人教版八年级下册数学教案:19.1.2函数的图像
- 格式:doc
- 大小:57.00 KB
- 文档页数:3
人教版数学八年级下册19.1.2《函数的图象—函数的图象及其画法》教学设计一. 教材分析人教版数学八年级下册19.1.2《函数的图象—函数的图象及其画法》这一节,主要让学生了解函数图象的概念,学会如何画函数图象。
教材通过具体的例子,引导学生掌握函数图象的画法,并能够分析图象的性质。
本节内容是学生对函数知识体系的重要补充,也是后续学习函数性质的基础。
二. 学情分析学生在学习本节内容前,已经掌握了函数的基本概念,了解了函数的解析式。
但他们对函数图象的认识还比较模糊,可能只停留在图像的直观层面,对如何从解析式中得出函数图象的方法还不够清晰。
因此,在教学过程中,需要教师通过具体例子,引导学生理解函数图象的生成过程,以及如何从解析式中提取信息,画出函数图象。
三. 教学目标1.让学生了解函数图象的概念,理解函数图象与函数解析式之间的关系。
2.学会如何画函数图象,并能分析图象的性质。
3.培养学生的观察能力、动手能力以及逻辑思维能力。
四. 教学重难点1.重点:函数图象的概念,如何画函数图象。
2.难点:如何从解析式中提取信息,画出函数图象,并分析图象的性质。
五. 教学方法采用讲授法、引导法、实践法、讨论法等多种教学方法。
通过具体例子,引导学生动手实践,观察分析,理解函数图象的生成过程,以及如何从解析式中提取信息,画出函数图象。
六. 教学准备1.准备相关的教学PPT,包括函数图象的定义、生成过程、分析方法等内容。
2.准备一些具体的函数解析式,用于让学生实践画图。
3.准备一些函数图象的图片,用于让学生观察分析。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾函数的基本概念,然后引入函数图象的概念。
让学生思考:函数图象是什么?它与函数解析式有何关系?2.呈现(10分钟)教师通过PPT展示一些具体的函数图象,让学生观察并分析。
同时,教师引导学生思考:这些图象是如何生成的?从图象中我们可以得到哪些信息?3.操练(10分钟)教师给出一些函数解析式,让学生动手实践,尝试画出对应的函数图象。
归纳:描点法画函数的图象一般步骤:
1、列表:列出自变量与函数的对应值表
并取适当.
2、描点:建立直角坐标系,以自变量的值为横坐标,
描出表格中数值对应的各点.
3、连线:按照横坐标从小到大的顺序把描出的点用平滑曲线依次连接起来
根据图象回答下列问题:
1.菜地离小明家多远?小明走到菜地用了多少时间?
2.小明给菜地浇水用了多少时间?
3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?
4.小明给玉米地锄草用了多长时间?
5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?。
《§19.1.2函数图像教学设计》教学设计【学习目标】1.知识与技能(1)、使学生了解函数图象的意义;(2)、初步掌握画函数图象的方法(列表、描点、连线);2.过程与方法学会通过操作、观察、分析函数图象来获取相关信息。
3.情感态度与价值观感受数学活动充满着探索与奥秘,在数学活动中获得成功的体验,在合作学习中增强集体责任感。
【学习重点】初步掌握画函数图象的方法;【学习难点】通过观察、分析函数图象来获取信息.【学法】问题导学法,合作交流法,实验探究法,练习法等。
【课堂模式】以导学图为载体的“三段六步”课堂教学模式。
【教具】课件、直尺等。
【学具】直尺、坐标格等。
【教学过程】一、课前:(一)简介争创“优秀小组”活动规则。
(调动学生课堂持续主动参与的积极性,营造快乐、合作学习的课堂氛围,同时培养学生善于竞争,敢于竞争意志品质。
)(二)学生按“导学图”中的预习指导独立看书、自学、思考、探究,并提出问题;组长和教师检查评比预习情况给予评定。
(使学生对教材首先有一个初步了解,发现问题,教师根据学生的预习情况调整教学安排,对“导学图”进行“再创作”,完成第一次教学,同时培养学生自觉学习,终生学习的良好习惯。
)二、课中:(一)创设情境选择我国排球运动员在里约奥运会中的精彩片段,从中抽象出排球运动的高度h随时间t的变化而变化的图象。
(视频展示)教师提问:排球运行高度h随时间t的变化而变化的图象,你从图象中能获得哪些信息?板书课题:§19.1.2函数图像追问函数图像是怎样产生的?(创设情景,激发学生的好奇心及求知欲,并对学生进行爱国主义教育的同时体验生活中处处有数学——引入课题。
