212221r r F F = (牛顿))()(4.01010560.12122222112=⨯⨯==--r r F F (2) 21224r q K F =∴ 2194221211109410560.14)()(⨯⨯⨯⨯±=±=-K r F q =±3.3×710- (库仑) 4q=±1.33×810- (库仑)1.2.2两个同号点电荷所带电量之和为 Q ,问它们带电量各为多少时,相互作用力最大?解: 设其中一个所带电量为q ,则一个所带电量为Q-q 。
根据库仑定律知,相互作用力的大小:2)(rq Q q K F -= 求 F 对q 的极值 使0='F即:0)2(=-q Q r K∴ Q q 21=。
1.2.3两个点电荷所带电量分别为2q 和q ,相距L ,将第三个点电荷放在何处时,它所受合力为零?解:设第三个点电荷放在如图所示位置是,其受到的合力为零。
图 1.2.3即:41πε20xq q = 041πε )(220x L q q - =21x2)(2x L - 即:0222=-+L xL x 解此方程得:)()21(0距离的是到q q X L x ±-= (1) 当为所求答案。
时,0)12(>-=x L x (2) 当不合题意,舍去。
时,0)12(<--=x L x1.2.4在直角坐标系中,在(0,0.1),(0,-0.1)的两个位置上分别放有电量为1010q -=(库)的点电荷,在(0.2,0)的位置上放有一电量为810Q -=(库)的点电荷,求Q 所受力的大小和方向?(坐标的单位是米)解:根据库仑定律知:1211ˆr r Qq K F = )ˆsin ˆ(cos 11211j i rQ q Kαα-= 2281092.01.01010109+⨯⨯⨯=--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i =j iˆ100.8ˆ1061.187--⨯-⨯ 如图所示,其中 21212111)(cos y x x +=α21212111)(sin y x y +=α同理:)ˆsin ˆ(cos 222212j i r Q q K F αα+⨯= 2281092.01.01010109+⨯⨯⨯=--×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++21222122)2.01.0(ˆ1.0)2.01.0(ˆ2.0j i=j iˆ100.8ˆ1061.187--⨯-⨯ )(ˆ1022.3721牛顿iF F F -⨯=+=1.2.5在正方形的顶点上各放一电量相等的同性点电荷q 。
一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
学号 班级 姓名 成绩第一章 真空中的静电场 (一)一、选择题1、关于电场强度定义式E=F/q 0,指出下列说法中的正确者[ ]。
A .场强E 的大小与检验电荷q 0的电量成反比;B .对场中某点,检验电荷受力F 与q 0的比值不因q0而变; C .检验电荷受力F 的方向就是场强E 的方向;D .若场中某点不放检验电荷q 0,则F=0,从而E =0。
图6-12、如图6-1所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为[ ]。
A. 204y q επ; B.202y q επ; C.302y qa επ; D. 304yqaεπ。
3、无限大均匀带电平面电荷面密度为σ,则距离平面d 处一点的电场强度大小为[ ]。
A .0; B .02σε; C .02d σε; D .04σε。
4、如图6-2所示,在半径为R 的“无限长”均匀带电圆筒的静电场中,各点的电场强度ERr EARr E BRr E CRrED的大小与距轴线的距离r 关系曲线为[ ]。
图6-25、在真空中,有一均匀带电细圆环,半径为R ,电荷线密度为λ,则其圆心处的电场强度为( )A 、0ελ;B 、R 02πελ;C 、202R πελ; D 、0v/m6、下列哪一说法正确( )A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大B 、在某一点电荷附近的一点,如果没有把试验电荷放进去,则这点的电场强度为零C 、电力线上任意一点的切线方向,代表正点电荷在该点处获得的加速度方向D 、如果把质量为m 的点电荷放在一电场中,由静止状态释放,电荷一定沿电场线运动二、填空题1、两个正点电荷所带电量分别为q 1和q 2,当它们相距r 时,两电荷之间相互作用力为 F = ,若q 1+q 2=Q ,欲使两电荷间的作用力最大,则它们所带电量之比q 1:q 2= 。
部分习题解答第一章 静止电荷的电场1、10 解:(一定要有必要的文字说明)在圆环上与角度θ相应的点的附近取一长度dl ,其上电量 dq =λdl =0λsinθdl ,该电荷在O 点产生的场强的大小为==204RdqdE πε2004sin R dl πεθλθπελsin 400R =θd dE 的方向与θ有关,图中与电荷 dq 对O 点的径矢方向相反。
