2018年考研数学三真题与答案解析
- 格式:doc
- 大小:468.76 KB
- 文档页数:9
2018年全国硕士研究生入学统一考试数学(三)试题及答案解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的.(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()sin f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x →→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx x→→--==可导;(D)000122limlim,x x x xx x→→→-==极限不存在,故选D。
(2)()[]()10,10,f x f x dx =⎰设函数在上二阶可导,且则()(A)1()0,()02f x f '<<当时(B)1()0,()02f x f ''<<当时(C)1()0,()02f x f '><当时(D)1()0,(02f x f ''><当时【答案】(D )【解析】2111()11()()()()(,2222!22f f x f f x x x ξξ'''=+-+-介于,之间,故1111220000120111()11()10=()()(()((2222!222!2()11()0()0,()0..2!22f f f x dx f f x dx x dx f x dxf f x x dx f D ξξξ'''''=+-+-=+-''''>⇒-><⎰⎰⎰⎰⎰由于所以,应选(3)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xxxxx e x N dx dx Mee πππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ-->==⎰⎰(,K M N >>故应选C 。
2018年考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim lim x x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D 对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x xx x =在 0x =处可导对()():x x C f cos =在 0x =处可导.2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()1011.0.22f x dx f f ⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。
2018考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim limx x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x x x =在 0x =处可导 对()():x x C f cos =在 0x =处可导. 2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()111.0.22f x dx f f⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。
2018年考研(数学三)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.下列函数中,在x=0处不可导的是( )A.f(x)=|x|sin|x|B.C.f(x)=cos|x|D.正确答案:D解析:对D选项,由于f+’(0)≠f-’(0),因此f(x)在x=0处不可导.2.设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则( )A.当f’(x)<0时,B.当f”(x)<0时,C.当f’(x)>0时,D.当f”(x)>0时,正确答案:D解析:对于A选项:.此时f’(x)=一1<0,但对于B、D选项:,由∫01f(x)dx=0,可得当f”(x)=2a<0时,=b>0;当f”(x)=2a>0时,对于C选项:取f(x)=此时f’(x)=1>0,但故D选项正确.3.设则( )A.M>N>KB.M>K>NC.K>M>ND.K>N>M正确答案:C解析:由于而由定积分的性质,可知即K>M>N.故C选项正确.4.设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则( )A.C’(Q0)=0B.C’(Q0)=C(Q0)C.C’(Q0)=Q0C(Q0)D.Q0C’(Q0)=C(Q0)正确答案:D解析:平均成本函数其取最小值时,则导数为零,即从而C’(Q0)Q0—C(Q0)=0,即C’(Q0)Q0=C(Q0).5.下列矩阵中,与矩阵相似的为( )A.B.C.D.正确答案:A解析:本题考查矩阵相似的定义及相似矩阵的性质(相似矩阵的秩相等).若存在可逆矩阵P,使得P-1AP=B,则A~B.从而可知E一A~E一B,且r(E—A)=r(E一B).设题中所给矩阵为A,各选项中的矩阵分别为B1,B2,B3,B4.经验证知r(E—B1)=2,r(E—B2)=r(E一B3)=r(E—B4)=1.因此A~B1,即A相似于A选项下的矩阵.6.