基于PLC的液位控制系统设计
- 格式:doc
- 大小:646.00 KB
- 文档页数:49
基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。
该系统常用于水处理、供水系统、工业生产等领域。
本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。
PLC作为控制器,能够实现对水位的监测、控制和保护。
首先,本设计将使用传感器来监测水箱的液位。
液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。
传感器将通过模拟信号将液位信息传输给PLC。
PLC将读取并处理传感器的信号,得到水箱的液位信息。
其次,PLC将根据液位信息来控制水泵的运行。
当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。
当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。
通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。
此外,本系统还将具备一定的保护功能。
当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。
同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。
为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。
程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。
同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。
最后,本设计将进行系统的仿真和调试。
通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。
在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。
通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。
同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。
基于PLC的液位控制系统设计液位控制系统是工业自动化中常见的一种控制系统,主要用于监测和控制液体或粉末在容器中的液位。
PLC(可编程逻辑控制器)是一种常用的自动化控制器,它通过编程逻辑和输入输出模块实现自动控制。
本文将基于PLC的液位控制系统进行设计和讨论。
首先,我们需要了解液位控制系统的基本原理。
液位控制系统主要由三个组成部分组成:传感器、控制器和执行器。
传感器用于监测液位高度,常用的传感器有浮球传感器、电容传感器和超声波传感器。
控制器根据传感器获得的液位信号,通过编程逻辑判断液位是否达到设定值,并根据结果控制执行器的开关状态。
执行器可以是电磁阀、泵或搅拌器,用于调节液位。
PLC作为控制器可以实现复杂的逻辑控制,并且具有可编程性和可扩展性。
下面是基于PLC的液位控制系统的设计步骤:第一步是确定系统需求和设计目标。
根据具体的液位控制需求,确定液位控制系统的功能要求和性能指标,例如需要实现液位的自动控制、报警功能和远程监控等。
然后确定设计目标,例如控制系统的稳定性、精度和可靠性。
第二步是选择适当的控制器和传感器。
根据设计目标和系统需求,选择适合的PLC控制器和液位传感器。
PLC控制器应具有足够的输入输出模块和计算能力,以满足液位控制系统的需求。
液位传感器的选择应考虑液体的性质、工作环境和控制精度等因素。
第三步是进行系统硬件设计。
根据选定的PLC控制器和传感器,设计系统的硬件连接和布置。
将传感器与PLC控制器连接,确保信号的稳定传输。
同时,还需要考虑系统的电气安全和防护措施。
第四步是进行PLC编程。
根据设计需求和目标,编写逻辑控制程序。
程序应能够实现液位的监测、判断和控制,同时具备保护和报警功能。
编程语言通常使用ladder diagram(梯形图),也可以使用其他编程语言如指令列表和函数图。
第五步是进行系统调试和优化。
完成PLC编程后,进行系统调试和优化。
对系统进行全面的测试,确保液位的检测和控制功能正常运行。
