中考阶梯训练9
- 格式:doc
- 大小:98.00 KB
- 文档页数:5
中考数学总复习《整式的加减》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.若x表示一个两位数,把数字3放在x的左边,组成一个三位数是( )A.3xB.3×100+xC.100x+3D.10x+32.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品( )A.(3m+2)kgB.(5m+2)kgC.(3m﹣2)kgD.(5m﹣2)kg3.如果a﹣b=12,那么﹣3(b﹣a)的值是( )A.﹣35B.23C.32D.164.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2B.17C.3D.165.下列各组单项式中,不是同类项的是( )A.12a3y与2ya33B.6a2mb与-a2bmC.23与32D.12x3y与-12xy36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,77.多项式3x3﹣2x2y2+x+3是( )A.三次四项式B.四次四项式C.三次三项式D.四次三项式8.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定10.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于( )A.0B.1C.﹣1D.﹣7二、填空题11.一个两位数个位为a,十位数字为b,这个两位数为.12.若a-2b=3,则9-2a+4b的值为.13.多项式5x2-7x2y-6x2y2+6是________次________项式.14.去括号:﹣6x3﹣[4x2﹣(x+5)]= .15.两个多项式的和是5x2﹣4x+5,其中一个多项式是﹣x2+2x﹣4,则另一个多项式是 .16.记Sn =a1,+a2+…an,令Tn=,则称Tn为a1,a2,…,an这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为.三、解答题17.化简:﹣3x2y+3xy2+2x2y﹣2xy218.化简:2(a﹣1)﹣(2a﹣3)+319.化简:3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1).20.化简:3(m﹣5n+4mn)﹣2(2m﹣4n+6mn).21.先化简再求值:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab,其中a=1,b=13.22.为鼓励市民节约用水,某地推行阶梯式水价计费制,标准如下:每户居民每月用水不超过17立方米的按每立方米a元计费;超过17立方米而未超过30立方米的部分按每立方米b元计费;超过30立方米的部分按每立方米c元计费.(1)若某户居民在一个月内用水15立方米,则该用户这个月应交水费多少元?(2)若某户居民在一个月内用水28立方米,则该用户这个月应交水费多少元?(3)若某户居民在一个月内用水35立方米,则该用户这个月应交水费多少元?23.小明购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求客厅的面积比其余房间的总面积多多少平方米?24.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?25.化简求值:(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2①求﹣A﹣3B②若x=﹣1,y=12时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?参考答案1.B.2.B.3.C.4.B5.D6.C.7.B8.B.9.A.10.D.11.答案为:10b+a.12.答案为:313.答案为:四,四.14.答案为:﹣6x3﹣4x2+x+5.15.答案为:6x2﹣6x+9.16.答案为:2001.17.原式=﹣x2y+xy2;18.原式=2a﹣2﹣2a+3+3=4;19.原式=a2﹣6a﹣6.20.原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.解:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab=2a2﹣[12ab﹣2a2+8ab]﹣12ab=2a2﹣12ab+2a2﹣8ab﹣12ab=4a2﹣ab﹣8ab;当a=1,b=13时原式=4×12﹣1×13﹣8×1×13=4﹣13﹣83=1.22.解:(1)∵某户居民在一个月内用水15立方米∴该用户这个月应交水费15a元;(2)∵某户居民在一个月内用水28立方米∴该用户这个月应交水费17a+(28﹣17)b=(17a+11b)元;(3)∵某户居民在一个月内用水35立方米∴该用户这个月应交水费是:17a+13b+(35﹣30)c=(17a+13b+5c)元;23.解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧室的面积是12m2;(1)地砖的面积是(6x+6+2y)m2;(2)客厅的面积比其余房间的总面积多6x-(6+2y+12)=(6x-2y-18)m2.24.解:(1)设从甲仓库调往A县农用车x辆则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340到B的总费用=760﹣30×4=640故总费用=340+640=980.25.解:(1)①∵A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2∴﹣A﹣3B=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy﹣20y2;②当x=﹣1,y=12时,原式=﹣1﹣12﹣5=﹣612;(2)根据题意得:2x+1+3x﹣2+8﹣2x=(3x+7)cm 当x=3时,原式=9+7=16cm.。
区域联盟英语学科双基阶梯训练(三)命题人:南岗区2021年中考指导小组六十九中学:朱元华发布时间:2021年5月31日一、单项选择(本题共20 分,每小题 1 分)选择最佳答案( ) 1. Which pair of the words with the underlined letters has the same sound?A. though warmthB. great breakC. lively living( ) 2. Which of the following words with the underlined letters has a different sound?A. countB. doubtC. country( ) 3. Which word of the following doesn’t have the same stress as the others?A. Event.B. Infer.C. Actual.( ) 4. Boys and girls! I think you will never give up whenever you meet difficulties. You’ll remember _____courage is the promise for achieving success.A. aB. theC. /( ) 5.—Which day will you be free this weekend? I would like to invite you to watch a movie.—I ’m afraid ___day is OK because of the heavy work. Maybe I can spare some time next week.A.neitherB. anyC. both( ) 6. In order not to make us too tired, our teacher had us do one half of the math problems in class and finish ____ half for our homework.A.anotherB. the otherC. others( ) 7. To improve my English, I bought lots of English magazines _____ my brother’s advice.A.instead ofB. according toC. in honor of( ) 8.—You don't know how difficult it was to manage _____ the two tickets.—But the film is really worth ______twice.A. to get, seeingB. getting, seeingC. to get, being seen( ) 9.—Could you tell me________?—Every four years. The 24th will take place in China in 2022.A. how long the Winter Olympic Games lastB. how long do the Winter Olympic Games lastC. how often the Winter Olympic Games are held( )10—I have a bad headache. I want to take some medicine.