土压平衡盾构施工工艺
- 格式:pdf
- 大小:1.17 MB
- 文档页数:8
土压平衡盾构施工技术一、盾构施工法概述1.盾构施工程序。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行,因而是工艺技术要求高、综合性强的一类施工方法。
其主要施工程序为:建造盾构工作井;盾构机安装就位;出洞口土体加固处理;初推段盾构掘进施工;隧道正常连续掘进施工;盾构接收井洞口的土体加固处理;盾构进入接收井解体吊出。
2.盾构施工优点。
盾构施工与矿山法施工具有以下优点:地面作业少,隐蔽性好,因噪音、振动引起的环境影响小;自动化程度高、劳动强度低、施工速度快;因隧道衬砌属工厂预制,质量有保证;穿越地面建筑群和地下管线密集的区域时,周围可不受施工影响;穿越河底或海底时,隧道施工不影响航道,也完全不受气候影响;对于地质复杂、含水量大、围岩软弱的地层可确保施工安全;在费用和技术难度上不受覆土深度影响。
二、盾构推进隧道施工1. 掘进原理。
盾构在粉质粘土、粉质砂土和砂质粉土等粘性土层中掘进施工时,由刀盘旋转切削下来的土体进入密封土仓后,可对开挖面地层形成被动土压力,与开挖面上的主动土压力相抗衡。
使开挖面的土层处于稳定状态。
当盾构推进时,启动螺旋输送器排土,使排土量等于开挖量,即可使开挖面地层始终处于稳定。
排土量一般通过调节螺旋输送器转速和出土口装置予以控制。
当地层含砂量超过某一限度时,因土的摩阻力大、渗透系数高、地下水丰富等原因,泥土塑流性将明显变差,密封仓内的土体可因固结作用而被压密,导致渣土难于排出,甚至形成泥饼而无法推进,而且单靠切削土提供的被动土压力,常不足以抵抗开挖面的水土压力。
出现这种状况时,可向密封仓内注入水、泡沫、膨润土等,同时进行搅拌,以期适当改善仓内土体的塑流性,顺利排土。
2.轴线控制。
盾构轴线的控制是盾构推进施工的一项关键技术,怎样控制盾构能在已定空间轴线的允许偏差范围内是必须掌握的技术,在实际施工中盾构推进轴线控制不可能是理想的状况,轴线控制不佳状况除地质不均匀引起的正面阻力不均匀及隧道的平面和竖曲线要求外,往往是产生于人为因素,这是指施工不精心及对轴线控制操作技术水平不够两个原因,而后者占多数。
高承压水头土压平衡盾构水下接收施工工法一、前言高承压水头土压平衡盾构水下接收施工工法是一种在水下进行隧道施工的技术方法,其特点是使用专门的施工设备,在水下接收盾构机,利用平衡土压的原理,确保施工过程中的安全和稳定。
二、工法特点1. 可以在高承压水头条件下进行施工,适用于深海和大江大河等深水环境。
2. 采用平衡土压的设计原理,能够平衡水压和土压,减小对周围环境的影响。
3. 采用水下接收盾构机的方式,能够减少进入水下施工区域的人员和设备的数量,降低施工风险。
4. 可以在水下进行施工,减少对陆地生态环境的破坏,符合可持续发展的要求。
三、适应范围1. 深海隧道施工:适用于深海环境下的隧道施工,如海底隧道、海底管道等。
2. 江河隧道施工:适用于大江大河等水流较大的环境下的隧道施工,如长江隧道等。
四、工艺原理高承压水头土压平衡盾构水下接收施工工法的工艺原理主要包括:1. 平衡土压原理:盾构机在施工过程中,通过控制土压与水压的差异,使得土压与水压之间达到平衡,确保施工过程的稳定性。
2. 水下接收原理:在水下将盾构机接收,通过水压调节设备对接收区域进行稳定支撑,使得盾构机能够顺利通过接收区域。
五、施工工艺1. 进场准备:确定施工区域,并进行现场布置和设备调试。
2. 水下接收:将盾构机运送至水下,通过水压调节设备进行稳定支撑,确保盾构机能够顺利通过接收区域。
3. 盾构施工:在水下进行盾构施工,通过平衡土压原理,平稳推进,并同时进行环片的安装和封闭。
4. 施工结束:完成隧道的施工后,拆除水下支撑设备,并将盾构机运送至水面。
六、劳动组织1. 施工队伍:包括盾构机操作人员、水下施工人员、设备操纵人员等。
2. 管理人员:负责施工工艺的组织、协调和管理。
七、机具设备1. 盾构机:用于隧道的推进和施工。
2. 水压调节设备:用于对水下接收区域进行稳定支撑。