设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)表示分块矩阵,则( )A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(AT,BT)正确答案:A解析:解这道题的关键,要熟悉以下两个不等关系.①r(AB)≤min{r(A),r(B)};②r(A,B)≥max{r(A),r(B)}.由r(E,B)=n,可知r(A,AB)=r(A(E,B))≤min{r(A),r(E,B)}=r(A).又r(A,AB)≥max{r(A),r(AB)},r(AB)≤r(A),可知r(A,AB)≥r(A).从而可得r(A,AB)=r(A).7.设f(x)为某分布的概率密度函数,f(1+x)=f(1—x),∫02f(x)dx=0.6,则P{X<0}=( )A.0.2B.0.3C.0.4D.0.6正确答案:A解析:由于f(1+x)=f(1一x),可知f(x)图像关于x=1对称.而∫02f(x)dx=0.6,可得8.已知X1,X2,…Xn(n≥2)为来自总体N(μ,σ2)(σ>0)的简单随机样本,,则( )A.B.C.D.正确答案:B解析:解这道题,首先知道t分布的定义.假设X服从标准正态分布N(0,1),Y服从χ2(n)分布,则的分布称为自由度为n的t分布,记为Z~t(n).填空题9.曲线y=x2+2lnx在其拐点处的切线方程是_______.正确答案:y=4x一3解析:首先求得函数f(x)=x2+2lnx的定义域为(0,+∞).求一阶、二阶导,可得f’(x)=令y”=0,得x=1.当x>1时f”(x)>0;当x<1时f”(x)<0.因此(1,1)为曲线的拐点.点(1,1)处的切线斜率k=f’(1)=4.因此切线方程为y一1=4(x一1),即y=4x一3.10.正确答案:解析:本题考查分部积分法。
考研数学三模拟题2018年(45)(总分100, 做题时间90分钟)一、填空题1.设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=______.SSS_FILL该题您未回答:х该问题分值: 15 [解析] X的分布律为P(X=k)=0.2×0.8 k-1,k1,2,….因为所以2.设总体X~N(0,8),Y~N(0,2 2 ),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则SSS_FILL该题您未回答:х该问题分值: 1F(1,2)[解析]3.设总体X~N(μ,σ 2 ),X1,X2,…,Xn是来自总体X的样本,则D(S 2 )=______.SSS_FILL该题您未回答:х该问题分值: 1 [解析] 因为所以4.设X~N(1,σ 2 ),Y~N(2,σ 2 )为两个相互独立的总体,X1,X2,…,Xm 与Y1,Y2,…,Yn分别为来自两个总体的简单样本,则服从______分布.SSS_FILL该题您未回答:х该问题分值: 1[解析]且相互独立,则5.设X~N(μ,σ 2 ),其中σ 2已知,μ为未知参数.从总体X中抽取容量为16的简单随机样本.且μ的置信度为0.95的置信区间中的最小长度为0.588,则σ 2 =______.SSS_FILL该题您未回答:х该问题分值: 1** [解析] 在σ 2 已知的情况下,μ的置信区间为 /其中 /于是有 /二、选择题1.对于随机变量X1,X2,…,Xn,下列说法不正确的是______.A.若X1,X2,…,Xn两两不相关,则B.若X1,X2,…,Xn相互独立,则D(X1+X2+…+Xn)=D(X1)+D(X2)+…+D(Xn)C.若X1,X2,…,Xn相互独立同分布,服从N(0,σ 2 ),则D.若D(X1 +X2+…+Xn)=D(X1)+D(X2)+…+D(Xn),则X1+X2+…+Xn两两不相关SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 若X1 +X2+…+Xn相互独立,则B,C是正确的,若X1+X2+…+Xn两两不相关,则A是正确的,选.2.设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为ρXY=-0.5,且P(aX+by≤1)=0.5,则______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 因为(X,Y)服从二维正态分布,所以aX+bY服从正态分布,E(aX+bY)=a+2b,D(aX+by)=a 2 +4b 2 +2abCov(X,Y)=a 2 +4b 2 -2ab,即aX+bY~N(a+2b,a 2 +4b 2 -2ab),由P(aX+by≤1)=0.5得a+2b=1,所以选D.3.设X1,X2,…,Xn是来自正态总体X~N(μ,σ 2 )的简单随机样本,记则服从t(n-1)分布的随机变量是______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:D[解析] 即选D.4.设X~t(n),则下列结论正确的是______.A.X 2~F(1,n)B.C.X 2~χ 2 (n)D.X 2~χ 2 (n-1)SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:A[解析] 由X~t(n),得其中U~N(0,1),V~χ 2 (n),且U,V相互独立,于是选A.5.从正态总体X~N(0,σ 2 )中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ 2的无偏估计量的是______.A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 1答案:A[解析] 因为所以为σ 2的无偏估计量,选A.