)(二)、操作体验问题一:正方形的面积S与边长x的函数关系为,其中自变量x 的取值范围是,我们还可以利用在坐标系中画图的方法来表示S与x的关系.想一想:自变量x的一个确定的值与它所对应的唯一的函数值S,是否能确定一个点(x,S)呢?(1)列表:(计算并填写下表)(2)描点:(建立直角坐标系,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点)(3)连线:(按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来)总结:1、什么是函数图像?(函数的图象是由直角坐标系中的一系列点组成,图象上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的横坐标和纵坐标,在直角坐标系中描出相应的点,这些点组成的图形,就是这个函数的图象。
一、课前学习:阅读教材第75至76页思考止,第77页例3至79页思考止。
思考以下问题:1、回忆平面直角坐标系的有关概念:如各象限内点的坐标特征,点P(x,y)关于x轴、y轴和原点的对称点的坐标分别为,过坐标平面内的点向x轴作垂线可找坐标、向y轴作垂线可找坐标。
2、一般地,在一个变化过程中,有个变量x和y,对于变量x的每一个值,变量y都有的值和它对应,我们就把x称为,y是x的。
如果当x=a时y=b, 那么b 叫做当自变量的值为a时的3、如何判定一个图像是函数图像,你判断的依据是什么?4、函数的图象是由直角坐标系中的一系列点组成,图象上的每一点坐标(x,y)代表了函数的一对对应值,即把自变量x与函数y的每一对对应值分别作为点的坐标和坐标,在直角坐标系中描出相应的点,这些点组成的图形,就是这个函数的图象。
5、用描点法作函数图像的具体步骤三步是、、。
二、课堂探究:1、画函数S=x2(x>0)的图象第一步:列表x 0 0.5 1 1.5 2 2.5 3 …S …第二步:描点:以x的值为坐标,相应的函数值为坐标,描出表格中数值对应的各点。
第三步:连线:按照坐标由小到大的顺序,把所描各点从左到右用平滑的曲线连接起来。
注意:原点要排除(为什么?)从所画的图象上可以看出,曲线从左向右,即当x由小变大时,y随x的增大而。
归纳:1、一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的、坐标,那么坐标平面内由这些点组成的图形就是这个函数的。
2、函数图象上的点的坐标与解析式的关系:(1)函数图象上任意一点A(x,y)中的x、y满足函数的。
(2)满足函数的的任意一对x、y的值组成的点(x,y)一定在上。
(3)判断点A(x,y)是否在函数图象上的方法是:将这个点的坐标(x,y)代入函数的看是否满足2、画y=x+0.5的图象:第一步:列表x …-3 -2 -1 0 1y …S36。
人教版初中数学八年级19.1.2函数的图像教案【教材分析】教学目标1.理解函数图像的意义,2.学会用列表、描点、连线的方法画函数图像.3..学会观察、分析函数图像信息.4. 体会数形结合思想,并利用它解决问题,提高解决问题能力.【教学流程】环节导学问题师生活动情境引入提出问题,创设情境【问题1】写出正方形的边长x与面积S之间的关系式,你能想到更直观地表示S与x 的关系的方法吗?教师出示问题,学生尝试解决引入新课自主探究合作交流自(1)正方形的边长x与面积S的函数关系是什么?其中自变量x的取值范围是什么?(2)计算并填写下表:(3)如果我们在直角坐标系中,将你所填表格中的自变量x及对应的函数值S当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点.大家思考一下,表示x与S的对应关系的点有多少个?•如果全在坐标中指出的话是什么样子?答案:(1)函数关系式为S=x2,因为x代表正方形的边长,所以自变量x>0,(2)将每个x的值代入函数式即可求出对应的S值.填表略(3)这样的点有无数多个,如果全描出来太麻烦,也不可能.我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来.【问题2】教师引导学生,观察、主探究合作交流归纳:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.•上图中的曲线即为函数S=x2(x>0)的图象.函数图象可以数形结合地研究函数,给我们带来便利.尝试应用1在下列式子中,对于每一个确定的值,都有唯一的对应值,即是函数.画出这些函数的图象:(1)y=x+0.5(2)y=(x>0)【问题2】下图是自动测温仪记录的图象,•它反映了日照市的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?