湖北省宜昌市点军区2015-2016学年八年级上学期期中考试数学试题(原卷版)
- 格式:doc
- 大小:140.53 KB
- 文档页数:5
八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.如下字体的四个汉字中,是轴对称图形的是( )A. B. C. D.2.下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 平行四边形D. 锐角三角形3.如图,四个图形中,线段BE是△ABC的高的图是( )A. B.C. D.4.已知△ABC有一个内角为100°,则△ABC一定是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 锐角三角形或钝角三角形5.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A. 5B. 6C. 11D. 166.若三角形三个内角度数的比为1:2:3,则这个三角形的最小角是( )A. 30∘B. 45∘C. 60∘D. 90∘7.一个多边形的每个内角都等于120°,则这个多边形的边数为( )A. 4B. 5C. 6D. 78.已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是( )A. 2厘米B. 4厘米C. 6厘米D. 8厘米9.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A. 7cmB. 3cmC. 7cm或3cmD. 8cm10.等腰三角形的一个外角为80°,则它的底角为( )A. 100∘B. 80∘C. 40∘D. 100∘或40∘11.点P(1,-2)关于x轴对称的点的坐标为( )A. (1,2)B. (1,−2)C. (−1,2)D. (−1,−2)12.如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的( )A. 高B. 角平分线C. 中线D. 无法确定13.如图,OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3cm,则CE的长度为( )A. 2cmB. 3cmC. 4cmD. 5cm14.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A. 1B. 12C. 13D. 1415.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A. B.C. D.二、计算题(本大题共1小题,共10.0分)16.如图,G为BC的中点,且DG⊥BC,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD是∠BAC的平分线;(2)如果AB=8,AC=6,求AE的长.三、解答题(本大题共8小题,共65.0分)17.如图所示,折叠一个宽度相等的纸条,求∠1的度数.18.已知:如图,在等边△ABC中,DB是AC边上的高,E是BC延长线上一点,且DB=DE,求∠E的度数.19.一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.20.已知:如图,AB=AE,∠1=∠2,AD=AC求证:BC=ED.21.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)若以D,B,C为顶点的三角形与△ABC全等(点D与点A不重合),请直接写出点D的坐标.22.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,3小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.23.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.24.(1)操作发现:如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B 不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.答案和解析1.【答案】D【解析】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.根据轴对称图形的定义逐个判断即可.本题考查了轴对称图形的定义,能够正确观察图形和理解轴对称图形的定义是解此题的关键.2.【答案】D【解析】解:正方形,长方形,平行四边形,锐角三角形中只有锐角三角形具有稳定性.故选:D.根据三角形具有稳定性解答.本题考查了三角形的稳定性,是基础题,需熟记.3.【答案】D【解析】解:由图可得,线段BE是△ABC的高的图是D选项.故选:D.根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.【答案】B【解析】解:∵△ABC有一个内角为100°,∴△ABC一定是钝角三角形.故选:B.根据三角形的分类即可得到结论.