基于PLC的液位控制系统毕业设计论文摘要:本文基于PLC(可编程逻辑控制器)技术,设计了一种液位控制系统,该系统能够实时监测液位,并根据设定值进行液位控制。
本文详细介绍了该系统的硬件设计、软件设计以及系统测试,并对系统的性能进行了评估和分析。
实验结果表明,该液位控制系统能够稳定可靠地实现对液位的控制。
关键词:PLC;液位控制;硬件设计;软件设计;系统测试1.引言液位控制是工业中常见的一种控制过程。
在各种工业领域,如化工、能源、水利等,在液位控制方面都有较高的需求。
随着自动化技术的不断发展,PLC技术成为液位控制的一个重要工具。
2.系统硬件设计在本系统硬件设计中,我们采用了PLC、液位传感器、电磁阀等关键元件。
PLC作为控制中心,接收传感器的信号,根据设定值来控制电磁阀的开启和关闭。
液位传感器负责实时监测液位的变化,并将信号传输给PLC。
电磁阀根据PLC的指令来控制液位的增减。
3.系统软件设计在本系统软件设计中,我们使用了PLC编程语言来实现液位控制的逻辑。
首先,我们定义了PLC的输入和输出信号,然后根据设定的逻辑进行编程。
具体来说,当液位高于设定值时,PLC会关闭电磁阀,减少液位的上升;当液位低于设定值时,PLC会打开电磁阀,增加液位的下降。
通过循环执行这些逻辑,系统可以实现对液位的控制。
4.系统测试为了验证系统的可行性和性能,我们进行了一系列的测试。
首先,我们针对液位控制器的输入输出进行了测试,确保其正常工作。
然后,我们使用液位泵和液位计进行了实际测试,记录了系统在不同液位变化条件下的性能。
实验结果表明,该液位控制系统具有良好的稳定性和可靠性。
5.结果和分析通过对实验数据的分析,我们得出了以下结论:该液位控制系统能够满足不同液位变化条件下的控制需求;系统响应速度较快,能够在短时间内完成液位的调整;系统具有良好的稳定性,能够稳定地维持设定的液位。
6.结论本文基于PLC技术设计了一种液位控制系统,并进行了详细的硬件设计、软件设计和系统测试。
基于S7-1200PLC的水箱液位控制系统的设计重庆科技学院摘要水箱液位控制系统是一种用于监测、控制水箱液位的自动化设备。
它通过搭载传感器、控制器和执行机构等组件,实现对水箱液位的实时监控和自动控制。
通常,水箱液位控制系统由传感器,控制器,执行机构。
水箱液位控制系统的使用范围广泛,包括建筑物、工业生产、农业灌溉、城市给排水和环保等领域。
它具有结构简单、安装方便、实时性强等特点,该系统能够提高水资源的利用效率、减少用水浪费和防止水源的污染。
本文基于S7-1200 PLC实现水箱液位控制系统设计。
该系统由硬件和软件两部分组成,硬件包括PLC、人机界面触摸屏、传感器、执行器等;软件实现传感器数据处理、PID稳态控制、安全等功能;关键词:液位控制 PLC PID 传感器重庆科技学院本科生毕业设计 3水箱液位控制系统硬件设计1绪论在工业领域,几乎在各个行业都会或多或少的涉及到液位的检测等问题,然而液位变量具有延迟滞后性,参数不稳定,复杂多变等问题,因此,这就需要本文采取更为精确的控制器去实现液位变量的检测。
传统控制具有很多缺陷:比如精度低、速度慢、灵敏度低等。
一个稳定的液位系统,可以保证安全可靠的工业生产、高效的生产效率、充分合理的利用能源等,大大提高了工业生产的经济价值。
日益激烈的市场竞争,要求本文的控制技术必须更加先进,此前的控制技术已落伍,显然无法满足需求,这种对先进技术的需求加速了可编程逻辑控制器的问世。
引入PLC控制器后,能够使控制系统变得更集中、有效、及时。
2水箱液位控制总体方案设计2.1水箱液位控制系统实际应用特征水箱液位控制系统是一种广泛应用于水箱的自动化控制系统,常见于民用和工业领域。
实际应用中,水箱液位控制系统具有以下特征:①实时性强:系统能够实时检测水箱内的液位信息,并根据液位变化及时控制水泵的启停,保证水位稳定。
②可靠性高:系统通过各类安全措施确保水泵的正常启停,不会出现过量或不足的水位情况,避免因为水位变化带来的安全隐患。
课程设计说明书名称2010年 6月7日至 2010年6月11日共 1 周院系班级姓名学号系主任教研室主任指导教师目录绪论 . (2)第1章液位控制系统总体方案设计 . (3)1.1单回路控制系统 (3)1.2水箱液位的串级控制系统 (4)第2章过程控制装置概述 . (6)2.1系统简介 (6)2.2系统装置 (7)2.3 S7-300PLC 控制柜的组成 . (8)第3章硬件组态设计 . (10)3.1PLC 的选择 (10)3.2组态硬件 (11)第4章软件组态设计 . (12)4.1 实现WINCC 与S 7-300的软件通讯 (12)4.2 程序设计 (15)第5章调试过程及结果分析 . (20)5.1单容液位控制系统调试结果及分析 (20)5.2双容串级液位控制系统调试结果及分析 (23)第6章课程设计总结 . (26)参考文献: . (27)绪论课程设计是检验我们本学期学习的情况的一项综合测试,它要求我们把所学的知识全部适用,融会贯通的一项训练,是对我们能力的一项综合评定,它要求我们充分发掘自身的潜力,开拓思路设计出合理适用的自动控制系统。