【例1】下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远?小明走到菜地思考、尝试回答,引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律…….由图象可知:1.这天中凌晨4时气温最低为-3℃,14时气温最高为8℃.2.从0时至4时气温呈下降状态,即温度随时间的增加而下降.从4时至14•时气温呈上升状态,从14时至24时气温又呈下降状态.3.我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少.【例1】教师引导学生观察、思考、参与其中,讨论、交流.掌握观察图象的方法.引导学生分析图象、寻找图象信息,特别是图象中有两段平行于x•轴的线段的意义.答案:1.由纵坐标看出,菜地离小明家1.1千米;由横坐标看出,小明走到菜地用了15分钟.2.由平行线段的横坐标可看出,小明给菜地浇水用了10分钟.3.由纵坐标看出,菜地离玉米地0.9千米.由横坐标看出,小明从菜地到玉米地用了12分钟.4.由平行线段的横坐标可看出,小明给玉米地锄草用了18分钟.5.由纵坐标看出,玉米地用了多少时间?2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远?小明从菜地到玉米地用了多少时间?4.小明给玉米地锄草用了多长时间?5.玉米地离小明家多远?小明从玉米地走回家平均速度是多少?离小明家2千米.由横坐标看出,小明从玉米地走回家用了25分钟.所以平均速度为:2÷25=0.08(千米/分钟).尝试应用1.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反映全程h与t的关系图是()2. 4.如图的图象表示小红放学回家途中骑车速度与时间的关系,你能想象出她回家路上的情境吗?教师出示问题,学生先自主,再合作,交流展示,师生共同评价1.D2.答案不唯一:例如,从图像观察可知,小红放学后开始做加速运动,后来匀速行驶,再后来慢慢减速,回到了家。
《函数的图象》教案【教学目标】1.知识与技能(1)知道函数的三种表示法及其优缺点;(2)能用适当的方式表示简单实际问题中的变量之间的函数关系;(3)能对函数关系进行分析,对变量的变化情况进行初步讨论。
2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。
3.情感态度和价值观建立综合考虑的思维模式。
【教学重点】综合运用三种表示法表示函数关系,研究运动变化过程。
【教学难点】正确选择表示方法。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】在上节课的学习当中,我们学习了如何画函数的图象,现在,大家根据这个问题一起来复习一下步骤吧。
如图,要做一个面积为12 m2的小花坛,该花坛的一边长为x m,周长为y m.(1)变量y 是变量x 的函数吗?(2)能求出这个问题的函数解析式吗?(3)能画出函数的图象吗?【过渡】对于这些问题,我想大家都能够很轻易的回答出来,从刚刚的问题中,我们可以看到函数的表示方法并不是唯一的,比如解析式法,还有我们所画的图象及表格,都可以用来表示函数。
那么这不同的方法都有哪些优缺点,我们又该如何选择呢?这节课我们就来探讨一下这个问题。
二、新课教学1.函数的表示方法【过渡】根据刚刚及之前的例子,大家能总结一下有几种表示方法,以及各自的优点吗?三种,分别是列表法、解析式法、图象法。
分别举例说明三种方法的优点。
列表法:具体地反映了函数与自变量的数值对应关系。
解析式法:准确地反映了函数与自变量之间的数量关系。
图象法:直观地反映了函数随自变量的变化而变化的规律。
【过渡】在一个问题中,我们该如何灵活运用这三种不同的表示方法呢?我们一起来看例4.讲解课本例4。
【过渡】从刚刚的例题中,我们能够看出,三种不同的表示方法之间是可以相互转化的。
(1)由函数解析式可以得到这个函数的列表及图象;(2)由函数的图象可以得到其解析式及函数的对应值表格;(3)由函数的表格可以得到函数的解析式及图象。