本题考查了三角形的内角和,三角形的分类,熟记三角形的分类是解题的关键.5.【答案】C【解析】解:设此三角形第三边的长为x,则10-4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.6.【答案】A【解析】解:设这三个内角分别为x,2x,3x,由题意得,x+2x+3x=180°,解得:x=30°,即最小角为30°.故选:A.设这三个内角分别为x,2x,3x,根据三角形的内角和为180°,列方程求出角的度数即可.本题考查了三角形的内角和,解答本题的关键是根据三角形的内角和公式求出角的度数.7.【答案】C【解析】解:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故选:C.先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数,即可得到边数.此题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.8.【答案】B【解析】解:∵直角三角形中30°角所对的直角边长是2厘米,∴斜边的长是4厘米.故选:B.由于在直角三角形中30°角所对的直角边长是斜边的一半,根据已知条件即可求出斜边的长.此题考查了直角三角形的性质,如果直角三角形的一个锐角为30°,那么它所对的直角边是斜边的一半.9.【答案】B【解析】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.已知的边可能是腰,也可能是底边,应分两种情况进行讨论.本题从边的方面考查三角形,涉及分类讨论的思想方法.10.【答案】C【解析】解:∵等腰三角形的一个外角为80°∴相邻角为180°-80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°-100°)÷2=40°.故选:C.根据三角形的外角性质和等腰三角形的性质求解.本题考查了等腰三角形的性质,解题的关键是掌握三角形的内角和定理以及等腰三角形的性质.11.【答案】A【解析】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,-2)关于x轴对称点的坐标为(1,2),故选:A.根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,即可得出答案.本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.12.【答案】C【解析】解:过A 作AH⊥BC于H,∵S△ACD=CD•AH,S△ABD=BD•AH,∵△ACD和△ABD面积相等,∴CD•AH=BD•AH,∴CD=BD,∴线段AD是三角形ABC的中线,故选:C.过A作AH⊥BC于H,根据三角形的面积公式得到S△ACD=CD•AH,S△ABD= BD•AH,由于△ACD和△ABD面积相等,于是得到CD•AH=BD•AH,即可得到结论.本题考查了三角形的面积,三角形的中线的定义,熟记三角形的面积公式是解题的关键.13.【答案】B【解析】解:∵OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,CD=3cm∴CE=CD=3cm.故选:B.从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知CE的长度等于CD的长.本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.14.【答案】B【解析】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.根据轴对称图形的性质,解决问题即可;本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.15.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.根据过直线外一点向直线作垂线即可.此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.16.【答案】解:(1)连接BD、DC∵DG⊥BC,G为BC的中点,∴BD=CD,∵DG⊥BC,DE⊥AB∴∠BED=∠CFD,在Rt△DBE和Rt△DFC中,DB=DCBE=CF∴△DBE≌△DFC∴DE=DF,∴∠BAD=∠FAD∴AD是∠BAC的平分线;(2)∵DE=DF,∠BAD=∠FAD,AD=AD∴△AED≌△ADF,∴AE=AF∵AB=AE+BE,AC=AF-CF,∴AB+AC=AE+AF,∵AB=8,AC=6,∴8+6=2AE,∴AE=7.【解析】(1)因为G为BC的中点,且DG⊥BC,则DG是线段BC的垂直平分线,考虑连接DB、DC,利用线段的垂直平分线的性质,又因为DE⊥AB,DF⊥AC,可通过DE=DF说明AD是∠BAC的平分线;(2)先通过△AED与△ADF的全等关系,说明AE与AF的关系,利用线段的和差关系,通过线段的加减求出AE的长.本题考查了线段垂直平分线的性质和判定、角的平分线的性质与判定以及三角形的全等.