课程设计也是教学过程中的一个重要环节,通过设计可以巩固各课程理论知识,培养独立分析和解决实际工程技术问题的能力,同时对工业的有关方针、技术规程有一定的了解,在计算绘图、编号、设计说明书等方面得到训练,为以后工作奠定基础。
工业生产过程控制是现代工业自动化的一个重要领域。
它是控制理论、生产工艺、计算机技术和仪器仪表等知识相结合的一门综合性应用学科,理论性、综合性和实践性都很强。
随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。
在控制方式上经历了从人工控制到自动控制两个发展时期。
在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。
基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。
PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。
在本文中,我们将基于PLC设计一个液位控制系统。
首先,我们需要选择适合的PLC设备。
根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。
一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。
根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。
接下来,我们将设计液位传感器和执行器的布置。
液位传感器用于检测液位的高度,并将信号传输给PLC系统。
常用的液位传感器包括浮球传感器、压力传感器等。
根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。
执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。
然后,我们需要设计PLC的逻辑控制程序。
PLC的逻辑控制程序决定了液位控制系统的工作方式。
我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。
在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。
例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。
最后,我们需要测试和调试液位控制系统。
在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。
如果发现问题,我们可以对逻辑控制程序进行修改或优化。
一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。
在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。
总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。
通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。
毕业设计论文基于PLC的液位控制系统研究摘要本文设计了一种基于PLC的储罐液位控制系统。
它以一台S7-200系列的CPU224和一个模拟量扩展模块EM235进行液位检测和电动阀门开度调节。
系统主要实现的功能是恒液位PID控制和高低限报警。
本文的主要研究内容:控制系统方案的选择,系统硬件配置,PID算法介绍,系统建模及仿真和PLC编程实现。
本设计用PLC编程实现对储罐液位的控制,具有接线简单、编程容易,易于修改、维护方便等优点。