其沿两坐标轴方向的分量分别为 θθθπελθd RdE dE x cos sin 4cos 00-=-=θθπελθd RdE dE y 200sin 4sin -=-=整个圆环上电荷在圆心处产生的场强的两个分量分别为==⎰x x dE E R004πελ-⎰=πθθθ200cos sin d==⎰Y y dE E R004πελ-⎰-=πελθθ200024sin Rd 所以圆心处场强为 E = E y j = R004ελ-j 1、11 解:先将带电系统看成一个完整的均匀带电圆环计算场强,然后扣除空隙处电荷产生的场强;空隙的宽度与圆半径相比很小,可以把空隙处的电荷看成点电荷。
空隙宽度m d 2102-⨯=,圆半径m r 5.0=,塑料杆长m d r l 12.32=-=π 杆上线电荷密度m C lq/1019-⨯==λ 一个均匀带电圆环,由于电荷分布关于圆心对称,环上对称的二电荷元在圆心处产生的场强互相抵消,因而整个圆环在圆心处的场强E 1= 0 空隙处点电荷设为q /,则q / =d λ,他在圆心处产生的场强m V rdr q E /72.0442020/2===πελπε 方向由空隙指向圆心。
空隙处的电荷实际上不存在,因此圆心处场强等于均匀带电圆环在该点产生的场强与空隙处电荷在该点产生的场强之差,故m V E E E /72.021-=-= 负号表示场强方向从圆心指向空隙。
1、12 解:设想半圆形线CAD 与半圆形线ABC 构成一个圆形如图,且圆上线电荷密度均为λ。
第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。
2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。
3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。
解法一:22020214141aR qπεr q πεE E +=== 21E E E ϖϖϖ+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220max 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E ϖϖϖ+=ϖ+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθaπεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==aπεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。
由 θθa R θsin cos cot ==得a θθR sin cos =∴ E 有极大值时a a θθR 22sin cos 22==而2023220max 33)cos (cos 21aπεq θθa q πεE =-=5、内半径为R 1,外半径为R 2的环形薄板均匀带电,电荷面密度为σ,求:中垂线上任一P 点的场强及环心处O 点的场强。
解:利用圆环在其轴线上任一点产生场强的结果2/3220)(4R x Qx E +=πε 任取半径为r ,宽为dr 的圆环,其电量为 dq = σds = 2r σdr圆环在P 点产生的场强为:2/32202/3220)(2)(4r x εxrdr σr x πεxdq dE +=+=· R 1OPXR 2 r●环形薄板在P 点产生的总场强为:)11(2222212021R x R x εx σdE E R R+-+==⎰ 若σ > 0,则E ϖ背离环面;若σ < 0,则E ϖ指向环面。
在环心处x = 0,该处的场强为 E 0=06、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:在上题中,令R 1=R ,R 2→∞,x = r 则得结果2202R r εr σE +=第一章 习题二1、均匀电场的场强E ϖ与半径为R 的半球面的轴线平行,则通过半球面的电场强度通量Φ= πR 2E ,若在半球面的球心处再放置点电荷q ,q 不改变E ϖ分布,则通过半球面的电场强度通量Φ= πR 2E ±q /20。
2、真空中的高斯定理的数学表达式为∑⎰⎰=⋅0/εq s d E i S ρρ;其物理意义是 静电场是有源场 。
3、一点电荷q 位于一位立方体中心,立方体边长为a ,则通过立方体每个表面的E ϖ的通量是q /60;若把这电荷移到立方体的一个顶角上,这时通过电荷所在顶角的三个面E ϖ的通量是 0 ,通过立方体另外三个面的E ϖ的通量是q /80。
4、两个无限大均匀带正电的平行平面,电荷面密度分别为σ1和σ2,且σ1>σ2,则两平面间电场强度的大小是( C )(A) (B) (C) (D) 5、应用高斯定理求场强E ϖ时,要求E ϖ的分布具有对称性,对于没有对称性的电场分布,例如电偶极子产生的电场,高斯定理就不再成立,你认为这种说法:( B )(A)正确 (B)错误 (C)无法判断6、下述带电体系的场强分布可能用高斯定理来计算的是( D )(A) 均匀带电圆板 (B)有限长均匀带电棒 (C)电偶极子(D)带电介质球(电荷体密度是离球心距离r 的函数) 7、如果在静电场中所作的封闭曲面内没有净电荷,则( C )(A)封闭面上的电通量一定为零,场强也一定为零; (B)封闭面上的电通量不一定为零,场强则一定为零; (C)封闭面上的电通量一定为零;场强不一定为零; (D)封闭面上的电通量不一定为零;场强不一定为零。