利用线段的和差及等式的性质是解决本题的关键.17.【答案】解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=12∠EFC=40°.【解析】依据折叠以及平行线的性质,即可得出∠1=∠2,再根据三角形外角性质,即可得出结论.本题考查的是平行线的性质以及三角形外角性质,用到的知识点为:两直线平行,内错角相等.18.【答案】解:∵△ABC是等边三角形,∴∠ABC=60°,∵BD⊥AC,∴∠DBC=12∠ABC=30°,∵DB=DE,∴∠E=∠DBC,∴∠E=30°.【解析】首先证明∠DBC=30°,根据等腰三角形的性质即可解决问题;本题考查等边三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:设多边形的边数为n,由题意得,(n-2)•180°=5×360°,解得n=12,所以,这个多边形是十二边形.【解析】根据多边形的内角和公式(n-2)•180°和外角和定理列出方程,然后求解即可.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.20.【答案】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠CAB=∠EAD,在△ACB和△ADE中,AB=AE∠CAB=∠EADAC=AD,∴△ACB≌△ADE(SAS),∴BC=DE.【解析】根据题干中条件易证∠CAB=∠EAD,即可证明△ACB≌△ADE,可得BC=DE.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证三角形全等是解题的关键.21.【答案】解:(1)如图所示,△A1B1C1即为所求.(2)如图,D(-2,-3)或(-5,3)或(-5,-3).【解析】(1)直接利用关于y轴对称点的性质得出对应点位置,再顺次连接可得;(2)直接利用全等三角形的判定方法得出对应点位置.此题主要考查了轴对称变换以及全等三角形的判定与性质,正确得出对应点位置是解题关键.22.【答案】解:作辅助线PD⊥AB于D;∵∠PBD=30°,∠PAB=15°,∠PBD=∠PAB+∠BPA∴∠BPA=15°即AB=PB=45(海里)PD=PB•sin30°=45×0.5=22.5>20,∴船不改变航向,不会触礁.【解析】本题可作辅助线PD垂直AB,利用直角三角形性质求出PD长,和20海里比较即可看出船不改变航向是否会触礁.此题考查了直角三角形的性质,关键为找出题中的等腰三角形,然后再根据直角三角形性质求解.23.【答案】解:(1)∵∠C=90°,∠A=60°,∴∠B=30°,∵AB=10cm,∴AM=AB-BM=10-2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10-2t=t,∴当t=103时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵MN∥BC,∴∠NMA=30°∴AN=12AM,∴t=12(10-2t),解得t=52,∴当t=52时,MN∥BC,CN=5-52×1=52.【解析】(1)根据直角三角形的性质即可得到结论;(2)根据等腰三角形的性质得到∴AM=AN,列方程即可得到结论;(3)根据题意列方程即可得到结论.本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.24.【答案】解:(1)结论:AF=BD;理由:如图1中,∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质);同理知,DC=CF,∠DCF=60°;∴∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF;在△BCD和△ACF中,BC=AC∠BCD=∠ACFDC=FC,∴△BCD≌△ACF(SAS),∴BD=AF(全等三角形的对应边相等);(2)成立.理由:如图2中,∵△ABC是等边三角形(已知),∴BC=AC,∠BCA=60°(等边三角形的性质);同理知,DC=CF,∠DCF=60°;∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF;在△BCD和△ACF中,BC=AC∠BCD=∠ACFDC=FC,∴△BCD≌△ACF(SAS),∴BD=AF(全等三角形的对应边相等);(3)Ⅰ.AF+BF′=AB;证明如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;证明如下:在△BCF′和△ACD中,BC=AC∠BCF′=∠ACDF′C=DC,∴△BCF′≌△ACD(SAS),∴BF′=AD(全等三角形的对应边相等);又由(2)知,AF=BD;∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.【解析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可以证得△BCD≌△ACF;然后由全等三角形的对应边相等知AF=BD;(2)通过证明△BCD≌△ACF,即可证明AF=BD;(3)Ⅰ.AF+BF′=AB;利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;Ⅱ.Ⅰ中的结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD (SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
