滑模变结构控制概述
- 格式:doc
- 大小:82.50 KB
- 文档页数:4
滑模变结构控制理论及其算法研究与进展一、本文概述滑模变结构控制理论,作为一种独特的非线性控制方法,自其诞生以来,就因其对系统参数变化和外部干扰的强鲁棒性,以及易于实现的优点,在控制工程领域引起了广泛的关注和研究。
本文旨在对滑模变结构控制理论及其算法的研究进展进行综述,分析其基本原理、特性、设计方法以及在实际应用中的表现,以期为后续研究提供有益的参考。
文章首先回顾了滑模变结构控制理论的发展历程,从最初的滑动模态概念提出,到后来的各种改进和优化算法的出现,展示了该理论在理论和实践上的不断进步。
接着,文章将详细介绍滑模变结构控制的基本原理和特性,包括滑动模态的存在条件、滑动模态的稳定性分析、以及滑模面的设计等。
在此基础上,文章将重点探讨滑模变结构控制算法的研究进展,包括各种新型滑模面设计、滑动模态优化方法、以及与其他控制策略的融合等。
文章还将对滑模变结构控制在各类实际系统中的应用进行案例分析,以展示其在实际工程中的有效性和潜力。
文章将总结滑模变结构控制理论及其算法的研究现状,分析当前研究中存在的问题和挑战,并对未来的研究方向进行展望。
希望通过本文的综述,能为滑模变结构控制理论的发展和应用提供有益的启示和参考。
二、滑模变结构控制理论基础滑模变结构控制(Sliding Mode Variable Structure Control,简称SMVSC)是一种特殊的非线性控制方法,其理论基础主要包括滑模面的设计、滑模运动的稳定性分析以及控制算法的实现。
滑模变结构控制的核心思想是在系统状态空间中构建一个滑动模态区(即滑模面),并设计控制策略使得系统状态在受到扰动或参数摄动时,能够在有限时间内到达并维持在滑模面上滑动,从而实现对系统的有效控制。
滑模面的设计是滑模变结构控制的关键。
滑模面需要满足一定的条件,如可达性、存在性和稳定性等,以确保系统状态能够到达滑模面并在其上滑动。
一般来说,滑模面的设计需要综合考虑系统的动态特性、控制目标以及约束条件等因素。
控制理论-滑模变结构控制1、滑模变结构控制简介变结构控制( Variable Structure Control,VSC)本质上是⼀类特殊的⾮线性控制,其⾮线性表现为控制的不连续性;这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,⽽是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等),有⽬的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动,所以⼜常称变结构控制为滑动模态控制( Sliding Mode Control,SMC),即滑模变结构控制。
由于滑动模态可以进⾏设计且与对象参数及扰动⽆关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、⽆须系统在线辦识,物理实现简单等优点。
该⽅法的缺点在于当状态轨迹到达滑模⾯后,难于严格地沿着滑⾯向着平衡点滑动,⽽是在滑模⾯两侧来回穿越,从⽽产⽣颤动。
总之,抖振产⽣的原因在于:当系统的轨迹到达切换⾯时,其速度是有限⼤,惯性使运动点穿越切换⾯,从⽽最终形成抖振,叠加在理想的滑动模态上。
对于实际的计算机采样系统⽽⾔,计算机的⾼速逻辑转换及⾼精度的数值运算使得切换开关本⾝的时间及空间滞后影响⼏乎不存在;因此,开关的切换动作所造成控制的不连续性是抖振发⽣的本质原因。
2、未建模动态按照我的理解,在控制系统中,我们往往⾯对的是⾼阶的系统,⽽我们的分析和设计常常⾯对的是低阶的系统,即所谓的⽤低阶系统来近似模拟⾼阶系统的特性。
通常我们能通过低阶系统获得与⾼阶系统相近似的动态性能。
注意这⾥说的是近似的,也就是说⾼阶系统还有⼀部分动态性能我们⽤低阶系统来分析时会忽略掉。
⽽忽略的这部分就是未建模动态。
3、滑模变结构控制基本原理滑模变结构控制是变结构控制系统的⼀种控制策略。