关键字:储罐;液位控制;仿真;PLCAbstractThis article is designed based on PLC, tank level control system. It takes a series s7-200 CPU224 and an analog quantities of EM235 expansion module to level detection and electric valve opening regulation.System main function is to achieve constant low level PID control and limiting alarm.The main contents of this paper: the choice of the control system plan, system hardware configuration, PID algorithm introduced, system modeling and simulation, and PLC programming. PLC programming with the design of the tank level control have the advantage of simple wiring, easy programming, easy to modify, easy maintenance and so on.Key word: tank ; level ;control ;simulation ;plc目录摘要 (I)ABSTRACT ........................................................... I I 1 绪论. (1)1.1盐酸储罐恒液位控制任务 (1)1.2本文研究的意义 (2)1.3本文研究的主要内容 (2)2 控制系统方案设计 (3)2.1储罐液位控制的发展及现状 (3)2.2系统功能分析 (3)2.3系统方案设计 (4)3 系统硬件配置 (5)3.1电动控制阀的选择 (5)3.1.1 控制阀的选择原则 (5)3.1.2 ZAJP 精小型电动单座调节阀性能和技术参数介绍 (10)3.2液位测量变送仪表的选择 (13)3.2.1 液位仪表的现状及发展趋势 (13)3.2.2 差压变送器的测量原理 (13)3.2.3 差压式液位变送器的选型原则 (14)3.2.4 DP系列LT型智能液位变送器产品介绍 (15)3.3PLC机型选择 (16)3.3.1 PLC历史及发展现状 (16)3.3.2 PLC机型的选择 (18)3.3.3 S7-200系列CPU224和EM235介绍 (20)4 PID算法原理及指令介绍 (21)4.1PID算法介绍 (22)4.2PID回路指令 (24)5 系统建模及仿真 (28)5.1系统建模 (28)5.2系统仿真 (30)5.2,1 MATLAB语言中Simulink交互式仿真环境简介 (30)5.2.2 系统仿真 (31)第6章系统编程实现 (33)6.1硬件设计 (33)6.1.1 绘制控制接线示意图 (33)6,1.2 I/O资源分配 (33)6.2软件设计 (34)6.2.1 STEP 7 Micro/Win V4.0 SP6编程软件介绍 (34)6.2.2 恒液位PID控制系统的PLC控制流程 (35)6.2.3 编写控制程序 (36)6.2.4 程序清单 (39)结束语 (40)参考文献 (41)致谢 (42)1 绪论1.1 盐酸储罐恒液位控制任务如图1.1所示为某化工厂稀盐酸储罐,该罐为钢衬聚四氟乙烯储罐,罐体高6米,容量为50立方米,重500千克。
毕业设计开题报告1. PID 简述简述 过程控制通常是指石油、化工、冶金、轻工、纺织、制药、建材等工业生产过程中的自动控制程中的自动控制,它是自动化技术的一个极其重要的方面。
本次毕业设计是基于PLC 的液位控制系统的设计,它的控制对象是水箱的液位,是过程控制中经常遇到热工参数。
本人在这次设计中主要负责控制策略——PID 算法的确定,就在次将PID 算法作个简要的介绍。
算法作个简要的介绍。
在生产过程自动控制的发展历程中在生产过程自动控制的发展历程中,PID ,PID 控制是历史最久、生命力最强的基本控制方式。
它简单实用制方式。
它简单实用,,易于实现易于实现,,适用范围广适用范围广,,鲁棒性好鲁棒性好,,在现今的工业过程中获得了广泛的应用广泛的应用..据统计据统计,,目前工业控制器中约有90%90%仍是仍是PID 控制器。
PID 控制器的设计及其参数整定一直是控制领域所关注的问题。
其设计和整定方法得到国内外广泛研究, 著名的如Ziegler-Nichols 法、基于内模控制的方法及基于误差的积分的优化方法。
基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因,,在PID 优化设计中被广泛采用。