一、选择题(每小题3分,共计45分)1.下列图形中,是轴对称图形的是().【答案】A.考点:轴对称图形的概念.2.点P(1,-2)关于x轴对称的点的坐标是().A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)【答案】A.【解析】试题分析:关于x轴对称的点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的点的坐标,纵坐标相同,横坐标互为相反数;关于原点对称的点的坐标,横坐标纵坐标都互为相反数,所以点P(1,-2)关于x轴对称的点的坐标是(1,2),故本题选A.考点:点关于坐标轴对称的点的坐标规律.3.已知△ABC有一个内角为100°,则△ABC一定是().A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形【答案】B.【解析】试题分析:根据三角形内角和是180度,规定三角形中最大角大于90度而小于180度的三角形是钝角三角形,本题△ABC有一个内角为100°,那么△ABC一定是钝角三角形.故选B.考点:钝角三角形定义.4.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().A.5B.6C.11D.16【答案】C.【解析】试题分析:三角形三边关系要符合两边之和大于第三边,两边之差小于第三边,如果三角形两边的长分别是4和10,则此三角形第三边的长要大于6,且小于14,只有C选项符合这个范围.故本题选C.考点:三角形三边关系.5.若三角形三个内角度数的比为1∶2∶3,则这个三角形的最小角是().A.30°B.45°C.60°D.90°【答案】A.考点:三角形内角和定理.6.一个多边形的每个内角都等于108°,则这个多边形的边数为().A.5B.6C.7D.8【答案】A.【解析】试题分析:设这个多边形边数为n,则根据题意得:(n-2)×180°=108n,解得:72n=360,所以n=5.故本题选A.考点:多边形内角和公式.7.已知直角三角形中有一个角是30°,它对的直角边长是2厘米,则斜边的长是().A.2厘米B.4厘米C.6厘米D.8厘米【答案】B.【解析】试题分析:根据直角三角形性质:直角三角形中,30度所对的直角边等于斜边的一半,所以本题中斜边长等于2×2=4cm.故选B.考点:直角三角形性质.8.若等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为().A.7cmB.3cmC.7cm或3cmD.8cm【答案】B.【解析】试题分析:若3cm为底边,则两腰长为5cm,5cm,3,5,5符合三角形三边关系;若3cm为腰长,则底边为13-3-3=7cm,3,3,7,三边长不符合三角形三边关系,舍去,所以该等腰三角形的底边为3cm.考点:三角形三边关系.9.若等腰三角形的一个外.角是80°,则底角是().A.40°B.80°或50°C.100°D.100°或40°【答案】A.考点:1.三角形内角和定理;2.三角形外角性质.10.如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().A.高B.角平分线C.中线D.无法确定【答案】C.【解析】试题分析:根据题意可知△ACD和△ABD面积相等,因为这两个三角形的高是相同的,只有底相等,面积才能相等,所以要满足CD=BD,D是BC中点,线段AD是三角形ABC的中线.故选C.考点:1.三角形面积公式;2.三角形中线意义.11.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是().A.15°B. 25°C.30°D. 10°【答案】A.【解析】试题分析:由题意可知:∠EDC=60º,∠B=45°,因为∠EDC是△FBD的外角,所以∠EDC=∠B+∠BFD,所以∠BFD=∠EDC-∠B=60º-45º=15º.故选A.考点:三角形外角性质.12.如图,在四边形ABCD中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有().A. 1对B.2对C. 3对D.4对【答案】C.考点:全等三角形的判定与性质.13.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC 等于( ).A.44°B. 60°C. 67°D. 77°【答案】C.