这种控制策略与常规控制的根本区别在于控制的不连续性,即⼀种使系统“结构”随时间变化的开关特性。
该控制特性可以迫使系统在⼀定特性下沿规定的状态轨迹作⼩幅度、⾼频率的上下运动,即所谓的滑动模态或“滑模”运动。
滑模控制和滑膜变结构控制1. 引言滑模控制和滑膜变结构控制是现代控制理论中重要的控制策略,广泛应用于各个领域的控制系统中。
滑模控制通过引入一个滑模面来实现系统的稳定性和鲁棒性;滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动。
2. 滑模控制滑模控制最早由俄罗斯科学家阿莫斯特芬于1968年提出,并在1974年得到了进一步的发展。
滑模控制通过引入一个滑模面,将系统状态从非线性区域滑到线性区域,从而实现系统的稳定性和鲁棒性。
2.1 滑模面滑模面是滑模控制的核心概念之一,它通常由一个超平面表示,可以用数学方程描述为:s=Sx其中,s为滑模面,S为一个可逆矩阵,x为系统的状态变量。
2.2 滑模控制律滑模控制律用于调节系统状态,以使系统状态滑到滑模面上。
滑模控制律的一般形式可以表示为:u=−S−1B Tλ(s)其中,u为控制输入,B为输入矩阵,λ(s)为滑模曲线。
2.3 滑模控制的优点滑模控制具有以下几个优点:•鲁棒性强:滑模控制能够在面对参数扰动和外部干扰时保持系统的稳定性。
•快速响应:由于滑模面能够将系统状态快速滑到线性区域,使得系统具有快速响应的特性。
•无需精确模型:滑模控制不需要系统的精确模型,因此对于复杂系统的控制较为便捷。
3. 滑膜变结构控制滑膜变结构控制(SMC)由美国科学家丹尼尔·尤斯托曼在20世纪90年代末提出,是一种基于滑模控制的新型控制策略。
滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动,从而提高系统的鲁棒性和性能。
3.1 滑膜设计滑膜变结构控制的关键是设计一个合适的滑膜来响应系统的不确定性和扰动。
滑膜通常由一个或多个滑模面组成,通过在线调整滑膜的参数,可以适应不同的工作条件和控制要求。
3.2 滑膜变结构控制律滑膜变结构控制律的一般形式可以表示为:u=−K(θ)s−δ(θ)sign(s)其中,u为控制输入,K(θ)和δ(θ)分别为滑膜参数和输出增益,θ为参数向量,s为滑模曲线。
滑模变结构控制及应用滑模变结构控制(Sliding Mode Control,SMC)是一种具有强鲁棒性和抗扰动能力的非线性控制方法。
它是20世纪80年代发展起来的一种控制方法,它通过在滑模面上引入一个不连续函数来实现对系统状态的高频率的转换控制,从而将控制系统的性能提高到一个新的水平。
滑模变结构控制在自动控制领域中得到了广泛的研究与应用,下面我将就其基本原理、设计方法以及应用领域进行详细介绍。
滑模变结构控制的基本原理:滑模变结构控制的基本原理是引入一个滑模面,通过使系统状态在滑模面上进行快速的滑动,从而达到控制系统的稳定性和鲁棒性。
在滑模面上,系统状态由于受到控制输入和系统的非线性特性的影响而发生快速切换,从而使系统状态的滑动速度不断变化,最终达到滑动面的稳定状态。
滑模控制器利用滑模面上的控制输入来驱动系统状态沿着滑模面滑动,以实现状态的稳定和跟踪。
滑模变结构控制的设计方法:滑模变结构控制一般包括滑模面的设计和滑模控制器的设计两个步骤。
滑模面的设计要求其具有可实现性、稳定性和鲁棒性等特性,常用的滑模面设计方法包括等效控制、非线性控制、线性控制等。
滑模控制器的设计包括产生控制输入和产生滑模面两个部分,常用的滑模控制器设计方法包括理想滑模控制器、改进滑模控制器、自适应滑模控制器等。
滑模变结构控制的应用领域:滑模变结构控制在各个领域中都有广泛的应用,下面我将就几个典型的应用领域进行介绍。
1. 机械控制系统:滑模变结构控制在机械控制系统中应用广泛,例如机械臂控制、机械手控制等。
滑模变结构控制可以提供强鲁棒性和抗扰动能力,可以保证机械系统在复杂环境下的精确运动和稳定控制。