(1)在工业生产过程控制中,模拟量的模拟量的 PID (比例、比例、积分、积分、微分)调节是常见的一种控制方式,这是由于这是由于PID 调节不需要求出控制系统的数学模型,至今为止,很难求出许多控制对象准确的数学模型,对于这一类系统,使用使用PID 控制可以取得比较令人满意的效果,同时同时PID 调节器又具有典型的结构,可以根据被控对象的具体情况,采用各种PID 的变种,有较强的灵活性和适用性。
在模拟量的控制中,经常用到经常用到PID 运算来执行来执行PID 回路的功能,PID 回路指令使这一任务的编程和实现变得非常容易。
如果一个果一个 PID 回路的输出回路的输出M ( t)是时间的函数,则可以看作是比例项、积分项和微分项三部分之和(2),即:,即:dt de K M edt K e K t M C tc C *+++*=⎰00)( 式中式中 e ——偏差;——偏差;T i ——积分常数;——积分常数;T d ——微分常数;——微分常数;K c ——放大倍数(比例系数)——放大倍数(比例系数)M 0——偏差为零时的控制值,有积分环节存在,此项也可不加——偏差为零时的控制值,有积分环节存在,此项也可不加以上各量都是连续量,第一项为比例项,最后一项为微分项,中间两项为积分项。
「基于PLC的液位控制系统设计1」液位控制系统是工业领域最常见的自动控制系统之一,它可以实现对液体的实时监控和自动控制。
本文将介绍基于可编程逻辑控制器(PLC)的液位控制系统的设计。
首先,我们需要了解液位控制系统的基本组成部分。
液位控制系统一般包括液位传感器、执行器(如泵或阀门)、PLC和人机界面。
液位传感器用于检测液体的高度,然后将信号传输到PLC。
PLC通过逻辑控制算法,根据液位传感器的信号来控制执行器的操作,从而达到对液位的控制。
人机界面用于操作人员与液位控制系统直接交互,如设置液位控制参数、显示液位信息等。
在设计液位控制系统时,首先需要确定液体的容器类型和液位的测量范围,选择适合的液位传感器。
常见的液位传感器包括浮球传感器、压阻式传感器和超声波传感器等。
然后,选择合适的执行器来控制液位,如泵或阀门。
根据液位控制的需求,确定PLC的规格和类型,如简单控制任务可以选择小型PLC,而复杂控制任务可能需要使用高性能PLC。
接下来,需要进行液位控制的逻辑设计。
液位控制系统的逻辑设计可以使用Ladder Diagram或Structured Text进行编程。
通过编程实现对液位的监测和控制。
例如,当液位低于一定值时,PLC通过控制执行器来注入液体,当液位高于一定值时,PLC通过控制执行器来排出液体。
在设计过程中,要考虑到液位变化的延迟和波动。
针对这个问题,可以使用滤波技术和控制算法来解决。
滤波技术可以减少传感器信号中的噪音和干扰,控制算法可以根据液位变化的速率来调整执行器的操作,从而使液位控制更加精确和稳定。
最后,测试和调试液位控制系统。
在测试中,需要验证液位传感器的准确性和PLC的控制性能。
通过对系统的模拟和实际运行进行测试,可以发现和解决潜在问题,确保液位控制系统的正常运行。
总结起来,基于PLC的液位控制系统设计需要考虑液位传感器的选择、执行器的选择、PLC的规格和类型、逻辑设计、滤波技术、控制算法以及测试和调试。
摘要本次毕业设计的课题是基于PLC的液位控制系统的设计。
在设计中,笔者主要负责的是控制算法的设计,因此在论文中设计用到的PID算法提到得较多。
本文的主要内容包括:水箱的特性确定与实验曲线分析,S7-300可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和应用PLC语句编程来控制水箱水位。
关键词:S7-300西门子PLC、控制对象特性、PID控制算法、扩充临界比例法、压力变送器、电动调节阀、PID指令。
AbstractThis graduation project topic is based on the PLC fluid position control system design. In the design, I am control the algorithm which the author primary cognizance the design, therefore designs in the paper with to the PID algorithm mentions many.The this article main content includes: water tank