【解析】试题分析:由∠ACB=90°,∠A=22°,三角形内角和是180º,可得∠B=90º-22º=68º,因为折叠角相等,所以∠CED=∠B=68º,∠BDC=∠EDC=21∠BDE ,,因为四边形内角和是360º,所以∠BDE=360º-90º-68º-68º=134º,所以∠BDC=21∠BDE=21×134º=67º.故选C. 考点:1.折叠性质;2.四边形内角和.14.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( ).A.∠A=∠CB. AD=CBC.BE=DFD. AD ∥BC【答案】B.考点:全等三角形的判定.15.如图,点P,Q分别在∠AOB的两边OA,OB上,若点N到∠AOB的两边距离相等,且PN=NQ,则点N一定是().A.∠AOB的平分线与PQ的交点B.∠OPQ与∠OQP的角平分线的交点C.∠AOB的平分线与线段PQ的垂直平分线的交点D.线段PQ的垂直平分线与∠OPQ的平分线的交点【答案】C.【解析】试题分析:根据角平分线的判定定理:到角的两边距离相等的点在这个角的平分线上,所以本题到∠AOB的两边距离相等的点在∠AOB的平分线上;根据线段垂直平分线的判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上,所以到点P,Q两点距离相等的点在线段PQ的垂直平分线上,满足两种情况,点N一定是∠AOB的平分线与线段PQ的垂直平分线的交点.故选C.考点:1.角平分线的判定定理;2.线段垂直平分线的判定定理.二、解答题:(本大题共有9个小题,共计75分)16.(6分)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.【答案】12.【解析】试题分析:因为多边形的外角和就是360度,多边形的内角和是(n-2)×180º,所以根据题中给出的数量关系建立方程求解即可.试题解析:因为多边形的外角和是360度,多边形的内角和是(n-2)×180º,根据题意得:(n-2)×180º=360×5,解得:n=12.故这个多边形的边数是12.考点:多边形的内角和与外角和.17.(6分)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.(第17题)【答案】参见解析.考点:全等三角形的判定与性质.18.(7分)如图,△ABC中,∠A=80°,BE,CF交于点O,∠ACF=30°,∠ABE=20°,求∠BOC的度数.(第18题)【答案】130°.【解析】试题分析:利用三角形内角和是180度,∠A=80°,求出∠ACB+∠ABC的度数,根据给出的∠ACF=30°,∠ABE=20°,求出∠OCB+∠OBC的度数,再用180度减去这个度数就是∠BOC的度数.试题解析:因为∠A=80°,所以∠ACB+∠ABC=180º-80º=100º,因为∠ACF=30°,∠ABE=20°,所以∠OCB+∠OBC=100º-30º-20º=50º,所以∠BOC=180º-(∠OCB+∠OBC)=180º-50º=130º.考点:三角形内角和定理.19.(7分)如图,已知△ABC各顶点的坐标分别为A(-3,2),B(-4,-3),C(-1,-1),请你画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各点坐标.(第19题)【答案】【解析】试题分析:关于y轴对称,点的坐标横坐标互为相反数,纵坐标不变,因为A(-3,2),B(-4,-3),C(-1,-1),所以关于y轴对称的点A1,B1,C1的坐标为A1(3,2),B1(4,-3),C1(1,-1),在y轴右侧描出各点,连线即可.试题解析:描出图形关键点,点A,B,C关于y轴对称的点A1,B1,C1,是画图的关键.因为关于y轴对称,点的坐标横坐标互为相反数,纵坐标不变,而A(-3,2),B(-4,-3),C(-1,-1),所以关于y轴对称的点A1,B1,C1的坐标为A1(3,2),B1(4,-3),C1(1,-1),在y轴右侧描出各点,并连线,则△A1B1C1就是所求做的三角形.△A1B1C1的各点坐标为A1(3,2),B1(4,-3),C1(1,-1).考点:1.作轴对称图形;2.写出对称点坐标.20.(8分)如图,△ABC中,点D在边AB上,AC=BC=BD,AD=CD,求∠A的度数.(第20题)【答案】36°.考点:1.等腰三角形性质;2.三角形内角和定理.21.(8分)如图,△ABC 中,BD、CE分别是AC、AB上的高,BD与CE交于点O.BD=CE(1)问△ABC为等腰三角形吗?为什么?(4分)的平分线上吗?为什么?(4分)(2)问点O在∠A(第21题)【答案】(1)是,理由参见解析;(2)在,理由参见解析.【解析】试题分析:(1)利用HL证明Rt△BCE≌Rt△DCB,由全等得到∠ABC=∠ACB,从而得到AB=AC,可知△ABC为等腰三角形;(2)由Rt△BCE≌Rt△DCB,得到BE=CD,再利用AAS证明△EOB≌△DOC,从而得到OE=OD,又因为BD、CE分别是AC、AB上的高,所以OE⊥AB,OD⊥AC,根据角平分线的判定定理可知点O在∠A的平分线上.