2. 电力系统:滑模变结构控制在电力系统中的应用主要包括电力系统稳定控制、电力系统调度控制等。
滑模变结构控制可以有效地处理电力系统中的不确定性和扰动,提高电力系统的稳态和动态性能。
3. 交通运输系统:滑模变结构控制在交通运输系统中的应用包括车辆控制、交通信号控制等。
滑模变结构控制理论及其在机器人中的应用研究共3篇滑模变结构控制理论及其在机器人中的应用研究1滑模变结构控制(Sliding Mode Control,SMC)是一种非线性控制方法,具有高精度、强适应性、鲁棒性好等优点,因此被广泛应用于机器人控制领域。
其基本思想是构造一个滑模面,使系统状态到达该面后就会保持在该面上运动,在保证系统稳定性的同时达到控制目的。
本文将阐述滑模变结构控制的理论基础以及在机器人控制中的应用研究。
一、滑模变结构控制的理论基础1. 滑模面滑模面是滑模控制的核心概念,它是一个虚拟平面,将控制系统的状态分为两个区域:滑模面上和滑模面下。
在滑模面上,系统状态变化很小,具有惯性;而在滑模面下,系统状态变化很大,具有灵敏性。
在滑模控制中,系统状态必须追踪滑模面运动,并保持在滑模面上,进而实现控制目的。
2. 滑模控制定律滑模控制定律是滑模变结构控制的核心之一,主要由滑模控制器和滑模面组成。
滑模控制器将系统状态误差与滑模面上的虚拟控制输入之间做差,生成实际控制输入。
而滑模面则是根据控制目的和系统性质,通过手动选择滑模面的形状和大小来合理地设计。
例如,对于已知模型的系统,可使用小扰动理论来设计滑模面;而对于未知模型的系统,可使用自适应滑模控制来自动调节滑模面。
总体来说,滑模控制定律是一种强鲁棒控制方法,在快速响应、鲁棒性和适应性等方面都表现出色。
3. 滑模变结构控制滑模变结构控制是将滑模控制定律与变结构控制相结合形成的一种新型控制方法。
在滑模变结构控制中,滑模面被用来描述整个系统状态,而滑模控制定律则用来保证系统状态追踪滑模面的过程中,系统特征不会发生大的变化。
换句话说,滑模控制定律的目的是在系统状态到达滑模面后,控制系统能够迅速且平稳地滑过该面,进而保持在滑模面上稳定运动。
二、滑模变结构控制在机器人中的应用研究滑模变结构控制广泛应用于机器人控制领域,例如:机器臂控制、移动机器人控制、人形机器人控制等。
滑模变结构控制应用滑模变结构控制(Sliding Mode Variable Structure Control,SMVSC)是一种应用广泛的控制方法,它在控制系统中引入了滑模面,通过引导系统状态在该滑模面上滑动,实现对系统的快速、精确控制。
本文将介绍滑模变结构控制的基本原理和应用。
一、滑模变结构控制的基本原理滑模变结构控制是一种非线性控制方法,其基本原理是通过引导系统状态在滑模面上滑动,使得系统的状态能够快速、精确地达到所期望的状态。
滑模面通常由系统状态变量和控制输入变量构成,可以根据具体的系统需求进行选择和设计。
在滑模变结构控制中,控制器根据系统的状态误差和滑模面的导数来生成控制输入,以引导系统状态在滑模面上滑动。
滑模面的选择和设计是滑模变结构控制的关键,可以采用不同的方法和算法进行优化和调整。
二、滑模变结构控制的应用滑模变结构控制具有很强的适应性和鲁棒性,适用于各种不确定性和非线性系统。
它在工业控制、机器人控制、航空航天等领域都有广泛的应用。
1. 工业控制滑模变结构控制在工业控制领域中被广泛应用,例如在电力系统中,可以使用滑模变结构控制实现电力电压和频率的稳定控制;在化工过程控制中,可以使用滑模变结构控制实现温度、压力等参数的精确控制。
2. 机器人控制滑模变结构控制在机器人控制中也有重要应用。
例如在机器人路径规划中,可以使用滑模变结构控制实现机器人末端执行器的精确控制;在机器人力控制中,可以使用滑模变结构控制实现机器人力的精确控制。
3. 航空航天滑模变结构控制在航空航天领域中也有广泛的应用。
例如在飞行器姿态控制中,可以使用滑模变结构控制实现飞行器的稳定控制;在航天器姿态控制中,可以使用滑模变结构控制实现航天器的精确控制。