3. 环片安装设备:用于环片的安装和封闭。
八、质量控制1. 施工工艺控制:严格按照工艺要求进行施工,确保施工质量。
土压平衡盾构在现代城市建设中,隧道施工技术一直是一个备受关注的话题。
土压平衡盾构作为隧道施工中的重要技术手段,被广泛运用于地铁、隧道、水利工程等领域。
本文将介绍土压平衡盾构的工作原理、施工流程、应用领域以及发展趋势。
工作原理土压平衡盾构是一种通过对盾构机内部进行适当压力控制,使土体在掌握平衡条件下对盾构机的推进方向施加支护压力的施工方法。
其主要工作原理如下:1.土压平衡控制:通过盾构机内设的控制系统,对注入的压浆进行控制,使得盾构机内外的土压力保持平衡,避免挤压或塌陷的发生。
2.推力控制:由盾构机的主推进液压缸提供推力,推动盾构机朝着设计方向推进,同时根据隧道的地质条件,调整推进速度和力度,保证施工安全。
3.土体支护:在盾构机推进的同时,通过盾构机后部的支护系统提供对土体的支撑和加固,防止隧道倒塌。
施工流程土压平衡盾构施工流程一般包括以下几个步骤:1.现场勘察:对隧道工程的地质条件、地下管线等情况进行详细调查和勘察,了解地层情况,为后续施工提供数据支持。
2.盾构机铺设:将盾构机按照设计要求铺设在施工现场,进行机器调试和检验。
3.推进施工:启动盾构机,根据设计要求控制推进速度和土压平衡,逐步推进隧道施工。
4.土体处理:处理盾构机后部土体的排出和支护,防止土体坍塌,同时保护环境。
5.隧道验收:完成隧道的整体施工后,进行验收,确保施工质量和安全。
应用领域土压平衡盾构技术在地铁、铁路、公路、水利等领域均有广泛应用,其主要应用包括:•地铁隧道:土压平衡盾构在地铁隧道的施工中应用广泛,能够适应不同地质条件,提高施工效率和质量。
•水利工程:在水利隧道、排水管道等工程中,土压平衡盾构可以有效应对复杂的地下水文条件,保证施工安全。
•公路隧道:对于公路隧道的施工,土压平衡盾构可以减少交通影响,提高工程质量。
发展趋势随着城市化进程的不断加快,土压平衡盾构技术在隧道施工中将继续发挥重要作用,并呈现出以下几个发展趋势:•智能化:随着技术的不断发展,土压平衡盾构将趋向智能化,实现自动化控制和监测,提高施工效率和安全性。
土压平衡盾构克泥效同步注入抑制沉降施工工法1前言近些年来,随着城市的日益发展,大城市逐步形成了以地铁交通为主体的交通格局,而盾构法因其具有对周围环境影响较小已成为修建地铁的主要施工手段。
然而盾构区间隧道多分布于城区,沿线必将穿过繁华的商业闹市区,建筑物及地下管道密集,而且随着线路的增多,较多城市的轨道交通都进入了网络化建设的时代,轨道交通的网络化建设不可避免地带来新建隧道与已建隧道之间相互平行、重叠、交叉或者穿越等复杂的施工情况。
尤其是当盾构下穿既有线,例如国铁、运营隧道等,由于影响面之大,盾构邻近施工时,即使是微小的变化,都可能对既有线路造成灾难性的影响。
故随着穿越工程的增多及穿越间距的缩短,要求施工时必须采取措施控制、减弱施工对既有隧道结构的不利影响,保护既有隧道的正常使用和运营安全。
由此可见,新建隧道穿越既有线或者重大危险源的施工措施已成为新一轮城市轨道交通建设必须深入研究的关键问题。
武汉地铁七号线武瑞区间需要三次穿越国铁,其中穿越京广铁路四股道,影响范围较大,根据国铁要求,既有线铁路沉降控制标准为9mm,安全风险高,属于项目特级风险源。
前期策划阶段,经过认真分析盾构掘进造成地面沉降的规律和机理,研究盾构机本身构造后发现,盾构在掘进过程中,虽然采用盾构机同步注浆系统,填充盾体外壳和管片之间的环形空隙,抵抗围岩变形,但是由于国内外盾构机构造的限制,同步注浆系统只能通过盾尾后方注入点注入,其浆液充填时间滞后于掘进一定时间,无法抑制盾体周边土体变形等。
由盾构机本身的构造可知,为了减少了盾体和土体的摩擦,国内外盾构机刀盘开挖直径一般大于盾体2〜5cm,如此以来,在盾构机盾体范围内形成的开挖轮廓和盾体之间就存在一个环形构造空隙。
由于前盾、中盾、盾尾直径不同,此构造空隙一般平均为2cm(由于盾体自重,盾体下部与土体紧密接触,上部间隙最大)。