—Oh, please read the _____on the bottle carefully and take the right amount(量) of medicine.A. descriptionsB. instructionsC. instruments( )11. Since the exam is getting closer, we’d better ______to get good grades.A. go out of our wayB. make a differenceC. take risks( )12.—________did the rainstorm come, Mr. Liu?—While we ________ a chemistry lesson yesterday afternoon, it began to rain.A. When; have hadB. When; were havingC. While; are having( )13.We ________ each other since I came to Beijing, but we send emails very often.A. didn't see B.won't see C.haven't seen( )14.—Have you ever heard of Songhua River?—Of course. It is the river_____ through your hometown—Harbin.A.which runsB. runsC. that running( )15. —Mike, I’m looking forward to returning to school. I want to join in the basketball games.—So do I. Every year the basketball games between classes ____in June provides____ students with a stage(舞台) where we can put together to win teamwork.A. held, usB. holding, weC. is held, our( )16. The number of people invited to the party ____fifty, but a number of them _____absent for different reasons.A.were; wasB. was ; was C was; were( )17. —Which drink do you prefer, coffee or tea?—I prefer an American coffee ______ ice. It’s hot today.A. toB. thanC. with( )18. We Chinese usually eat traditional food on special holidays. We usually have ______ on the festival which falls in autumn and we have a big family get-together to admire the moon.A.turkeyB. zongziC. mooncakes( )19. We must make full use of our valuable time to review lessons in the following days. It is important to study in the right ways. We’d better not ______.①stay up studying②pay attention to correcting our mistakes in time③sleep in class④write down the important points and review them after class⑤do too many exercises again and againA. ①③⑤B. ②④⑤C. ①②③( )20. Ann got 1000 yuan from her parents during the Spring Festival this year. She spent one fifth of it buying books on the Internet. The rest was used to do the following things. From the table we know she spent _______yuan more on volunteer work than on school things.A. 100B. 80C. 280二、完形填空(本题共10分,每小题1分)Some people volunteer to get experience. Some people volunteer to make themselves feel better. Some people volunteer to help those 21 are in trouble. However, I volunteer to thank my community.I am 22 for the help I received from others.When I was in high school, I took part in the Upward Bound Program(联邦政府资助的高中课程). Through Upward Bound, I was able to get skills and chances that 23 me become the man that I am today. So I now often help kids around me to have the same 24 that I had.V olunteering is the best way to give thanks to the people who helped me on the road to 25. I remember 26 a counselor(顾问)when I was in Upward Bound how I could thank him. He smiled and said, "Shawn, you can help me by helping others." A sentence so simple, yet so 27 in its meaning.When I got my first volunteer position as a junior counselor at my local Boys and Girls Club, I hoped be a great role model for kids. But things did not work out as I thought at first. I got so 28. By the time I was ready to 29 , the kids looked for me everywhere that day. They said they liked having me around. My dream of being a volunteer to the community came back. Now the feeling that I can shape someone’s life for the better is amazing.So it is a good idea for everyone to volunteer. 30, you will not only help others, but also make yourself a happy person.根据短文内容选择最佳答案:( )21. A. that B. which C. who( )22.A. ready B. sorry C. thankful( )23. A. have helped B. helping C. will help( )24. A. chance B. courage C. decision( )25. A. failure B. sadness C. happiness( )26. A. asked B. asking C. to ask( )27. A. strange B. deep C. different( )28.A. excited B. disappointed C. satisfied( )29. A. turn up B. wake up C. give up( )30. A. So far B. Once in a while C. In this way三、阅读理解(本题共20 分,每小题 1 分)(A)根据短文选择最佳答案( ) 31.What question might the teacher ask in class?A. What do you like to talk about with your friends?B. What's your plan for the coming vacation?C. What do you want to do in the future?( ) 32.What is Lily interested in?A. Playing computer gamesB. Doing businessC. Drawing and writing books ( ) 33. What does the underlined word "them" mean?A. Pets.B. Stories.C. Books.