19.1函数19.1.2函数的图象第1课时函数的图象教学目标一、基本目标【知识与技能】1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.【过程与方法】在研究函数图象的过程中体会数形结合思想,并利用它解决问题,提高解决问题的能力.【情感态度与价值观】1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用,从而加深对数学的认识.二、重难点目标【教学重点】1.函数图象的画法.2.观察分析图象信息.【教学难点】分析概括图象中的信息.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P79的内容,完成下面练习.【3 min反馈】1.什么是函数图象?解:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.在学习函数图象时,可以通过以下两点帮助理解:(1)函数图象上的任意点P(x,y)中的x、y都满足其函数解析式;(2)满足函数解析式的任意一对x、y的值,所对应的点一定在函数图象上.3.用函数图象描述实际问题时,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.4.如何作函数图象?具体步骤有哪些?画函数的图象,一般运用描点法.用描点法画函数图象的一般步骤:(1)列表:表中给出一些自变量的值及其对应的函数值.自变量的取值不应使函数太大或太小,以便于描点,点数一般以5到7个为宜;(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连结起来. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s (千米)与所经过的时间t (分钟)之间的大致函数图象是( )ABCD【互动探索】(引发学生思考)行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加,但增加的比高速路上慢,故B 符合题意.【答案】B【互动总结】(学生总结,老师点评)此类题目,理解题意是解题关键,根据题干中提供的信息及生活实际,判断图象各阶段的变化情况和特征.【例2】作出函数y =-6x的图象.【互动探索】(引发学生思考)先列表取值,再描点,最后连线. 【解答】列表: x -6 -4 -3 -2 -1 1 2 3 4 6 y11.5236-6-3-2-1.5-1描点、连线,如图.【互动总结】(学生总结,老师点评)画函数图象要经过列表、描点、连线三个步骤,列表时自变量取值要有代表性(自变量不可以只取正数,也不可以只取负数).自变量不为0,表示图象不是连续的,在自变量为0时,图象断开,分为两段.活动2巩固练习(学生独学)1.周末小石去博物馆参加综合实践活动,先骑行共享单车前往,0.5小时后到达公交车站,他在公交车站等了一段时间,遇到了叔叔,搭上了叔叔的电瓶车前往.已知小石离家的路程s(单位:千米)与时间t(单位:小时)的函数关系的图象大致如图.则小石叔叔电瓶车的平均速度为(C)A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时2.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是(B)A B C D3.在所给的平面直角坐标系中画出函数y=-2x+2的图象,并根据图象回答问题:(1)当x=-1时,y的值;(2)当x为何值时,y>0?(3)若0≤x≤3,求y的取值范围.解:列表如下:x ...-2-1012...y ...6420-2...根据表中数值描点、连线,函数图象如图所示:(1)根据表格,当x=-1时y=4.(2)根据图象,观察可得,当x<1时,y>0.(3)根据图象,观察可得,若0≤x≤3,则-4≤y≤2.活动3拓展延伸(学生对学)【例3】小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明从家到学校的路程是多少米?(2)小明在书店停留了多久?(3)本次上学途中,小明一共骑行了多少米?一共用了多长时间?(4)我们认为骑单车的速度超过300米/分就超越了安全范围.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全范围内吗?【互动探索】根据图象,获取其中的信息,图象中横、纵坐标表示的是什么?函数值随自变量的变化趋势是怎么样的?【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米.(2)根据图象,从8分钟到12分钟这段时间内距离不变,故小明在书店停留了4分钟. (3)一共骑行的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米),共用了14分钟.(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时,小明骑车速度最快,不在安全范围内.