在类似穿越施工中,地表变形指标较为严格的情况下,若不有效填充其本身的构造空隙,势必会引起该部分土体的应力释放,造成地表变形增大。
加泥式土压平衡盾构施工技术中铁十六局盾构工程项目经理部内容提要:本文详细介绍了土压平衡盾构机组成、工作原理,并结合深圳地铁7标段盾构隧道的施工,重点对盾构隧道的主要施工过程和关键工艺技术进行总结和分析。
关键词:土压平衡盾构施工技术一、盾构施工法概述及盾构机的选型1.1盾构施工法概述盾构施工法于19世纪初在英国开始使用,经过反复摸索,在近30~40年间取得了飞速发展,现在,该施工法已同矿山法一起成为城市隧道施工的两大主要施工方法。
20世纪90年代该项技术被引进我国,主要集中应用盾构技术来进行上、下水道、电力通讯隧道、人防工事、地铁隧道等施工。
目前在上海、广州、深圳、南京等城市已经开始采用盾构法来施工地铁隧道,盾构法在国内逐渐开始发展普及。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行,因而是工艺技术要求高、综合性强的一类施工方法。
其主要施工程序为:1、建造盾构工作井2、盾构机安装就位3、出洞口土体加固处理4、初推段盾构掘进施工5、隧道正常连续掘进施工6、盾构接收井洞口的土体加固处理7、盾构进入接收井解体吊出盾构施工与矿山法施工具有以下优点:1、地面作业少,隐蔽性好,因噪音、振动引起的环境影响小;2、自动化程度高、劳动强度低、施工速度快;3、因隧道衬砌属工厂预制,质量有保证;4、穿越地面建筑群和地下管线密集的区域时,周围可不受施工影响;5、穿越河底或海底时,隧道施工不影响航道,也完全不受气候影响;6、对于地质复杂、含水量大、围岩软弱的地层可确保施工安全;7、在费用和技术难度上不受覆土深度影响。
盾构法施工也存在一些缺点:1、一次性投入大,施工设备费用较高;2、覆土较浅时,地表沉降较难控制;3、用于施作小曲率半径(R<20D)隧道时掘进较困难。
1.2盾构机的选型盾构施工法大体上分为开放式和封闭式两种。
开放式就是没有隔墙而工作面开放的盾构,考虑到确保工作面稳定、高压气下的作业环境等问题,目前已基本上不再采用这个方法。
土压平衡盾构下穿水域施工工法一、前言土压平衡盾构是一种常用于水域下穿的施工工法,它以盾构机为主要施工设备,利用土压和液压平衡来抵抗水压,平稳地进行水下施工。
本文将详细介绍土压平衡盾构下穿水域施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例,旨在为读者提供有关该工法的全面了解和应用指导。
二、工法特点土压平衡盾构下穿水域施工工法具有以下特点:1. 高效快速:盾构机的施工速度快,能够在较短时间内完成下穿水域的施工任务。
2. 高质量:盾构机施工质量稳定可靠,能够确保施工过程中的标准要求得到满足。
3. 环保节能:采用液压平衡措施,有效减少了水压对施工的影响,减少了水资源的浪费,同时也降低了能耗。
4. 安全可靠:盾构机具备自动监测、报警和紧急停机等安全保护装置,确保施工过程中的安全。
三、适应范围土压平衡盾构下穿水域施工工法适用于河道、湖泊、河口、海洋等水域的地下隧道施工。
它能够有效应对水压和泥沙的变化,适应不同水下环境的复杂情况。
四、工艺原理土压平衡盾构下穿水域施工工法的原理基于土压平衡和液压平衡的作用。
在施工过程中,盾构机的前端设有刀盘,通过刀盘的旋转和推进,将土层掘进并转移到后部的螺旋输送机上进行排出。
在刀盘掘进的同时,以刀盘为中心的土压作用形成一个稳定的土壳,从而抵抗水压的影响。
通过控制刀盘推进速度和注入液压平衡液体的流量和压力,实现施工过程的平衡。
五、施工工艺土压平衡盾构下穿水域的施工工艺包括盾构机的安装与调试、进洞与掘进、液压平衡调控、环片安装与封圈处理、土层处理与泥沙处理等步骤。
在施工过程中,需要根据实际情况进行合理的技术措施和操作步骤,确保施工的顺利进行。
六、劳动组织土压平衡盾构下穿水域施工工法需要组织一支专业化的施工队伍,包括盾构机操作员、地质勘探人员、测量人员、质量管控人员等。
在施工过程中,需要合理分工,密切协作,确保工作的高效进行。