( ) 34. How will Anna keep strong?A. She will play tennis every day.B. She will stay as far away from a hospital as possible.C. She will join the national team and become another Lina.( ) 35. Which of the following is TRUE according to the information above?A. Lily is good at making clothes.B. One of Bill's parents is an animal doctor.C. Ryan enjoys making friends on the Internet.(B)It was a Christmas night. I was an unlucky nurse who had to work on such a beautiful festival. When I was complaining about it, three people appeared at my desk—a tired woman and her two children, a son and a daughter." Are you all sick?" I asked doubtfully because they seemed all right."Yes," the woman answered weakly and lowered her head. But when they started to show their problems, things became unclear. The daughter had a fever, but her temperature was OK. The son had an earache, but he couldn't tell me which ear hurt. It seemed that the mother was pretending (假装) to cough. Something was wrong. But I only explained that it might take a while before a doctor could meet them. "Take your time, please," said the mother. I checked their forms—no address. All of a sudden I knew they were homeless while the hospital was warm.The family huddled (蜷缩) together under the Christmas tree, smiling and talking with each other sweetly. Quietly, I went back to the nurses' station and told them what happened in the waiting room. It was just like God sending us a gift on this Christmas night. The nurses' station suddenly came back to life. All the nurses went into action for "a Christmas emergency (急诊)".We took out our meals for our Christmas "patients". We also put together oranges and apples as presents. We tried to give them more than the needs of the family --only a warm place on Christmas night. Later, the little girl kissed me and said, "Thanks for being our angel."(天使)根据短文内容判断正误,正确的涂“A”,错误的涂“B”。
类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。
唐诗二首作者简介杜甫(712—770),字子美,尝自称少陵野老,后世称杜少陵。
唐代现实主义诗人,被尊为“诗圣”,与李白齐名,世称“李杜”。
其诗作被称为“诗史”。
有《杜工部集》。
白居易(772—846),字乐天,晚年号香山居士,是唐代伟大的现实主义诗人。
白居易与元稹共同倡导新乐府运动,世称“元白”,与刘禹锡并称“刘白”。
有“诗魔”之称。
有《白氏长庆集》传世,代表诗作有《长恨歌》《卖炭翁》《琵琶行》等。
中心意旨《茅屋为秋风所破歌》运用写实的手法,表现了诗人推己及人、舍己为人的高尚品质和对美好生活的憧憬。
《卖炭翁》叙述了卖炭翁辛勤劳动所得终被掠夺一空的经过,揭示了封建“宫市”制度的罪恶,表达了诗人对劳动人民的同情。
结构图示拓展链接杜甫草堂杜甫草堂坐落于成都市西门外的浣花溪畔,是中国唐代大诗人杜甫流寓成都时的故居。
杜甫先后在此居住近四年,创作诗歌240余首。
唐末诗人韦庄寻得草堂遗址,重结茅屋,使之得以保存,宋元明清历代都有修葺扩建。
草堂故居被视为中国文学史上的“圣地”。
1.给下列加点的字注音。
三重.茅()沉塘坳.()口称敕.()回车叱.牛()挂罥.()辗.冰辙()2.下列加点词解释有误的一项是()A.秋天漠漠向.昏黑(接近)B.何时眼前突兀..见此屋(突然)C.翩翩..两骑来是谁(轻快的样子)D.宫使驱将惜不得...(吝惜不得)3.下列对诗歌理解有误的一项是()A.“满面尘灰烟火色,两鬓苍苍十指黑”以外貌描写表现了卖炭翁的辛酸劳作。
B.“可怜身上衣正单,心忧炭贱愿天寒”以心理描写反映了卖炭翁悲惨的生活境遇。
C.“一车炭,千余斤,宫使驱将惜不得”以神态描写表现了卖炭翁的勇敢反抗。
D.“半匹红纱一丈绫,系向牛头充炭直”以动作描写揭露了宫使凶残掠夺的面目。
4.对《茅屋为秋风所破歌》理解不正确的一项是()A.这首诗属于近体诗,歌,是诗的一种体裁。
B.语言朴实、准确、形象、生动并带有很强的感情色彩,是这首诗的一大特色。
体育中考考前训练方案体育中考考前训练方案(通用11篇)为了确保事情或工作能无误进行,通常需要提前准备好一份方案,方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。
那么方案应该怎么制定才合适呢?以下是小编为大家整理的体育中考考前训练方案,欢迎阅读,希望大家能够喜欢。
体育中考考前训练方案篇1一、指导思想以“健康第一”为宗旨,提高学生身体素质和考试项目的运动技能,重点加强训练学生中考项目,端正学生训练的.态度,纠正学生的技术动作,全面提高学生身体素质。
在中考项目训练中,以教师为主导,以学生为主体,以身心健康为基础,以训练为主线,以能力为目标的训练模式进行。
加强安全教育、医务监督,使训练有组织、有计划,有秩序地进行。
二、训练目标1、通过集体学习、分组练习、培优辅差练习,使学生尽快掌握技术动作要领和运动技能。
2、发展学生的速度、力量、灵敏、协调、柔韧等身体素质,促进学生终身体育的形成。
3、培养学生乐观开朗、刻苦训练、积极进取、勇于拼搏等优良品质。
4、争取在体育中考中取得好成绩。
三、组织领导组长:韩润成员:四、训练项目1000米(男生)、800米(女生)、掷实心球(2公斤)、1分钟跳绳。
五、参训人员20xx-20xx年度九年级在校毕业生六、训练时间安排上学期第18周:宣传动员,安全教育,身体素质训练第19周:速度、力量、协调、柔韧、耐力素质练习第20周:三项综合练习寒假期间身体素质综合练习,800米、1000米跑专项练习,1分钟跳绳专项练习下学期第1周:(开学第一周):身体恢复适应性练习,安全教育,身体素质训练第2周:速度素质练习,耐力素质练习,中长跑专项练习第3周:三项综合练习第4周:三项综合练习,模拟考核第5周:三项综合练习第6周:三项综合练习第7周:三项综合练习,模拟考核第8周:考前身体调整练习七、训练内容安排1、体育课围绕考试项目对学生进行相关身体素质训练和技术指导,以发展学生速度、力量、耐力和柔韧性及应考技能。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中, H MNG P O A B 图1x y. ∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的主要特征是两个点在运动的过程中,直接或间接地构造了直角三角线,因此可以利用勾股定理去建立函数关系式. 勾股定理是初中数学的重要定理,在运用勾股定理写函数解析式的过程中,主要是找边的等量关系,要善于发现这种内在的关系,用代数式去表示这些边,达到解题的目的. 由于是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证明等腰三角形、相似三角形等,还有的再解一些与圆有关的体型. 要认真领会,达到举一反三的目的.1 牢记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS 的顶点P 、S 在半径OA 上,Q 在半径OB 上,R 在弧AB 上,连结OR.(1) 当∠AOR=30°时,求OP 长(2) 设OP=x ,OS=y ,求y 与x 的函数关系式及定义域2 在四边形的翻折与旋转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要熟练掌握.