三、解答题1.设总体X~N(0,σ 2 ),X1,X2,…,Xn为来自总体X的简单随机样本,S 2 = 求所服从的分布.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6 [解] 又且相互独立,则即设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi- (i=1,2,…,n).求:SSS_TEXT_QUSTI2.D(Yi);该题您未回答:х该问题分值: 3[解] 由得SSS_TEXT_QUSTI3.Cov(Y1,Yn).该题您未回答:х该问题分值: 3[解] 因为X 1 ,X 2 ,…,X n (n >2)相互独立, 所以 由 得4.设总体X ~N(μ,σ 2 ),X 1 ,X 2 ,…,X n 是来自总体X 的样本,令 求E(X 1 T).SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6[解] 因为X 1 ,X 2 ,…,X n 独立同分布,所以有E(X 1 T)=E(X 2 T)=…=E(X n T)5.设总体X 服从正态分布N(μ,σ 2 )(σ>0),X 1 ,X 2 ,…,X n 为来自总体X 的简单随机样本,令求Y 的数学期望与方差.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6 [解]而于是 6.设总体X 服从正态分布N(μ,σ 2 )(σ>0).从该总体中抽取简单随机样本X1,X 2 ,…,X 2n (n >2).令求统计量 的数学期望.SSS_TEXT_QUSTI该题您未回答:х 该问题分值: 6[解] 令Y i =X i +X n+i (i=1,2,…,n),则Y 1 ,Y 2 ,…,Y n 为正态总体N(2μ,2σ 2 )的简单随机样本,=(n-1)S 2 ,其中S 2 为样本Y 1 ,Y2,…,Y n 的方差,而E(S 2 )=2σ 2 ,所以统计量U= 的数学期望为E(U)=E[(n-1)S 2 ]=2(n-1)σ 2 . 7.设总体且X,Y相互独立,来自总体X,Y的样本均值为,样本方差为记求统计量的数学期望.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] 由相互独立,可知a,b与相互独立,显然a+b=1.E(U)=μ[E(a)+E(b)]=μE(a+b)=μE(1)=μ.8.设总体X~N(μ,σ 2 ),X1,X2,…,Xn+1为总体X的简单随机样本,记求统计量服从的分布.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] 因为Xn+1~N(μ,σ 2 ),且它们相互独立,所以又相互独立,所以由t分布的定义,有9.设总体X的概率分布为X 0 1 2 3p θ 2 2θ(1-θ) θ 2 1-2θ是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6[解] E(X)=0×θ 2+1×2θ(1-θ)+2×θ 2+3×(1-2θ)=3-4θ,令得参数θ的矩估计值为L(θ)=θ 2×[2θ(1-θ)] 2×θ 2×(1-2θ) 4=4θ 6 (1-θ) 2 (1-2θ) 4,lnL(θ)=ln4+6lnθ+2ln(1-θ)+4ln(1-2θ),令得参数θ的最大似然估计值为10.设总体样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] (1)X为离散型随机变量,其分布律为E(X)=3-3θ.今3-3θ=2得θ的矩估计值为(2)L(1,1,3,2,1,2,3,3;θ)=P(X=1)P(X=1)…P(X=3)=θ 3×θ 2×(1-2θ) 3,lnL(θ)=5lnθ+3ln(1-2θ),令得θ的最大似然估计值为11.设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] 总体X的密度函数和分布函数分别为设x1,x2,…,xθ为总体X的样本观察值,似然函数为(i=1,2,…,n).当0<xi<θ(i=1,2,…,n)时,且当θ越小时L(θ)越大,所以θ的最大似然估计值为=max{x1,x2,…,xn},θ的最大似然估计量为=max{X1,X2,…,Xn}.因为=max{X1,X2,…,Xn}的分布函数为则的概率密度为所以=max{X1,X2,…,Xn}不是θ的无偏估计量.12.设总体X的密度函数为θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解]令得参数θ的极大似然估计量为13.设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7 [解] (1)令(2)lnL(θ1,θ2)=-nln(θ2-θ1),而因为lnL(θ1,θ2)是θ1的单调增函数,是θ2的单调减函数,所以14.设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[解] 因为总体X在区间(0,θ)内服从均匀分布,所以分布函数为令则则U,V的密度函数分别为因为所以都是参数θ的无偏估计量.因为所以更有效.15.设总体X,Y相互独立且都服从N(μ,σ 2 )分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ 2的无偏估计量.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 7[证明] 令因为所以于是即为参数σ 2的无偏估计量.1。