土压平衡盾构施工工艺土压平衡盾构的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。
土压平衡盾构属封闭式盾构。
盾构另一个作用是能够承受来自地层的压力,防止地下水或流砂的入侵。
01工作原理1.盾构机的掘进液压马达驱动刀盘旋转,同时启动盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的渣土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过盾构井口垂直运至地面。
2.掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍塌或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
3.管片拼装盾构机掘进一环的距离后,通过管片拼装机通缝或错缝拼装单层衬砌管片,使隧道—次成型。
02操作工艺盾构掘进时泥土质量控制1.泥土压力控制。
盾构中的泥土压力可通过以下3种方式调节:(1)调节螺旋输送机的转数;(2)调节盾构千斤顶的推进速度;(3)两者组合控制。
2.泥土塑流性控制。
泥土的塑流性可通过以下4种方法测试。
(1)土仓内的土压。
可通过设在盾构隔板上的土压计测定,是判断泥土塑流性的一种简洁方法。
(2)盾构负荷。
由掘削扭矩、螺旋输送机的扭矩等负荷的变化推定泥土的塑流性。
(3)螺旋输送机的排土效率。
泥土塑流性好的情况下,从螺旋输送机的转数算出的排土量与计算掘削土量的相关性较高。
(4)排土形状测量。
根据目测排土状况或者泥土取样的坍落度试验可以判定泥土的塑流性。
3.防止刀盘泥饼的形成:(1)土舱内水、土、气压力设定值不宜过高,应设法减小刀盘与正面岩土的挤压应力;(2)采取发泡剂等措施切断裂隙水的通道,防止地层中裂隙水涌入;(3)合理布设刀盘刀具,遇到塑性大、裂隙水丰富的风化岩土时,应及时拆除滚刀;(4)向刀盘正面压注一定量的发泡剂或润滑水,减小刀盘与正面土体的碾磨力,同时还可增加破碎的流塑性;(5)在土舱内加以适当的气压,提高螺旋输送机的排土能力。
浅谈土压平衡盾构施工摘要:近年来,我国的城市地铁隧道、市政隧道、水电隧道、公路交通隧道已经越来越多地采用全断面隧道掘进机施工,其中用得最多的是土压平衡盾构掘进机。
上海、广州、深圳、南京、北京的地铁区间隧道已经采用了31台直径6.14m~6.34m的土压平衡盾构,掘进区间隧道总长度达400km。
土压盾构具有机械化程度高、开挖面稳定、掘进速度快、作业安全等优点,在隧道工程中有广泛的发展前景。
本文结合自己在天津津滨轻轨地铁九号线Q标盾构区间的盾构掘进施工经验做出总结,并且对于盾构施工技术主要工序以及要点进行说明。
关键词:隧道土压平衡盾构掘进机津滨轻轨施工技术工序引言1.1 土压平衡盾构的产生今天的全球,已有一半以上的人口居住在城市,人口超过100万的城市已达400个以上。
现代城市发展的模式应该是可持续的,这意味着城市向市民提供便捷交通、清洁水源的同时,还必须尽可能地减少人类的生态足迹,地下隧道为城市可持续发展提供了一个很好的解决方法。
世界上第一条人工开挖的盾构隧道是由法国人Marc Brunnel和他的儿子Isambard Kingdom Brunnel一起在伦敦泰晤士河下建成的。
1869年,James Henry Greathhead采用圆形敞开式盾构,在泰晤士河下再建了1条外径为2.18m的行人隧道,该隧道衬砌为铸铁管片,隧道在不锈水的黏土层中掘进,无地下水威胁,因此相当顺利。
1886年,Greathead在建造伦敦地铁时,首次使用了压缩空气盾构。
压缩空气盾构的出现解决了含水地层的隧道修建问题。
1965年,日本首先制造了泥水盾构,泥水盾构的基本原理是用液体平衡开挖面的土体。
育压缩空气相比,其不需要人员在压缩空气条件下工作,但泥水处理系统比较复杂,绝大多数情况是在含水沙层中使用。
1974年,日本的Sato kogyo有限公司发明了土压平衡盾构(Earth Pressure Balanced Shield)。