例题:如图,正方形ABCD 中,AB=6,有一块含45°角的三角板,把45°角的顶点放在D 点,将三角板绕着点D 旋转,使这个45°角的两边与线段AB 、BC 分别相交于点E 、F (点E 与点A 、B 不重合)(1) 从几个不同的位置,分别测量AE 、EF 、FC 的长,从中你能发现AE 、EF 、FC 的数量之间具有怎样的关系并证明你所得到的结论2222233621419x x x MH PH MP +=-+=+=(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域(3)试问△BEF的面积能否为8如果能,请求出EF的长;如果不能,请说明理由.3 在一些特殊的四边形中,如矩形、正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能构造直角三角形,可以考虑用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的定义域(3)如果PD⊥AQ,求BP的值4 作底边上的高,可以构造直角三角形,利用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与△ABC的顶点不重合),且AP=BQ,AQ、CP相交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出定义域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P、Q分别在AB、BC上移动过程中,AQ和CP能否互相垂直如能,请指出P点的位置,请说明理由.5 在解圆的题目时,首选的辅助线是弦心距,它不仅可以运用垂径定理,而且构造了直角三角形,为用勾股定理写函数解析式创造了条件.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P 是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域(2)如果PC=PD,求PB的长(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论6 强调圆的首选辅助线是弦心距,它不仅可以平分弦,而且构造了直角三角形,为解题创建新思路.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的定义域(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由阶梯题组训练1 如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形如果能,请求出AE的长;如果不能,请说明理由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.3 中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M 与点B分别在直线AP的两侧),且∠PAM=∠CAD,连结MD.(1)当点M在ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数定义域;(2)请在备用图中画出符合题意的示意图,并探究:图中是否存在与△AMD相似的三角形若存在,请写出并证明;若不存在,请说明理由;(3)当△为等腰三角形时,求BP的长.4 抛物线经过A(2,0)、B(8,0)、C(0,3316).(1)求抛物线的解析式;(2)设抛物线的顶点为P,把△APB翻折,使点Pl落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直若能,请求出此时点P′的坐标;若不能,请你说明理由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包括E、C)上的动点,线段AP的垂直平分线分别交BC、AD于点F、G,设BP=x,AG=y.(1)四边形AFPG是说明图形请说明理由;(2)求y与x的函数关系式;(3)如果分别以线段GP、DC为直径作圆,且使两圆外切,求x的值.6 在梯形ABCD中,ADE为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1)如图,当点F在线段DE上时,设BE=x,DF=y,试建立y关于x的函数关系式,并写出自变量x的取值范围;(2)当以CD为直径的⊙O与⊙E相切时,求x的值;(3)连结AF、BF,当△ABF是以AF为腰的等腰三角形时,求x的值.7 如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作弧AC所在圆的切线,交DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的解析式;(3)将△DEF沿直线EF翻折后得△D1EF,如图2,当EF=65时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(2003年上海第27题)二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,x CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成立试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC, ∴ACBDCEAB=,∴11xy=, ∴xy1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy1=成立.例3(2005年·上海)如图3(1),在△ABC中,∠ABC=90°,AB=4,BC=3.点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EP⊥ED,交射线AB于点P,交射线CB于点F.AEDCB图2FPDCB3(1)(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长.解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x y x 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2.类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.本专题探究在图形的运动变化过程中,存在平行或相似的三角形,利用比例式来建立函数关系式. 难一些的题目其中的一个变量是比例式,一个变量是线段,也是利用相似或平行来构造比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情况下写出解析式后还会有一个证等腰或相似或相切的题目,可以二次函数专题中的解题思想进行处理.1 由平行得到比例式,从而建立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB ,点P 是边AC 上的一个点,AP=21PD ,∠APD=∠ABC ,连结DC 并延长交边AB 的延长线于点EA C 3(2)(1) 求证:AD证明:△ADE ∽△GFA (2) 设DE=x ,BG=y ,求y 关于x 的函数解析式及定义域(3) 当BH=41时,求DE 的长3 在学习利用相似比建立函数的解析式的时候,初中阶段的知识已经学了不少,对最后的压轴题的综合性的要求已经很高了. 一般会在写解析式前有一些证明或计算,写好解析式后再来一个证明等腰三角形或圆的位置关系等. 如果能够把一道复杂的压轴题拆分成几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延长线上一个动点,∠EDA=∠B ,AE(1) 找出图中的相似三角形,并加以证明(2) 设CD=x ,AE=y ,求y 关于x 的函数解析式,并写出函数的定义域(3) 当△ADE 为等腰三角形时,求AE 的长4 刚才研究的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中怎样写解析式.例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD OC AD 5253例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 、C 的坐标分别为(-1,0),C (0,b ),且0<b <3,m 是经过点B 、C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D 、O 之间的距离(2) 如果BOCBDA S △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值范围 (3) 当∠ADO 的余切值为2时,求直线m 的解析式(4) 求此时△ABD 与△BOC 重叠部分的面积6 当我们学习到利用相似三角形的相似比来建立函数解析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只要能够分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连结MF 交线段AD 于点P ,连结NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值范围(2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆能够与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不能,请说明理由练习:1. 