characteristic determination and experimental curve analysis,the S7-300 programmable controller hardware grasps,PID parameter installation and each parameter control performance comparison,experimental curve analysis obtains which using the PID control algorithm and overall system each part of introduction and programs using the PLC sentence controls the water tank water level.Key words: SIMATIC S7-300 PLC, the controlled member characteristic, the PID control algorithm, the expansion critical ratio method, the pressure change delivering, the electrically operated regulating valve.目录摘要 (I)ABSTRACT (I)第1章绪论 (1)1.1PLC的产生、定义及现状 (1)1.2过程工业控制算法的应用现状 (2)1.3PID控制的历史和发展现状 (3)1.4论文的研究内容 (5)第2章S7-300中小型PLC和控制对象介绍 (6)2.1西门子PLC控制系统 (6)2.1.1 CPU模块 (7)2.1.2 模拟量输入模块 (8)2.1.3 模拟量输出模块 (9)2.1.4 电源模块 (10)2.2控制对象特性 (11)2.2.1 一阶单容上水箱特性 (11)2.2.2 二阶双容下水箱对象特性 (14)第3章PID控制算法介绍 (18)3.1PID控制算法 (18)3.2PID调节的各个环节及其调节过程 (20)3.2.1 比例控制与其调节过程 (21)3.2.2 比例积分调节 (21)3.2.3 比例积分微分调节 (22)3.3串级控制 (22)3.4扩充临界比例法 (24)3.5在PLC中的PID控制的编程 (25)3.5.1 回路的输入输出变量的转换和标准化 (26)3.5.2 变量的范围 (28)3.5.3 控制方式与出错处理 (29)第4章控制方案设计 (31)4.1系统设计 (31)4.1.1 上水箱液位的自动调节 (31)4.1.2上水箱下水箱液位串级控制系统 (32)4.2硬件设计 (33)4.2.1 检测单元 (33)4.2.2 执行单元 (34)4.2.3 控制单元 (36)4.3软件设计 (36)第5章实验情况介绍 (39)5.1上水箱液位比例调节 (39)5.2上水箱液位比例积分调节 (40)5.3上水箱液位比例积分微分调节 (41)第6章结论 (43)参考文献 (44)致谢 (46)第1章绪论1.1 PLC的产生、定义及现状可编程控制器出现前,继电器控制在工业控制领域占据主导地位。
但是继电器控制系统具有明显的缺点:设备体积大、可靠性低、故障查找困难以及维修不方便。
由于接线复杂,当生产工艺和流程改变时必须改变接线,因此,其通用性和灵活性较差。
20世纪60年代,计算机技术开始应用于工业控制领域,但由于价格高、输入输出电路不匹配、编程难度大以及难以适应恶劣工业环境等原因,未能在工业控制领域获得推广。
20世纪60年代末,美国汽车制造工业竞争激烈,为适应生产工艺不断更新的需要,1968年美国通用汽车公司(GM)提出了研制新型逻辑顺序控制装置的十项招标指标。
主要内容是:1)编程方便,可现场修改程序。
2)维修方便,采用插件式结构。
3)可靠性高于继电器控制装置。
4)体积小于继电器控制盘。
5)数据可直接送入管理计算机。
6)成本可与继电器控制盘竞争。
7)输入可为市电8)输出可为市电,容量要求在2A以上,可直接驱动接触器等。
9)扩展时原系统改变最小。
10)用户存储器大于4KB。
这些实际上提出了将继电器控制的简单移动、使用方便、价格低的优点与计算机的功能完善、灵活性、通用性好的优点结合起来,将继电接触器控制的硬连线逻辑转变为计算机的软件逻辑编程的设想。
美国数字设备公司(DEC)中标,并于1969年研制出第一台可编程控制器PDP-14,在美国通用汽车公司的生产线上试用成功,并取得了满意的效果,可编程控制器自此诞生。