试题解析:(1)因为BD、CE分别是AC、AB上的高,所以∠CEB=∠BDC=90°,又因为BD=CE,BC=CB,所以Rt△BCE≌Rt△DCB(HL),所以∠ABC=∠ACB(全等三角形对应角相等),所以AB=AC(等角对等边),所以△ABC为等腰三角形;(2)因为Rt△BCE≌Rt△DCB,所以BE=CD(全等三角形对应边相等),在△EOB和△DOC中,∠EOB=∠DOC,∠OEB=∠ODC=90°,所以△EOB≌△DOC(AAS),所以OE=OD,因为OE⊥AB,OD⊥AC,根据角平分线的判定定理(到角的两边距离相等的点在这个角的平分线上)可知点O在∠A的平分线上. 考点:1.全等三角形的判定与性质;2.等腰三角形的判定;3.角平分线的判定定理.22.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(4分)(2)若∠B=30°,CD=1,求BD的长.(6分)(第22题)【答案】(1)参见解析;(2)2.考点:1.角平分线判定定理;2.全等三角形的判定;3.直角三角形性质.23.(11分)在△ABC中,CG是∠ACB的角平分线,点D在BC上,且∠DAC=∠B,CG和AD交于点F.(1)求证:AG=AF(如图1);(4分)(2)如图2,过点G作GE∥AD交BC于点E,连接EF,求证:EF∥AB.(7分)【答案】(1)参见解析;(2)参见解析.【解析】试题分析:(1)证明∠4=∠5是解题的关键,利用三角形的外角等于和它不相邻的内角和,得到∠4=∠B+∠2, ∠5=∠3+∠1,而∠DAC=∠B,∠1=∠2,所以∠4=∠5,从而得出结论;(2)通过证明同位角相等∠FEC=∠B是解题的关键,先证△AGC≌△EGC得AC=EC,再证△AFC≌△EFC得∠FEC=∠3,由∠B=∠3得∠FEC=∠B,所以EF∥AB.试题解析:(1)因为∠4=∠B+∠2, ∠5=∠3+∠1(三角形的外角等于和它不相邻的内角和),又因为∠DAC=∠B,∠1=∠2,所以∠4=∠5,所以AG=AF(对边对等角);(2)因为GE∥AD,∠5=∠CGE,又因为∠4=∠5,所以∠CGE=∠4,所以△AGC≌△EGC(ASA),所以AC=EC,所以△AFC≌△EFC(SAS),所以∠FEC=∠3(全等三角形的对应角相等),又∠B=∠3,所以∠FEC=∠B,所以EF∥AB(同位角相等,两直线平行).考点:1.三角形外角性质;2.全等三角形的判定与性质;3.平行线的性质与判定.24.(12分)如图1,A(-2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC.(1)求C点的坐标;(3分)(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;(5分)(3)如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE-MN 的值.(4分)【答案】(1)C(-4,6);(2)存在,(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.试题解析:(1)作CE⊥y轴于E,如图1,∵A(-2,0),B(0,4),∴OA=2,OB=4,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°∠CBE+∠ABO=90°,∴∠ECB=∠ABO,在△CBE和△BAO中,∠ECB=∠ABO,∠CEB=∠AOB,BC=AB,∴△CBE≌△BAO(AAS),∴CE=BO=4,BE=AO=2,即OE=2+4=6,因为C点在第二象限,∴C(-4,6).(2)分四种情况讨论:①如图2,当P和C重合时,△PAB和△ABC全等,即此时P的坐标是(-4,6);②如图3,点P在第二象限,过P作PE⊥x轴于E,满足∠PAB=∠AOB=∠PEA=90°,PA=AB,则此时△PAB和△ABC全等,∵∠EPA+∠PAE=90°,∠PAE+∠BAO=90°,∴∠EPA=∠BAO(同角的余角相等),在△PEA和△AOB中,∠EPA=∠BAO,∠PEA=∠AOB,PA=AB,∴△PEA≌△AOB,∴PE=AO=2,EA=BO=4,∴OE=2+4=6,即P的坐标是(-6,2);③如图4,点P在第一象限,作∠CAP=90°,交CB的延长线于P,此时△PAB和△ABC全等,过P作PE⊥x 轴于E,过C作CM⊥x轴于M,则∠CMA=∠PEA=90°,∵△CBA≌△PBA,∴∠PAB=∠CAB=45°,AC=AP,∴∠CAP=90°,∴∠MCA+∠CAM=90°,∠CAM+∠PAE=90°,∴∠MCA=∠PAE,在△CMA和△AEP中,∠MCA=∠PAE,∠CMA=∠PEA,AC=AP,∴△CMA≌△AEP,∴PE=AM,CM=AE,∵C(-4,6),A(-2,0),∴PE=AM=4-2=2,OE=AE-A0=6-2=4,即P的坐标是(4,2);④如图5,P点在第四象限,作∠BAP=90度,AP=AB,此时△PAB和△ABC全等,过P作PE⊥x轴于E,∵△CBA≌△PAB,∴AB=AP,∠CBA=∠BAP=90°,则∠AEP=∠AOB=90°,∴∠BAO+∠PAE=90°,∠PAE+∠APE=90°,∴∠BAO=∠APE,在△AOB和△PEA中,∠BAO=∠APE,∠AOB=∠PEA,AB=AP,∴△AOB≌△PEA,∴PE=AO=2,AE=OB=4,∴0E=AE-AO=4-2=2,即P的坐标是(2,-2).