三、滑模变结构控制的优势和挑战滑模变结构控制具有以下优势:1. 鲁棒性强:滑模变结构控制能够有效应对系统的不确定性和扰动,具有很强的鲁棒性。
2. 响应速度快:滑模变结构控制能够实现系统的快速响应,具有很高的控制精度。
滑模变结构控制的原理滑模变结构控制(Sliding Mode Variable Structure Control,SMVSC)是一种智能控制理论,它由中国科学家李宏毅于上世纪八十年代提出。
该理论针对系统具有不确定性、多模态和非线性特性的智能控制,以及运动力学系统的滑模分析和控制,开展了大量的理论研究和应用研究,并取得了显著的成果。
滑模变结构控制的原理是将变结构控制(VSC)与滑模控制(SMC)相结合,综合考虑系统的抗扰能力和抗干扰能力,在保证系统的动态特性的基础上,消除系统参数不确定性、多模态性和非线性性带来的影响。
滑模变结构控制是一种基于状态反馈的控制技术,包括模糊控制和神经网络控制。
它能够根据系统状态变化来调节系统的结构,以达到最优的控制效果。
滑模变结构控制的基本原理是在系统参数不确定情况下,根据系统状态变化,通过调整控制器状态来实现对系统的控制。
它使用一种“滑模变结构”控制器,通过模糊控制或神经网络控制,来实现系统参数不确定性、多模态性和非线性性的控制,从而达到较佳的控制效果。
它借助于滑模控制的结构,在保证系统动态特性的基础上,使得系统能够抗扰能力强,抗干扰能力也强,同时对系统的参数变化也比较灵活。
滑模变结构控制的控制器可以被用来控制非线性系统,尤其是那些具有较大的参数不确定性和复杂的动力学结构的系统,具有较好的抗扰能力和抗干扰能力。
滑模变结构控制由三部分组成:最优控制(optimal control)、滑模控制(sliding mode control)和变结构控制(variable structure control)。
它采用模糊控制或神经网络技术,来实现变结构控制,从而实现系统参数不确定性、多模态性和非线性性的控制,从而使系统具有较强的抗扰能力和抗干扰能力。
滑模变结构控制的研究主要集中在以下几个方面:1)研究系统的抗扰能力和抗干扰能力;2)控制算法的研究;3)控制策略的研究;4)控制器的设计。
滑模变结构控制算法综述作者:雷渊默万彦辉李淑英来源:《中国科技博览》2016年第27期滑模变结构控制是一种自动控制系统的一种设计方法,可用于连续或离散系统、线性或非线性系统、确定性或非确定性系统、集中参数或分布参数系统和集中控制或分散控制等。
这种控制方法通过让控制量不断地切换,使系统状态进入预先设定的滑模面滑动,故而在遇到参数扰动与外部干扰时具有不变性,系统的动态品质仅取决于滑模面及其参数。
滑模变结构控制是一种非线性、不连续的控制方法。
具有鲁棒性强、可靠性高等优点,得到各国学者的广泛重视与不断研究。
1 滑模变结构的抖振问题解决方法在到达切换面时,运动点会穿越了切换面,形成抖振。
抖振会影响系统的准确性、增加能量消耗、破坏系统性能。
产生抖振的主要原因有:(1)开关的时间滞后:当运动点运动到切换面附近,开关的时间滞后会导致控制延时,从而致使状态的准确变化延时。
因为控制量的幅度会随着状态量幅度逐渐减少,所以抖振表现为一段衰减的三角波。
(2)开关的空间滞后:开关的空间滞后即制造了一个状态量变化的“死区”,抖振表现为一段等幅波形。
(3)系统惯性影响:系统惯性会使得系统在接收到控制信号后,平面时仍存在一定的滞后,其抖振表现为一段衰减的三角波。
针对抖振问题,许多学者都提出的解决方法。
1.1 准滑膜动模态方法20世纪80年代,Slotine[1]在中引入了“准滑动模态”和“边界层”的概念,实现准滑动模态控制。
在边界层以外采用正常的滑模控制,在边界层内为连续状态的反馈控制,有效地避免或削弱了抖振。
此后,有许多学者对该设计进行了拓展与研究。
比如S.C.Y Chung等[2]、J.X.Xu 等[3],分别对于切换函数进行了改进;K.erbatur等[4]、M.S.Chen等[5]等对于边界层设计提出了改进方案。