如图,在三角形中,AB=AC=8,BC=10,点D 、E 分别在BC 、AC 上(点D 不与B 、C 重合),且∠ADE=∠B ,设BD=x ,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的定义域(2) 点D 在BC 上的运动过程中,△ADE 是否有可能成为一个等腰三角形如有可能,请求出当△ADE 为等腰三角形时x 的值;如不可能,请说明理由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且满足∠AED=∠A ,DE 的延长线交射线CB 于点F ,设AD=x ,EF=y.(1) 如图1,用含x 的代数式表示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的定义域(3) 连结EC ,如图2,求档x 为何值时,△AEC 与△BEF 相似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE=x ,BF=y.(1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是多少(3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为多少(1) 已知在梯形ABCD 中,AD 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD ;(2) 如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF=∠C ,PF 交直线CD 与点F ,同时交直线AD 于点M ,那么(3) 当点F 在线段CD 的延长线上时,设BP=x ,DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;(4) 当S △DMF =49S △BEP 时,求BP 的长.(1) 如图,在四边形ABCD 中,∠B=90°,AD 求y 关于x 的函数解析式,并写出定义域;(2) 当AD=11时,求AG 的长;(3) 如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.4. 如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y.(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 若⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径;(3) 是否存在点C ,使得△DCB ∽△DOC 如果存在,请证明;如果不存在,请简要说明理由.(1) 已知∠ABC=90°,AB=2,BC=3,AD PCPQ AB AD当AD=23,且点Q 在线段AB 上时,设点B 、Q 之间的距离为x ,PBCAPQ S S △△=y ,其中S △APQ 表示△APQ 的面积,S △PBC 表示△PBC 的面积,求y 关于x 的函数解析式,并写出函数定义域;(2) 当AD <AB ,且点Q 在线段AB 的延长线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时, 在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . A B C O 图8 H此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时, 在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2、【09广东】正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值练习1.如图,在△ABC 中,BC=8,CA= ,∠C=60°,EF ∥BC ,点E 、F 、D 分别在AB 、AC 、BC 上(点E 与点A 、B 不重合),连接ED 、DF 。
江西省抚州市中考语文分类训练九:修辞手法姓名:________ 班级:________ 成绩:________一、单选题 (共48题;共96分)1. (2分)“啊!黄河!”这句在诗中反复出现,对其作用的分析不正确的一项是()A . 反复出现是为了对所歌颂的对象加以强调。
B . 这是诗人在“望”黄河的基础上,情不自禁地歌颂黄河对中华民族的伟大贡献。
C . 反复出现,从不同角度赞颂黄河,环环相扣,逐步深入。
D . 反复出现,把歌词主体部分分为三个层次,依次是:黄河养育了中华民族、黄河保卫了中华民族、黄河还将激励着中华民族。
2. (2分)“五岭逶迤腾细浪,乌蒙磅礴走泥丸”一联运用的修辞方法,判断正确的一项()。
A . 比喻对偶夸张B . 对偶夸张拟人C . 夸张拟人借代D . 借代比喻对偶3. (2分)“要论中国人,必须不被搽在表面的自欺欺人的脂粉所诓骗,却看看他的筋骨和脊梁、”句中的“脂粉”的修辞方法和含义是()。
A . 借代,指为国民党反动派涂脂粉的人。
B . 借喻,比喻国民党反动派的御用文人。
C . 借代,指国民党反动派的欺骗宣传。
D . 借喻,比喻国民党反动报刊上的欺骗宣传。
4. (2分)下列句子只用了一种修辞手法的是()A . 几处早莺争暖树,谁家新燕啄春泥。
B . 红的像火,粉的像霞,白的像雪。
C . “吹面不寒杨柳风”,不错的,像母亲的手抚摸着你。
D . 放下饱食过稻香的镰刀,用背篓来装竹篱间肥硕的瓜果。
5. (2分)对下列句子所使用的修辞方法及其意义分析理解正确的一项是()。
A . 想起它(纺车),就像想起旅伴,想起战友,心里充满着深切的怀念。
运用比喻,抒发作者对延安纺车深厚真挚的感情。
B . 你们是早晨初升的太阳,希望寄托在你们身上。
运用拟人,抒发老一辈无产阶级革命家对朝气蓬勃的青年一代寄予厚望。
C . 奋斗,是改变现实的杠杆,是亿万人民共攀现代化高峰的坚实阶梯。
运用排比,使抽象的概念和道理变得更加严谨。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴N GP B x y2362121xOH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意.②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.本专题的主要特征是两个点在运动的过程中,直接或间接地构造了直角三角线,因此可以利用勾股定理去建立函数关系式. 勾股定理是初中数学的重要定理,在运用勾股定理写函数解析式的过程中,主要是找边的等量关系,要善于发现这种内在的关系,用代数式去表示这些边,达到解题的目的. 由于是压轴题,有的先有铺垫,再写解析式;有的写好解析式后,再证明等腰三角形、相似三角形等,还有的再解一些与圆有关的体型. 要认真领会,达到举一反三的目的.1 牢记勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方.例题,扇形中∠AOB=45°,半径OB=2,矩形PQRS 的顶点P 、S 在半径OA 上,Q 在半径OB 上,R 在弧AB 上,连结OR.(1) 当∠AOR=30°时,求OP 长(2) 设OP=x ,OS=y ,求y 与x 的函数关系式及定义域2 在四边形的翻折与旋转中,往往会应用到勾股定理,由此产生些函数解析式的问题,要熟练掌握.例题:如图,正方形ABCD 中,AB=6,有一块含45°角的三角板,把45°角的顶点放在D 点,将三角板绕着点D 旋转,使这个45°角的两边与线段AB 、BC 分别相交于点E 、F (点2222233621419x x x MH PH MP +=-+=+=E与点A、B不重合)(1)从几个不同的位置,分别测量AE、EF、FC的长,从中你能发现AE、EF、FC的数量之间具有怎样的关系?并证明你所得到的结论(2)设AE=x,CF=y,求y与x之间的函数解析式,并写出函数的定义域(3)试问△BEF的面积能否为8?如果能,请求出EF的长;如果不能,请说明理由.3 在一些特殊的四边形中,如矩形、正方形,它们都是直角,菱形的对角线互相垂直,这些都有可能构造直角三角形,可以考虑用勾股定理写出函数的解析式.例题:如图,在菱形ABCD中,AB=4,∠B=60°,点P是射线BC上的一个动点,∠PAQ=60°,交射线CD于点Q,设点P到点B的距离为x,PQ=y(1)求证:三角形APQ是等边三角形(2)求y关于x的函数解析式,并写出它的定义域(3)如果PD⊥AQ,求BP的值4 作底边上的高,可以构造直角三角形,利用勾股定理写函数的解析式例题:如图,等边△ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与△ABC 的顶点不重合),且AP=BQ,AQ、CP相交于点E.(1)如设线段AP为x,线段CP为y,求y关于x的函数解析式,并写出定义域(2)当△CBP的面积是△CEQ的面积的2倍时,求AP的长(3)点P、Q分别在AB、BC上移动过程中,AQ和CP能否互相垂直?如能,请指出P点的位置,请说明理由.5 在解圆的题目时,首选的辅助线是弦心距,它不仅可以运用垂径定理,而且构造了直角三角形,为用勾股定理写函数解析式创造了条件.例题:如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P 是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,PD切⊙B于点D,已知⊙A 的半径为2,⊙B的半径为1,AB=5.