综上所述:坐标平面内存在一点P,使△PAB与△ABC全等,符合条件的P的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6).(3)如图6,作MF⊥y轴于F,则∠AEM=∠EFM=∠AOE=90°,∵∠AEO+∠MEF=90°,∠MEF+∠EMF=90°,∴∠AEO=∠EMF,在△AOE和△EMF 中,∠AOE=∠EFM,∠AEO=∠EMF,AE=EM,∴△AEO≌△EMF,∴EF=AO=2,MF=OE,∵MN⊥x轴,MF⊥y轴,∴∠MFO=∠FON=∠MNO=90°,∴四边形FONM是矩形,∴MN=OF,∴OE-MN=OE-OF=EF=OA=2.即OE-MN的值是2.考点:1.全等三角形的判定与性质;2.余角性质;3.等腰直角三角形性质;4.平面内求点的坐标.:。
2015-2016学年度第一学期初二数学期中试卷测试时间:100分钟 满分:120分一、选择题:(每题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是………………( ▲ )A .B .C .D .2. 在实数0、π、227、2、﹣9中,无理数的个数有………………………………( ▲ ) A . 1个 B .2个 C .3个 D . 4个3. 已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为………( ▲ )A . 8或10B .8C .10D . 6或124. 如图,△ABC ≌△DEF ,∠ A =50°,∠ C =30°,则∠ E 的度数为 ……………( ▲ )A . 30°B .50°C .60°D .100°5. 如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有………………………………………………( ▲ )A . 1个B .2个C .3个D .4个6. 如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是 ……………………………………………………( ▲ )A .20B .12C .16D .137. 如图,OP 平分∠ AOB ,PD ⊥ OA 于点D ,点Q 是射线OB 上一个动点,若PD =2,则PQ 的最小值为 ………………………………………………………………………( ▲ )A .PQ <2B .PQ =2C .PQ >2D .以上情况都有可能8. 已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是 …………………( ▲ )A .1<|a |<bB .1<﹣a <bC .|a |<1<|b |D .﹣b <a <﹣19. 如图,∠MON =30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 7B 7A 8的边长为( ▲ )A .6B .12C .32D .6410. 如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是……………………………………………………………………………( ▲ ) A. 3 B.154 C. 5 D. 152a b0 1 -1 第10题图第9题图 A 1 A 2 A 3 A 4 B 1 B 2 B 3 O M N A BO D P第7题图 D A C B E F 第4题图 第6题图 A B C D E 第5题图 A B C P 1 P 2 P 3 P 4 ● ● ●●A B C D O 第15题图二、填空(每空2分,共20分)11. 4的算术平方根是 ▲ ,9的平方根是 ▲ ,-27的立方根是 ▲ .12. 若a <6<b ,且a 、b 是两个连续的整数,则a b = ▲ .13. 把0.697按四舍五入法精确到0.01的近似值是 ▲ .14. 已知Rt △ABC 两直角边长为5,12,则斜边长为 ▲ .15. 如图,△ABO ≌ △CDO ,点B 在CD 上,AO ∥ CD ,∠ BOD =30°,则∠ A = ▲ °.16. 等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 ▲ .17. 如图所示,在长方形ABCD 的对称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,则满足条件的点P 有 ▲ 个.18. 如图,在△ABC 中,AC =BC =5,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是 ▲ .三、解答题:19.计算 (每题4分,共8分)(1)(3)2+||1-3+(13)0 (2)(-1)2015-(13)-2-|-2|20.解方程(每题4分,共8分)(1)8 x 3+125=0 (2)64(x +1)2-25=021. 已知2x -y 的平方根为±3,4 是3x +y 的平方根,求x -y 的平方根.(6分)22.