1.2 趋近律方法高为炳等[6]提出了一种变结构控制系统的抖振消除方法。
选择合适的趋近律的参数,可以减少控制信号的高频抖振。
滑模控制和滑膜变结构控制滑模控制和滑膜变结构控制是两种常用的控制方法,它们都具有在非线性系统中实现稳定控制的能力。
本文将从定义、原理、特点、应用等方面对这两种控制方法进行详细介绍。
一、滑模控制1.定义滑模控制是一种基于变结构控制的技术,它通过引入一个滑动模式来实现对系统的稳定性和鲁棒性的增强。
具体而言,它将系统分为两个部分,即“滑动模式”和“剩余部分”,然后设计一个控制器来使得系统的状态在“滑动模式”中运动,从而实现对系统的稳定和鲁棒性的保证。
2.原理滑模控制依赖于一个称为“滑动面”的函数,在该函数上系统状态会以特定方式运动。
当状态达到该函数上时,它将被强迫保持在该函数上,并且不会离开该函数。
因此,如果我们能够设计一个适当的“滑动面”,并使其与所需目标状态相交,则系统将被迫达到目标状态并保持在该状态上。
3.特点(1)鲁棒性:由于滑模控制依赖于变结构控制技术,因此它对系统中的不确定性和扰动具有很强的鲁棒性。
(2)快速响应:滑模控制器可以实现非常快速的响应,因为它可以在瞬间将系统状态从一个位置转移到另一个位置。
(3)简单性:相对于其他控制方法,滑模控制器通常比较简单,易于实现和调整。
4.应用滑模控制广泛应用于工业自动化、航空航天、机器人等领域。
例如,在直升机悬停控制中,滑模控制可以实现对直升机在空气动力学效应和风力扰动下的稳定悬停;在机器人轨迹跟踪问题中,滑模控制可以实现对机器人轨迹跟踪过程中的姿态稳定性和鲁棒性的保证。
二、滑膜变结构控制1.定义滑膜变结构控制是一种基于非线性系统理论和变结构控制理论的新型智能控制方法。
该方法通过引入一个“滑膜”来实现对非线性系统的稳定性和鲁棒性的增强。
2.原理滑膜变结构控制通过引入一个“滑膜”来实现对系统的控制。
滑膜是一个特殊的函数,它可以将系统分为两个部分,即“滑膜模式”和“剩余部分”。
然后设计一个控制器来使得系统的状态在“滑膜模式”中运动,从而实现对系统的稳定和鲁棒性的保证。
滑模变结构dtc控制滑模变结构(SMC)DTC控制是一种强鲁棒性控制算法,在现代控制领域中得到广泛应用。
该算法以其较强的鲁棒性和控制性能,被广泛应用于车辆控制系统、电力电子系统、机械控制系统等领域。
滑模变结构控制算法的核心思想是在系统的控制增量中引入滑动变量,进而将系统状态的非线性动态方程转化为具有强鲁棒性的滑动模型。
通过将系统的控制变量与滑动面之间建立一个滑动控制环,能够有效地抑制控制系统的不确定因素和外部干扰,从而提高了控制系统的鲁棒性和控制性能。
滑模变结构控制算法在车辆控制系统中得到广泛应用。
以传统控制策略PID比较为例,传统控制策略PID只考虑了车辆的速度反馈,其控制效果受到很大的限制。
而SMC算法,则考虑了多种因素,如车辆速度、角度、方向等,能够大大提高车辆的操控性和稳定性。
SMC算法在电力电子控制系统中的应用也得到了广泛关注。
当前的电力系统中,电能的储存与调节是电力系统的一个瓶颈。
而SMC算法能够有效地控制电力系统中的电能储存与调节问题,提高了电力系统的控制性能和效率。
SMC算法还在机械控制系统中得到应用,可以有效地解决机械控制系统中的非线性动态问题。
例如,在机械手臂控制系统中,常常需要解决机械手臂在大范围内的非线性运动问题,而SMC算法能够通过滑动变量的控制方式有效地解决这一问题。
总之,滑模变结构控制算法是一种有效的强鲁棒性控制算法,在多个领域中得到了广泛应用。
尽管SMC算法存在一定的缺点,如参数难以选择、多参数管制复杂等问题,但是通过选择合适的滑动面、滑动曲线,以及综合考虑控制系统结构和物理特性,能够最大程度地避免这些缺点,提高控制系统的稳定性和鲁棒性。
滑模变结构控制研究综述引言滑模变结构控制是一种常用的、高效的非线性控制方法。
它具有快速响应、抗干扰强等优点,在控制系统中得到了广泛的应用。