()0212/εσσ+()021/εσσ+()0212/εσσ-()021/εσσ-8、一球体半径为R ,均匀带正电量为Q ,求球体内外的场强分布。
解:3/43R πQ ρ=,电场分布具有球对称性。
在球体内外作以O 为心的高斯球面S ,其半径 为r ,则有:∑⎰⎰⎰⎰===⋅Si S S εq E r πds E s d E 02/4ρρ∴ ∑=Siq r πεE 2041(1) r < R , Q R r R πQ r πρr πq S i 333333/434341===∑, ∴ r e R πεrQ E ϖϖ3014= (2) r > R , Q q S i =∑2, ∴ re rπεQ E ϖϖ2024=∴9.无限长均匀带电圆柱面,电荷面密度为σ,半径为R ,求圆柱面内外的场强分布。
r ,高为h 的同轴圆柱面为高斯面,根据⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅侧面下底上底S d E S d E S d E S d E S ϖϖϖϖϖϖϖϖrhE πdS E EdS 2===⎰⎰⎰⎰侧面侧面(1) r < R 时,∑=0i q由高斯定理 0/20===∑εq rhE πΦi得 0=Eσi ,由高斯定理 00/2/2εσRh πεq rhE πΦi ===∑得r εσR E 0/=)( 420R r ,e rπεQ r>ϖ)( 430R r ,e RπεrQ r<ϖ=E ϖ)( 0R r ,rεσR >)( 0R r ,<=E ∴第一章 习题三1、三个相同的点电荷q ,分别放在边长为L 的等边三角形的三个顶点处,则三角形中心的电势)4/(330L q U πε=,电场强度大小0=E ,将单位正电荷从中心移到无限远时,电场力作功)4/(330L q A πε=。
2、半径为R 的均匀带电细圆环,电荷线密度为λ,则环心处的电势02/ελ=U ,场强大小0=E 。
3、静电场中某点的电势,其数值等于单位正电荷在该处的电势能,或把单位正电荷从该点移到电势零点过程中电场力所作的功。
4、下列各种说法中正确的是( B )(A)电场强度相等的地方电势一定相等;(B)电势梯度较大的地方场强较大; (C)带正电的导体电势一定为正; (D)电势为零的导体一定不带电。
5、在静电场中下面叙述正确的是( B )(A)电场强度沿电场线方向逐点减弱; (B)电势沿电场线方向逐点降低。
(C)电荷在电场力作用下定沿电场线运动;(D)电势能定沿电场线方向逐点降低。
6、真空中产生电场的电荷分布确定以后,则( B )(A)电场中各点的电势具有确定值; (B)电场中任意两点的电势差具有确定值; (C)电荷在电场中各点的电势能具有确定值。
8、球壳的内半径为R 1,外半径为R 2,壳体内均匀带电,电荷体密度为ρ,A 、B 两点分别与球心0相距r 1和r 2,(r 1>R 2,r 2<R 1 ,求A 、B 两点的电势。
解:利用均匀带电球壳产生电势的结果和电势叠加原理计算作一半径为r , 厚度为dr 的球壳,其电量为dr r dq ρπ24=(1) A 点处,r 1>R 2时,)4/(101r dq dU πε=()1031322101132121r εR R ρdr r r ερdU U R R R R -===⎰⎰ (2) B 点处,r 2<R 1时,)4/(02r dq dU πε=()0212202222121εR R ρrdr ερdU U R R R R -===⎰⎰9、一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ=Ar(r <R),式中A 为常数,试求:(1)圆柱体内,外各点场强大小分布;(2)选距离轴线的距离为R 0(R 0>R)处为电势零点,计算圆柱体内,外各点的电势分布。
解:作一半径为r ,高为h 的同轴圆柱面为高斯面⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅=侧面下底上底S d E S d E S d E S d E ΦS ϖϖϖϖϖϖϖϖrhE πdS E EdS 200==++=⎰⎰⎰⎰侧面侧面由高斯定理:∑⎰⎰=⋅=Si S q εS d E Φ01ϖϖ(1) r < R ,r d r Ah πr hd r πAr τd ρdq ''=''==22)2)((302322Ahr πr d r Ah πdq q rSi =''==⎰⎰∑ 3322Ahr πεrhE πΦ==, ∴ )( ,302R r εAr E <= r > R ,302322AhR πr d r Ah πdq q RSi =''==⎰⎰∑ 3322AhR πεrhE πΦ==, ∴ )( ,303R r r εAR E >=(2) r < R ,⎰⎰⎰⎰⎰+=+=⋅=00032033R RR rR R R r R rrdr εAR dr r εAEdr Edr l d E U ϖϖ RR εAR r R εA 003330ln3)(9+-= r > R ,rR εAR r dr εAR Edr l d E U R rR r R r0303ln33000===⋅=⎰⎰⎰ϖϖS第一章 习题四1、真空中半径为R的球体均匀带电,总电量为q ,则球面上一点的电势U =R πεq 04/;球心处的电势U 0=R πεq 08/3。