(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域(2)如果PC=PD,求PB的长(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论6 强调圆的首选辅助线是弦心距,它不仅可以平分弦,而且构造了直角三角形,为解题创建新思路.例题:如图,在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长. 当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径(2)求y关于x的函数解析式,并写出它的定义域(3)当AP=65时,试比较∠CPN与∠A的大小,并说明理由阶梯题组训练1 如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x之间的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.2 如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;(2)如果BC=3设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.3 ABCD中,对角线AC⊥AB,AB=15,AC=20,点P为射线BC上一动点,AP⊥PM(点M与点B分别在直线AP的两侧),且∠PAM=∠CAD,连结MD.(1)当点M在 ABCD内时,如图,设BP=x,AP=y,求y关于x的函数关系式,并写出函数定义域;(2)请在备用图中画出符合题意的示意图,并探究:图中是否存在与△AMD相似的三角形?若存在,请写出并证明;若不存在,请说明理由;(3)当△为等腰三角形时,求BP的长.4 抛物线经过A(2,0)、B(8,0)、C(0,3316).(1)求抛物线的解析式;(2)设抛物线的顶点为P,把△APB翻折,使点Pl落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不能,请你说明理由.5 如图,矩形ABCD中,AD=7,AB=BE=2,点P是EC(包括E、C)上的动点,线段AP的垂直平分线分别交BC、AD于点F、G,设BP=x,AG=y.(1)四边形AFPG是说明图形?请说明理由;(2)求y与x的函数关系式;(3)如果分别以线段GP、DC为直径作圆,且使两圆外切,求x的值.6 在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5. E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.(1)如图,当点F在线段DE上时,设BE=x,DF=y,试建立y关于x的函数关系式,并写出自变量x的取值范围;(2)当以CD为直径的⊙O与⊙E相切时,求x的值;(3)连结AF、BF,当△ABF是以AF为腰的等腰三角形时,求x的值.7 如图,在正方形ABCD中,AB=1,弧AC是以点B为圆心,AB长为半径的圆的一段弧,点E 是边AD上的任意一点(点E与点A、D不重合),过E作弧AC所在圆的切线,交DC于点F,G为切点.(1)当∠DEF=45°时,求证点G为线段EF的中点;(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的解析式;(3)将△DEF沿直线EF翻折后得△D1EF,如图2,当EF=65时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.(2003年上海第27题)二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,x CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α,β满足怎样的关系式时,(1)中y与x之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,AEDCB图2∴△ADB ∽△EAC, ∴ACBD CE AB =, ∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式x y 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP. (2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP 的长. 解:(1)连结OD. 根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP. 又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54x AD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x y x 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE,∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2.类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.A 3(2)3(1)综上所述, 当BF=1时,线段AP 的长为2或6.本专题探究在图形的运动变化过程中,存在平行或相似的三角形,利用比例式来建立函数关系式. 难一些的题目其中的一个变量是比例式,一个变量是线段,也是利用相似或平行来构造比例式,从而写出函数的解析式. 作为最后的一道压轴题,一般情况下写出解析式后还会有一个证等腰或相似或相切的题目,可以二次函数专题中的解题思想进行处理.1 由平行得到比例式,从而建立函数关系式.例题:如图,在△ABC 中,AB=AC=4,BC=21AB ,点P 是边AC 上的一个点,AP=21PD ,∠APD=∠ABC ,连结DC 并延长交边AB 的延长线于点E(1) 求证:AD//BC(2) 设AP=x ,BE=y ,求y 关于x 的函数解析式,并写出它的定义域(3) 连结BP ,当△CDP 与△CBE 相似时,试判断BP 与DE 的位置关系,并说明理由2 由三角形相似得到比例式,建立函数关系式例题:如图,在正方形ABCD 中,AB=2,E 为线段CD 上一点(点E 与点C 、D 不重合),FG 垂直平分AE ,且交AE 于F ,交AB 延长线于G ,交BC 于H.(1) 证明:△ADE ∽△GFA(2) 设DE=x ,BG=y ,求y 关于x 的函数解析式及定义域(3) 当BH=41时,求DE 的长3 在学习利用相似比建立函数的解析式的时候,初中阶段的知识已经学了不少,对最后的压轴题的综合性的要求已经很高了. 一般会在写解析式前有一些证明或计算,写好解析式后再来一个证明等腰三角形或圆的位置关系等. 如果能够把一道复杂的压轴题拆分成几道小的题目,各个击破,难题也就变简单了.例题:如图,在Rt △ABC 中,∠C=90°,sinB=54,AC=4;D 是BC 的延长线上一个动点,∠EDA=∠B ,AE//BC.(1) 找出图中的相似三角形,并加以证明(2) 设CD=x ,AE=y ,求y 关于x 的函数解析式,并写出函数的定义域(3) 当△ADE 为等腰三角形时,求AE 的长4 刚才研究的写函数解析式都是在几何图形中进行的,下面来看在平面直角坐标系中怎样写解析式. 例题:如图,在直角坐标系中的等腰梯形AOCD 中,AD//x 轴,AO=CD=5,OC AD =52,cos a=53,P 是线段OC 上的一个动点,∠APQ=∠a,PQ 交射线AD 于点Q ,设P 点坐标为(x ,0),点Q 到D 的距离为y(1) 求过A 、O 、C 三点的抛物线解析式(2) 用含x 的代数式表示AP 的长(3) 求y 与x 的函数解析式及定义域(4) △CPQ 与△AOP 能否相似?若能,请求出x 的值,若不能,请说明理由5 当一个变量是比例式,另一个变量是一条线段,怎样来写函数的解析式呢?可以根据题目的要求,由相似三角形面积的比等于相似比的平方,或相似三角形周长的比等于相似比等建立函数解析式.例题:如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 、C 的坐标分别为(-1,0),C (0,b ),且0<b <3,m 是经过点B 、C 的直线,当点C 在线段OC 上移动时,过点A 作AD ⊥m 于点D.(1) 求点D 、O 之间的距离(2) 如果BOCBDA S △△S =ɑ,试求:ɑ与b 的函数关系式及ɑ的取值范围 (3) 当∠ADO 的余切值为2时,求直线m 的解析式(4) 求此时△ABD 与△BOC 重叠部分的面积6 当我们学习到利用相似三角形的相似比来建立函数解析式的时候,初中阶段的知识已经学得差不多了,对于一些貌似很复杂的图形,只要能够分层求解,就能化繁为简.例题:如图,在边长为6的正方形ABCD 的两侧如图作正方形BEFG 、正方形DMNK ,恰好使得N 、A 、F 三点在一直线上,连结MF 交线段AD 于点P ,连结NP ,设正方形BEFG 的边长为x ,正方形DMNK 的边长为y.(1) 求y 关于x 的函数关系式及自变量x 的取值范围(2) 当△NPF 的面积为32时,求x 的值(3) 以P 为圆心,AP 为半径的圆能够与以G 为圆心,GF 为半径的圆相切,若能请求x的值,若不能,请说明理由练习:1. 如图,在三角形中,AB=AC=8,BC=10,点D 、E 分别在BC 、AC 上(点D 不与B 、C 重合),且∠ADE=∠B ,设BD=x ,AE=y.(1) 求y 与x 之间的函数解析式,并写出函数的定义域(2) 点D 在BC 上的运动过程中,△ADE 是否有可能成为一个等腰三角形?