本文旨在从理论、应用两方面综述滑模变结构控制的研究现状。
理论研究滑模控制滑模控制(SMC)是一种将系统稳态误差降为零的状态反馈控制方法。
该方法通过构造一个滑动模式面使系统输出在此面上运动,从而实现对系统的控制。
滑模控制具有简单易实现、鲁棒性高、抗干扰强等优点,因此在研究与应用中得到了广泛的应用。
与传统的PID控制相比,滑模控制具有更好的性能。
然而,滑模控制对于系统模型的精确性要求高,而且在实际应用中,滑动模式面会出现在非特征区域上,从而导致滑模控制失效。
为了解决这些问题,研究者们提出了许多改进的滑模控制方法,如基于超调干扰观测器的滑模控制、基于自适应神经网络的滑模控制等。
变结构控制变结构控制(BSC)是一种能够有效对控制系统的参数进行自适应调整的控制方法。
该方法通过构造不同的控制策略,在控制系统不同的工作状态下选用不同的控制策略,从而实现对系统的控制。
与其他控制方法相比,变结构控制有更好的鲁棒性和抗干扰性。
但是,变结构控制的理论基础较为薄弱,控制策略需要事先确定,无法实现在线的自适应调整。
滑模变结构控制滑模变结构控制(SMBC)是一种将滑模控制与变结构控制相结合的控制方法。
该方法通过将滑模控制和变结构控制相结合,实现对控制系统的快速响应和抗干扰性的同时,还能自适应地调整参数,保证控制系统的稳定性。
SMBC方法可以克服传统滑模控制和变结构控制方法的缺点,具有更优秀的控制性能。
近年来,SMBC方法在各个领域得到了广泛的应用,如航空、轨道交通、机器人等。
应用研究航空领域在航空领域中,滑模变结构控制被广泛应用于飞行器的姿态控制、高超声速飞行器的控制等方面。
在姿态控制方面,滑模变结构控制能够快速响应、精确控制飞行器的姿态,大大提高了飞行器的稳定性和精度。
在高超声速飞行器的控制方面,由于速度较快、气动力复杂,在传统的控制方法中难以实现良好的控制效果。
滑模变结构控制概述
1滑模变结构控制的定义 (1)
2滑动模态的存在及到达条件 (2)
3滑动模态运动方程 (3)
变结构控制是前苏联学者Emeleyanov 、Utkin 、Itkin 在20世纪60年代初提出的一种控制方法。
该方法最初研究的主要是二阶线性系统和单输入高阶系统。
1977年,V.I.Utkin 提出了滑模变结构控制的方法,推动了变结构控制的研究和发展。
后来许多学者也提出了多种变结构控制的设计方法,但只有带滑动模态的变结构控制被认为是最有发展前途的,滑模变结构控制也成为变结构控制的主要内容,有时也简称滑模控制。
滑模变结构控制本质上是一类特殊的非线性控制,与常规控制的根本区别在于控制的不连续性,即一种使控制系统结构随时间变化的开关特性。
该控制特性可以迫使系统的状态被限制在某一子流形上运动,即所谓的“滑动模态”运动。
这种滑动模态是可以设计的,并且当系统运行在滑动模态时,系统状态与系统的参数摄动和外界扰动完全无关,这种性质称为滑动模态的不变性。
这样,处于滑动模态的系统就具有很好的鲁棒性。
但是滑模变结构控制存在一个严重的缺点就是抖振。
由于抖振很容易激发系统的未建模特性,从而影响了系统的控制性能,给滑模变结构控制的实际应用带来了困难。
1滑模变结构控制的定义
对于任一非线性系统,可以表示为:
(),, ,,n n n x f x u t x R u R t R =∈∈∈ (1) 如果存在一个滑动流形()0s x =,并且在该流形的某一区域对于非线性系统的运动是“吸引”区,即系统一旦运动到该区域附近就会被“吸引”并保留在该区域内运动,此时称在该区域为滑动模态区,简称为滑模区。
系统在滑模区中的运动就叫做滑模运动。
此流形()0s x =称为滑模面或者切换面。
滑模变结构控制的基本问题是需要确定滑模面函数或切换函数:
()0s x = s n R ∈ (2)
并且设计控制函数或者控制律
()()()() s 0 s 0
u x x u u x x +-⎧>⎪=⎨<⎪⎩ (3) 其中,()()u x u x +-≠,使得
(1)滑动模态存在。