【互动总结】(学生总结,老师点评)解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数的图象⎩⎪⎨⎪⎧作法意义应用练习设计请完成本课时对应训练!第2课时 函数的三种表示方法教学目标一、基本目标 【知识与技能】1.总结函数三种表示方法,并总结三种表示方法的优缺点. 2.会根据具体情况选择适当方法. 【过程与方法】经历回顾思考训练提高归纳总结能力.【情感态度与价值观】1.积极参与活动,提高学习兴趣.2.在数学活动过程中形成合作交流意识及独立思考习惯.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?表示方法优点缺点解析式法能准确地反映整个变化过程中两个变量间的关系有些实际问题不一定能用解析式表示列表法由表中已有自变量的每一个值可以直接得出相应的函数值自变量的值不能一一列出,也不容易看出自变量与函数之间的对应关系图象法能直观、形象地表达函数关系观察图象只能得到近似的数量关系环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:质量(克)1234…伸长量(厘米)0.51 1.52…总长度(厘米)10.51111.512…(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探索】(引发学生思考)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(学生总结,老师点评)列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车一共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?【互动探索】(引发学生思考)从函数图象中我们得到哪些信息?这些信息与所求问题有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B点时的路程是80千米,由横坐标看出到达B点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(学生总结,老师点评)图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米? (3)这辆车在中途不加油的情况下,最远能行驶多少千米?【互动探索】(引发学生思考)剩余油量为y (升)与行驶路程为x (千米)之间满足什么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y =-0.6x +48.(2)当x =35时,y =48-0.6×35=27,∴这辆车行驶35千米时,剩油27升. 当y =12时,48-0.6x =12,解得x =60,∴汽车剩油12升时,行驶了60千米. (3)令y =0,即-0.6x +48=0,解得x =80,即这辆车在中途不加油的情况下,最远能行驶80 km.【互动总结】(学生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.活动2 巩固练习(学生独学) 1.下面说法中正确的是( C ) A .两个变量间的关系只能用关系式表示 B .图象不能直观的表示两个变量间的函数关系 C .借助表格可以表示出因变量随自变量的变化情况 D .以上说法都不对2.某学习小组做了一个实验:从一幢100 m 高的楼顶随手放下一个苹果,测得有关数据如下:下落时间t (s)1234下落高度h (m)5 20 45 80则下列说法错误的是( B ) A .苹果每秒下落的路程越来越长 B .苹果每秒下落的路程不变 C .苹果下落的速度越来越快D .可以推测,苹果落到地面的时间不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t ,两图形重合部分的面积为S ,则S 关于t 的图象大致为( B )A B C D4.如图1,在△ABC 中,AD 是三角形的高,且AD =6 cm ,E 是一个动点,由B 向C 移动,其速度与时间的变化关系如图2.(1)求当E 点在运动过程中△ABE 的面积y 与运动时间x 之间的关系式;(2)当点E 移动3.5秒后停止,且速度变化趋势与前2秒一致,求此时△ABE 的面积.图1 图2解:(1)由图2知,E 点的运动速度没有发生变化,是3 cm/s ,∴BE 的长为3x cm ,∴S △ABE =12BE ·AD =12×3x ·6=9x (cm 2),即y =9x . (2)当x =3.5时,y =9×3.5=31.5 (cm 2). 