如有可能,请求出当△ADE 为等腰三角形时x 的值;如不可能,请说明理由.2. 在△ABC 中,AB=4,AC=5,cosA=53,点D 是边AC 上的点,点E 是边AB 上的点,且满足∠AED=∠A ,DE 的延长线交射线CB 于点F ,设AD=x ,EF=y.(1) 如图1,用含x 的代数式表示线段AE 的长(2) 如图1,求y 关于x 的函数解析式及函数的定义域(3) 连结EC ,如图2,求档x 为何值时,△AEC 与△BEF 相似.3. 如图,在矩形ABCD 中,AB=m (m 是大于0的常数),BC=8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE=x ,BF=y.(1) 求y 关于x 的函数关系式(2) 若m=8,求x 为何值时,y 的值最大,最大值是多少?(3) 若y=m12,要使△DEF 为等腰三角形,m 的值应为多少?4. 已知在梯形ABCD 中,AD//BA ,AD <BC ,且BC=6,AB=DC=4,点E 是AB 的中点.(1) 如图,P 为BC 上的一点,且BP=2. 求证:△BEP ∽△CPD ;(2) 如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF=∠C ,PF 交直线CD与点F ,同时交直线AD 于点M ,那么(3) 当点F 在线段CD 的延长线上时,设BP=x ,DF=y ,求y 关于x 的函数解析式,并写出函数的定义域;(4) 当S △DMF =49S △BEP 时,求BP 的长.5. 如图,在四边形ABCD 中,∠B=90°,AD//BC ,AB=4,BC=12,点E 在边BA 的延长线上,AE=2,点F 在BC 边上,EF 与边AD 相交于点G ,DF ⊥EF ,设AG=x ,DF=y.(1) 求y 关于x 的函数解析式,并写出定义域;(2) 当AD=11时,求AG 的长;(3) 如果半径为EG 的⊙E 与半径为FD 的⊙F 相切,求这两个圆的半径.6. 如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y.(1) 求y 关于x 的函数解析式,并写出它的定义域;(2) 若⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=31OB 时,求⊙O 1的半径;(3) 是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.7. 已知∠ABC=90°,AB=2,BC=3,AD//BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足PC PQ =ABAD (如图1所示)(1) 当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;(2) 在图1中,连结AP. 当AD=23,且点Q 在线段AB上时,设点B 、Q 之间的距离为x ,PBCAPQ S S △△=y ,其中S △APQ 表示△APQ 的面积,S △PBC 表示△PBC 的面积,求y 关于x 的函数解析式,并写出函数定义域;(3) 当AD <AB ,且点Q 在线段AB 的延长线上时(如图3所示),求∠QPC 的大小.(2009上海第25题)三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时,△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,A B CO 图8 H在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.例2、【09广东】正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值练习1.如图,在△ABC 中,BC=8,CA= ,∠C=60°,EF ∥BC ,点E 、F 、D 分别在AB 、AC 、BC 上(点E 与点A 、B 不重合),连接ED 、DF 。
初三中考复习方法技巧对初三学生来说,他们很快就要迎来中考了,而中考是人生道路上第一个转折点。
对每个初三学生来说,他们都希望自己能够在中考中取得好成绩,进而考上好高中。
想要在中考中取得好成绩,自然是要认真复习。
这里给大家提供一些初三中考知识点,。
初三中考复习方法技巧01、教材为本,整体复习课本是复习的阶梯,学习须有“本〃可依。
复习时以课本为主线,进行系统的复习,使所学过的知识由零散过渡到完整,构架起较为完整的知识系统,训练综合运用知识的能力。
02、有计划的复习制定看书计划、绘出知识结构网络图,形成完整的知识结构体系。
紧紧抓住重点和难点,努力感悟和突破。
所谓重点和难点,其实就是老师上课反复强调和题目中经常犯错的地方。
如果能集中精力把重点的内容理解透彻,熟练掌握,有助于你提升复习效率。
03、看错题集,温故而知新温习错题集,除复习语言知识点外,还要重视某些试题的解题方法与技巧。
只有这样,才能充分发挥错题集的作用。
看了两次以上还没有掌握的,要多请教与练习,直到错题基本掌握。
04、针对考点,专项练习练习中,选题要精,练习要有步骤、有目的、有思考,切忌一味做题,陷入题海。
应该多做那些自己认为知识点理解、应用薄弱的题,对一些难题可在自己思考的基础上加强与同学、老师的交流,对于那些偏题、怪题笑而弃之。
05、分析得分情况,分配好得分精力分析自己平时得分的分布情况,也就是说选择题、填充题、解答题前3题与解答题后几题、实验题、作文、听力等得分进行分析, 针对自己的情况做好得分的精力分配。
比方:平时选择题得分较高, 解答题前3题得分较高,那么,复习时重点应放在填充与解答题后面的几题上。
这样可以将精力放在硬骨头上,不要精力平均使。
06、解题基本方法,熟练掌握比方该画图的就得画图,该演算的就得演算,该写公式的就写公式等,遵照考试的一些常识。
在答题时,要坚决做到审题规范、解题规范、步骤规范、书写规范。
07、心态良好,稳定发挥稳定就是正常地发挥出孩子的水平,考试中孩子必需拥有良好的心理状态。
初三体育中考训练方案1、初三体育中考训练方案周一:速度和耐力的专项训练1、准备活动(1)400—500m慢速跑(学校操场2圈),各种韧带静力性拉伸;(2)原地摆臂,原地高抬腿,原地弓箭步交换跳各2组(30分钟计时)2、基本练习(1)30m放松中速跑2组(2)30m站立式起跑接快速跑4组(3)50m全速冲刺跑4组(4)250m全速冲刺跑1组(4)30m单脚跳练习4组;(5)跳绳1组(1分钟计时);3、放松活动。
走或慢跑绕田径场一周。
周二:耐力和立定跳远的专项训练1、准备活动(1)400m—500m慢速跑(学校操场2圈),各种关节、韧带静力拉伸;(2)原地高抬腿跑3组(3)交叉步跑3组(4)后蹬腿跑3组2、基本练习(1)30m起跑后加速3组(2)50m冲刺跑4组(3)立定跳远6—10次;(4)连续跳障碍6—7个4组(5)跳绳2组(1分钟计时);3、放松活动。
走或慢跑绕田径场一周。
周三:速度和力量的专项训练1、准备活动(1)400—500m慢速跑,各种拉伸练习;(2)15—20m弓箭步走3组(3)后蹬腿跑3组(4)后踢腿跑3组(5)行进间高抬腿2组2、基本练习(1)30m快速跑2组(2)50m冲刺跑2组(3)100m冲刺跑2组(4)半场蛙跳4组(5)跳绳3组(1分钟计时);3、放松活动。
走或慢跑绕田径场一周。
周四:耐力素质的专项训练1、准备活动(1)400—500m慢速跑,各种静力拉伸练习;(2)原地摆臂练习3组(3)行进间小步跑,后蹬跳,高抬腿跑各3组2、基本练习(1)50m冲刺跑2组(2)80m冲刺跑3组(3)250m变速跑2组(直道加速)(4)后摆屈膝深蹲跳2组(5)抱膝跳20个2组(6)跳绳1组3、放松活动。
走或慢跑绕田径场一周。
周五:速度和耐力的专项训练1、准备活动(1)400—500m慢速跑(沿操场慢跑2圈),各种静力性拉伸;(2)后蹬跑2组,后踢腿跑2组,高抬腿跑2组;(3)原地高抬腿接快速跑3组2、基本练习(1)30m放松迈大步跑2组(2)50m冲刺跑3组(3)单脚跳30m×3组,蛙跳15m×3组。
中考阶梯训练9
(满分120分,时间50分钟)
一、选择题(本大题共6小题,每小题5分,共30分)
1.与4.73最接近的数是( )
A .4.69
B .4.699
C .4.728
D .4.731
2.如图K9-1,各正方体的四个数之间有相同的规律,根据此规律,“◆”位置的数是
( )
图K9-1
A .144
B .132
C .168
D .158
3.下列计算正确的是( )
A .(a +b )(a -2b )=a 2-2b 2
B .a 2·a 4=a 8
C .5a -2a =3
D .(ab 3)2=a 2b 6
4.下列不是必然事件的是( )
A .角平分线上的点到角两边的距离相等
B .三角形内心到三边距离相等
C .三角形任意两边之和大于第三边
D .面积相等的两个三角形全等
5.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )
A .8
B .9
C .10
D .12
6.如图K9-2,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD ,OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ·AB .其中正确结论的序号是( )
A .①②
B .③④
C .①③
D .①④
图K9-2 图K9-3
二、填空题(本大题4小题,每小题5分,共20分)
7.如图K9-3是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数是________小时,中位数是________小时.