(2)满足可达性条件,在切换面()0s x =以外的运动点都将于有限时间内到达切换面。
(3)保证滑模运动的稳定性。
(4)达到控制系统的动态品质要求。
上面的前三点是滑模变结构控制的三个基本问题,只有满足了这三个条件的控制才叫滑模变结构控制。
而这三个基本问题可以归纳为两个设计问题:选择滑模面()s x 和设计控制u 。
2滑动模态的存在及到达条件
为了实现滑模控制,必须使滑动模态存在。
按照滑动模态的定义,当系统运动到滑模面()0s x =附近时,必有
00
lim 0,lim 0s s s s +-→→<> (4) 式(4)也可以写成
lim 0s ss →< (5) 式(4)和(5)称为滑动模态存在的条件。
当系统满足滑动模态存在条件时,在滑模面的邻域内,系统的运动轨迹将在有限时间内到达滑模面。
所以该条件也称为局部到达条件。
如果系统的初始点不在滑模面附近,而是在状态空间的任意位置,此时要求滑模面必须在整个系统状态空间内具有“吸引”能力,则滑动模态的全局到达条
件是
0ss < (6)
为了保证在有限时间内到达滑模面,避免渐近趋近,一般对式(6)修改为
ss δ<- (7)
其中0δδ>,可以取任意小的实数。
通常将式(3-6)表示成李亚普诺夫函数型的到达条件:
21,02
v s v ss ==< (8) 3滑动模态运动方程
对于式(3-1)的非线性系统,如果能够达到理想的滑动模态运动,那么应该满足s=0和s =0。
此时系统的运动方程为:
()()()0,,0 s 0s 0s x s s f x u t x t
x x x ∂∂∂⎧⎧===⎪⎪∂∂∂⎨⎨⎪⎪==⎩⎩
或 (9) 解方程(9)就可以得到系统滑模运动时的运动轨迹,系统将沿滑模面()0s x =到达平衡点。
此时系统的运动与系统的建模误差和外界干扰完全无关,这种性质称为滑动模态的不变性,这也是滑模控制受到重视的重要原因。
当系统保持滑模运动时,如果系统的数学模型已知,则系统需要的控制律满足方程0s =,即:
()0 ,,0s x s s f x u t x t x
∂∂∂===∂∂∂或 (10) 如果式(10)的解存在,则将式(3-10)的解u 称为系统在滑动模态区的等效控制。
等效控制往往是针对确定性系统在无外加干扰情况下进行设计的。
但这是理想情况,实际上是不可能的。
当系统存在不确定性和外加干扰时,一般采用的控制律为等效控制加切换控制,即:
eq vss u u u =+ (11)
其中,切换控制vss u 实现对不确定性和外加干扰的鲁棒控制,所设计的控制律需要满足滑模控制的到达条件。
理论上,当系统的控制律满足到达条件时,系统将保持滑模运动。
但这是对一个滑模变结构控制系统的理想化,是假设控制系统具有以下理想特性:
(1)控制系统的输出开关具有无时间滞后的理想特性。
(2)对系统状态的测量准确无误。
(3)控制量没有限制。
实际上,由于以下原因,滑模变结构控制在滑动模态下将产生抖振:
(1)滑模控制律的不连续性。
(2)系统测量环节的时间滞后和不连续性:由于任何测量电路都存在“死区”,所以对滑模面的测量会出现不连续。
另外,对于实际的计算机采样系统来说,对采样数据的滤波、分析也会使计算得到的测量值产生时间滞后。
(3)输出开关的滞后作用:由于输出开关的时间滞后,控制作用对状态的准确变化被延迟一定的时间,也使光滑的滑模面叠加上杂波。
(4)系统惯性的影响:由于任何物理系统的能量都不可能无限大,因此系统的控制力也不能无限大,这就使系统的加速度有限。
另外,系统惯性总是存在的,所以使得控制输出具有滞后作用。
(5)离散系统本身造成的抖振:由于实际的计算机控制系统本身是一个离散系统,其切换动作不可能正好发生在切换面上,所以离散系统的滑动模态本身是一种“准滑动模态”。
抖振不仅影响控制的精确性,增加能量消耗,而且系统中的高频未建模动态特性很容易被激发起来,破坏系统的性能,甚至使系统不稳定,损毁控制器。
因此,关于滑模变结构控制信号抖振消除的研究成为滑模变结构控制研究的首要问题。