随着电子技术的发展,可编程控制器(Programmable Logic Controller.以下简称PLC)由原来简单的逻辑量控制,逐步具备了计算机控制系统的功能,同时,还具有抗干扰性强、可靠性强、体积小、编程方便、修改容易、网络功能强大等显著优点,它可以与计算机一起组成功能完备的控制系统。
PLC在工业控制领域得到了广泛的应用,在PLC组成的控制系统中,一般由上、下位机组成主从式控制系统。
PLC 作为下位机,完成数据采集、状态判别、输入输出控制等,上位机(微型计算机、工业控制机),完成采集数据信息的存储、分析处理、复杂运算、状态显示以及打印输出,以实现对系统的实时监控。
微型计算机与PLC组成的主从式实时监控系统,能够充分发挥各自的优点和功能,实现优势互补。
PLC的定义如下:“可编程序控制器是一种数字运算操作的电子系统,专为工业环境下应用而设计的。
它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程。
可编程序控制器及其有关设备,都应按易于使工业控制系统形成一个整体,易于扩充其功能的原理设计。
S7-300的CPU具有丰富的指令功能,编程十分方便。
采用PLC作为液位控制系统的核心,克服了以往仪表控制的单回路调节器的缺点,可以由用户自己定义PID 参数,控制液位变化曲线,同时利用PLC控制逻辑量的优点,与输入、输出信号通过简单的编程实现连锁,可以对各种故障情况及时做出反应,使控制系统更加安全可靠。
1.2 过程工业控制算法的应用现状毕业设计是基于PLC的液位控制系统的设计,在其中我主要负责的是控制算法的设计。
过程控制在工业生产中应用广泛,在理论的研究与生产的实践中发展出很多的控制算法,主要有下列几种:(1)PID控制算法大量的事实证明,传统的PID控制算法对于绝大部分工业过程的被控对象(高达90%)可取得较好的控制结果。
采用改进的PID算法或者将PID算法与其他算法进行有机的结合往往可以进一步提高控制质量。
(2)预测控制预测控制是直接从工业过程控制中产生的一类基于模型的新型控制算法。
它高度结合了工业实际的要求,综合控制质量比较高,因而很快引起工业控制界以及学术界的广泛兴趣与重视。
预测控制有三要素,即预测模型、滚动优化和反馈校正。
它的机理表明它是一种开放式的控制策略,体现了人们在处理带有不确定性问题时的一种通用的思想方法。
(3)自适应控制在过程工业中,不少的过程是时变的,如采用参数与结构固定不变的控制器,则控制系统的性能会不断恶化,这时就需要采用自适应控制系统来适应时变的过程。
它是辨识与控制的结合。
目前,比较成熟的自适应控制分三类:A、自整定调节器及其它简单自适应控制器;B、模型参考自适应控制;C、自校正调节与控制。
自适应控制己在工程实际中得到了不少的应用,但它至今仍然有许多待进一步解决的问题(特别在参数估计方面),这些问题不解决,自适应控制的广泛应用仍将遇到许多困难。
(4)智能控制随着科学技术的发展,对工业过程不仅要求控制的精确性,更加注重控制的鲁棒性、实时性、容错性以及对控制参数的自适应和自学习能力。
另外,被控工业过程日趋复杂,过程严重的非线性和不确定性,使许多系统无法用数学模型精确描述。
没有精确的数学模型作前提,传统控制系统的性能将大打折扣。
智能控制对于复杂的工业过程往往可以取得很好的控制效果。
常见的智能控制方法有以下几种:模糊控制、分级递阶智能控制、专家控制、人工神经元网络控制、拟人智能控制等。
这些智能控制方法各有千秋,但又存在各自的不足。
研究表明将它们相互交叉结合或与传统的控制方法结合将会产生更佳的效果。
智能控制在家电行业及工业过程中取得了许多成功的应用。
在国内外,模糊控制与人工神经元网络也在石化、钢铁、冶金、食品等行业取得了成功的应用。
1.3 PID控制的历史和发展现状PID控制技术的发展可以分为两个阶段。
20世纪30年代晚期微分控制的加入标志着PID控制成为一种标准结构也是PID控制两个发展阶段的分水岭。
第一个阶段为发明阶段(1900~1940)PID控制的思想逐渐明确,气动反馈放大器被发明,仪表工业的重心放在实际PID控制器的结构设计上。
1940年以后是第二阶段——革新阶段。
在革新阶段,PID控制器已经发展成一种鲁棒的、可靠的、易于应用的控制器。
仪表工业的重心是使PID控制技术能跟上工业技术的最新发展。
从气动控制到电气控制到电子控制再到数字控制,PID控制器的体积逐渐缩小,性能不断提高。
一些处于世界领先地位的自动化仪表公司对PID控制器的早期发展做出重要贡献,甚至可以说PID控制器完全是在实际工业应用中被发明并逐步完善起来的。