8.若反比例函数y =k x
的图象与一次函数y =ax +b 的图象相交于A (-2,m ),B (5,n )两点,则3a +b =________.
9.如图K9-4,在平面直角坐标系中,四边形ABCD 是正方形,A (1,-1),B (-1,-
1),C (-1,1),D (1,1).曲线AA 1A 2A 3……叫做“正方形的渐开线”,其中弧AA 1、弧A 1A 2、弧A 2A 3、弧A 3A 4……所在圆的圆心依次是点B ,C ,D ,A 循环,则点A 2015坐标是________.
图K9-4 图K9-5
10.如图K9-5,AB 为⊙O 的直径,AB =30,正方形DEFG 的四个顶点分别在半径OA ,OC 及⊙O 上,且∠AOC =45°,则正方形DEFG 的面积为______.
三、解答题(一)(本大题2小题,每小题10分,共20分)
11.解分式方程:3+x 3-x +36x 2-9
=-1.
12.某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?
四、解答题(二)(本大题2小题,每小题15分,共30分)
13.如图K9-6,在Rt △ABC 中,∠B =90°,分别以点A ,点C 为圆心,大于12
AC 长为半径画弧,两弧相交于点M ,N ,连接MN ,与AC ,BC 分别交于点D ,E ,连接AE .
(1)若AE 平分∠BAC ,则∠C =________;
(2)若AB =3 cm ,BC =7 cm ,求△ABE 的周长;
(3)知识延伸:在△ABC 中,∠B =2α,∠C =α,请你根据解题积累的经验,将△ABC 分成两个等腰三角形.(要求:①保留作图痕迹;②写出等腰三角形的名称,不需说明理由)
图K9-6
14.如图K9-7,在矩形ABCD 中,AB =9,AD =12.动点E 从点B 出发,沿线段BC (不包括端点B ,C )以每秒2个单位长度的速度,匀速向点C 运动;动点F 从点 C 出发,沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度,匀速向点D 运动;点E ,F 同时出发,同时停止.连接AF 并延长交BC 的延长线于点M, 再把AM 沿AD 翻折交CD 延长线于点N ,连接MN .设运动时间为t 秒.
(1)当t 为何值时,△ABE ∽△ECF ;
(2)在点E 运动的过程中是否存在某个时刻使AE ⊥AN ?若存在请求出t 的值,若不存在请说明理由;
(3)在运动的过程中,△AMN 的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.
图K9-7
五、解答题(三)(本题20分)
15.如图K9-8,对称轴为直线x =-72
的抛物线经过点A (-6,0)和点B (0,4). (1)求抛物线的解析式和顶点坐标;
(2)设点E (x ,y )是抛物线上的一个动点,且位于第三象限,四边形OEAF 是以OA 为对角线的平行四边形,求OEAF 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; ①当OEAF 的面积为24时,请判断OEAF 是否为菱形?
②是否存在点E ,使OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.
图K9-8
中考阶梯训练9
1.D 2.D 3.D 4.D 5.C 6.D
7.8 9 8.0 9.(1,4031) 10.45
11.解:去分母,得-x 2-6x -9+36=-x 2+9.
移项合并,得6x =18.
解得x =3.
经检验x =3是增根,分式方程无解.
12.解:(1)捐款增长率为x ,根据题意,得
10 000(1+x )2=12 100,
解得x 1=0.1,x 2=-2.1(舍去).
则x =0.1=10%.
答:捐款的增长率为10%.
(2)根据题意,得12 100×(1+10%)=13 310(元).
答:第四天该校能收到的捐款是13 310元.
13.解:(1)∵AE 平分∠BAC ,∴∠BAE =∠CAE .
∵由作图方法可得MN 垂直平分AC ,∴AE =EC .
∴∠C =∠EAC .∴∠C =∠EAC =∠BAE =30°.
故答案为30°.
(2)由作图知,MN 是AC 的垂直平分线,∴AE =EC .
∴△ABE 的周长=AB +AE +BE =AB +BE +EC =AB +BC =3+7=10 cm.
(3)如图D145,
图D145
作AC 的垂直平分线交BC 于点E ,连接AE ,可得等腰三角形△ABE 和△ACE .
14.解:(1)若△ABE ∽△ECF ,则BE AB =CF EC
. ∴2t 9=t 12-2t .解得t 1=0(舍去),t 2=154
. ∴当t =154
时,△ABE ∽△ECF . (2)存在.
在矩形ABCD 中,∠B =∠BAD =∠ADC =∠ADN =90°,
又∵AE ⊥AN ,∴∠NAE =90°.∴∠BAE =∠DAN .
∴△ABE ∽△ADN .
∴BE AB =DN AD
. ∵AB =9,BE =2t ,AD =12,CF =t ,∴DF =9-t ,
由折叠知,DN =DF =9-t .
∴2t 9=9-t 12.∴t =2711.∴当t =2711
时,AE ⊥AN . (3)△AMN 的面积不变.在矩形ABCD 中,FC ∥AB ,
∴△FCM ∽△ABM .∴FC AB =MC BM
. ∴t 9=MC 12+MC .∴MC =12t 9-t
. ∴S △AMN =S △ANF +S △NFM =12NF ×AD +12
NF ×MC =12NF (AD +MC )=12×2(9-t )×⎝⎛⎭
⎫12+12t 9-t =108. ∴△AMN 的面积不变为108.
15.解:(1)设抛物线的解析式为y =a ⎝⎛⎭
⎫x +722+k (k ≠0), 则依题意,得254a +k =0,494
a +k =4. 解之,得a =23,k =-256
. 即y =23⎝⎛⎭⎫x +722-256
,顶点坐标为⎝⎛⎭⎫-72,-256. (2)∵点E (x ,y )在抛物线上,且位于第三象限.
∴S =2S △OAE =2×12×OA ×(-y )=-6y =-4(x +72
)2+25(-6<x <-1). ①当S =24时,即-4⎝⎛⎭
⎫x +722+25=24. 解之,得x 1=-3,x 2=-4.
∴点E 为(-3,-4)或(-4,-4).
当点E 为(-3,-4)时,满足OE =AE ,故OEAF 是菱形;
当点E 为(-4,-4)时,不满足OE =AE ,故OEAF 不是菱形.
②不存在.
当OE ⊥AE 且OE =AE 时,OEAF 是正方形,此时点E 的坐标为(-3,-3). 而点E 不在抛物线上,故不存在点E ,使OEAF 为正方形.。