活动3 拓展延伸(学生对学)【例4】如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示.(1)求矩形ABCD 的面积; (2)求点M 、点N 的坐标;(3)如果△ABP 的面积为矩形ABCD 面积的15,求满足条件的x 的值.图1图2【互动探索】(1)点P 从点B 运动到点C 的过程中,运动路程为4时,面积发生了变化且面积达到最大,说明BC 的长为4;当点P 在CD 上运动时,△ABP 的面积保持不变,就是矩形ABCD 面积的一半,并且运动路程由4到9,说明CD 的长为5,从而求出矩形的面积;(2)利用(1)中所求,可得当点P 运动到点C 时,△ABP 的面积为10,进而得出点M 的坐标,利用AD ,BC ,CD 的长得出点N 的坐标;(3)当点P 在BC 、CD 、AD 上时,分别求出点P 到AB 的距离,然后根据三角形的面积公式列式即可求出y 关于x 的函数关系式,进而求出x 即可.【解答】(1)结合图形可知,点P 在BC 上时,△ABP 的面积y 不断增大. 当4≤x ≤9时,△ABP 的面积不变,∴BC =4,CD =5, ∴矩形ABCD 的面积为4×5=20.(2)由(1)得当点P 运动到点C 时,△ABP 的面积为10,即点M 的纵坐标为10,∴点M 的坐标为(4,10).∵BC =AD =4,CD =5,∴NO =13,∴点N 的坐标为(13,0).(3)当△ABP 的面积为矩形ABCD 面积的15,则△ABP 的面积为20×15=4.①当点P 在BC 上时,0≤x ≤4,点P 到AB 的距离为PB 的长度x ,y =12AB ·PB =12×5x=5x 2.令5x2=4,解得x =1.6. ②当点P 在CD 上时,4≤x ≤9,点P 到AB 的距离为BC 的长度4,y =12AB ·PB =12×5×4=10(不合题意,舍去).③当点P 在AD 上时,9≤x ≤13时,点P 到AB 的距离为P A 的长度(13-x ),y =12AB ·P A=12×5×(13-x )=52(13-x ).令52(13-x )=4,解得x =11.4. 综上所述,满足条件的x 的值为1.6或11.4.【互动总结】(学生总结,老师点评)函数图象与图形面积是运用数形结合思想的典型问数学课堂教学资料设计数学课堂教学资料设计 题,图象应用信息广泛.通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义.环节3 课堂小结,当堂达标(学生总结,老师点评)函数的三种表示方法⎩⎪⎨⎪⎧ 解析式法列表法图象法练习设计请完成本课时对应训练!。
《函数的图象》教学设计一、教材分析:本节内容是《人教版》八年级下册第十九章第一节函数的第三课时,是在学习函数概念的基础上,进一步讨论函数的图象,学习从函数图象上获取信息和函数的图象画法,初步讨论函数的变化规律和变化趋势.同时这节课对于学习函数,培养学生的探索能力,拓展学生的空间想象力也有十分重要的意义学情分析。
二、学情分析:八年级下学期的学生具有初步几何知识,但他们的几何认知能力仍处于较低级的阶段,空间观念、想象力还需要进一步提高。
根据自主性和差异性原则,把学法概括为“感,探,议,创”从学生感兴趣的问题情境感知函数图象,引导学生自主探究,并在合作交流的基础上创造性学习。
三、教学方法:精当引入——交流展示——精讲点拨——反馈练习——总结四、教学目标:1.知识与技能:(1)了解函数的图象概念(2)学会用列表、描点、连线画函数的图象,(3)学会观察、分析函数图象,提高识图能力、分析函数图象信息能力,2.过程与方法:经历了画函数的图象探索过程,通过观察、操作、分析、发现、探究的过程,培养学生的观察、分析能力和动手操作能力,体会数形结合的思想和分类讨论的思想。
3.情感态度与价值观:通过对函数的图象的学习,感受生活中的问题能以几何形式直观形象地表示变量间的单值对应关系,培养学生热爱数学。
五、教学重点、难点:重点:函数的图象意义和画法,会识函数图象。
难点:分析概括图象中的信息。
六、教学过程:(一)走进生活,导入新课。
以实际生活为例,观察天气预报的图象,引导学生学会从图中获取信息。
以之前学习函数的概念为基奠,提出今天的内容:函数的图象。
(二)探究新知。
1.情景引入:问题1:我校想建一个正方形的花坛。
面积随边长变化而变化,请你写出函数关系式,并确定自变量的取值范围。
面积与边长的函数关系式为:s=x2 (x>0)能不能用图象直观形象的反映出来呢?想一想:a.在平面直角坐标系中,平面内的点可以用一对有序数对来表示。