如图,方格纸中每个小正方形的边长均为1,线段AB 和PQ 的端点均在小正方形的顶点上.(6分)(1)在线段PQ 上确定一点C (点C 在小正方形的顶点上).使△ABC 是轴对称图形,并在网格中画出△ABC ;(2)请直接写出△ABC 的周长和面积.23. 如图,CA =CD ,∠ B =∠ E ,∠ BCE =∠ ACD .求证:AB =DE .(6分)第18题图 A B C D E A B C D E第17题图 A B C D l24.如图,△ABC 是等边三角形,△ADE 是等腰三角形,AD =AE ,∠DAE =80°,当DE ⊥AC 时,垂足为F ,求∠BAD 和∠EDC 的度数.(6分)25. 如图,已知在△ABC 中,AB =AC ,AB 的垂直平分线DE 交AC 于点E ,CE 的垂直平分线正好经过点B ,与AC 相交于点F ,求∠ A 的度数.(6分)26.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4.现将线段AC 沿AD 折叠后,使得点C 落在AB 上,求折痕AD 的长度.(6分)27.如图1,将两块全等的直角三角形纸片△ABC 和△DEF 叠放在一起,其中∠ACB =∠E =90°,BC =DE =6,AC =FE =8,顶点D 与边AB 的中点重合.(1)若DE 经过点C ,DF 交AC 于点G ,求重叠部分(△DCG )的面积;(2)合作交流:“希望”小组受问题(1)的启发,将△DEF 绕点D 旋转,使DE ⊥AB 交AC 于点H ,DF 交AC 于点G ,如图2,求重叠部分(△DGH )的面积.(10分)AB C DE F AB CD E FA B C D28. 阅读:如图1,在△ABC 中,3∠ A +∠ B =180°,BC =8,AC =10,求AB 的长.小明的思路:如图2,作BE ⊥AC 于点E ,在AC 的延长线上取点D ,使得DE =AE ,连接BD ,易得∠A =∠D ,△ABD 为等腰三角形,由3∠A +∠B =180°和∠A +∠ABC +∠BCA =180°,易得∠BCA =2∠A ,△BCD 为等腰三角形,依据已知条件可得AE 和AB 的长.解决下列问题:(1)图2中,AE = ▲ ,AB = ▲ ;(2)在△ABC 中,∠ A ,∠ B ,∠ C 的对边分别为a 、b 、c .如图3,当3∠ A +2∠ B =180°时,用含a ,c 式子表示b .(8分)A CBC A B C ABE D图1 图2 图3初二期中考试答案一选择:A B C D C C BC D C二填空 (11)2,±3,-3 (12)8 (13)0.70 (14)13(15)30° (16)70°或110° (17)5(18)52三解答19(1)原式=3+3-1+1=3+ 3 (4分)(2)原式=-1-9-2=-12 (4分)20(1)x=-52 (4分)(2)x 1=-38 ,x 1=-138(4分) 21. 解:由题意得:2x -y =9 (1分)3x +y =16 (2分)∴⎩⎨⎧2x -y =9,3x +y =16 ∴⎩⎨⎧x =5,y =1 (4分)∴x -y =4 (5分)∴x -y 平方根为±2. (6分)22.解:(1)如图所示:△ABC 即为所求;(2分) (2)△ABC 的周长为:5+5+5=10+5,(4分) 面积为:7×4﹣×3×4﹣×3×4﹣×1×7=12.5.(6分)23. 解:如图,∵∠BCE=∠ACD ,∴∠ACB=∠DCE ; (2分)在△ABC 与△DEC 中,,∴△ABC ≌△DEC (AAS ),(5分)∴AB=DE . (6分)24.解:当DE ⊥AC 时,∵AD=AE ,∠DAE=80°,∴∠ADE=∠E=50°,∠DAF=∠EAF=40°,(2分)∵△ABC 是等边三角形,∴∠BAC=60°,∴∠BAD=60°﹣40°=20°, (4分)∵∠B+∠BAD=∠ADE+∠EDC ,∴60°+20°=50°+∠EDC ,∴∠EDC=30°. (6分)25. 解:连接BE (1分)∵△ABC 是等腰三角形,∴∠ABC=∠C=①,∵DE 是线段AB 的垂直平分线,∴AE =BE ,∴∠A=∠ABE , (2分)∵CE 的垂直平分线正好经过点B ,与AC 相交于点可知△BCE 是等腰三角形,(3分)∴BF 是∠EBC 的平分线,∴(∠ABC ﹣∠A )+∠C=90°,即(∠C ﹣∠A )+∠C=90°②, (4分)①②联立得,∠A=36°.故∠A=36°. ( 6分)26. 解:设点C 折叠后与点E 重合,可得△ACD ≌△AED ,∴AE =AC =3∵AB 2= AC 2 +BC 2 ∴AB =5,∴BE =2 (3分)设CD =DE =x ,则BD =4-x , 又∵BD 2= DE 2 +BE 2∴(4-x )2=x 2+22 ∴x =32 (5分) ∵AD 2= CD 2 +AC 2∴AD =325 (6分)27. 解:(1)∵∠ACB=90°,D 是AB 的中点,∴DC=DB=DA .∴∠B=∠DCB .又∵△ABC ≌△FDE ,∴∠FDE=∠B .∴∠FDE=∠DCB .∴DG ∥BC .∴∠AGD=∠ACB=90°.∴DG ⊥AC .又∵DC=DA ,∴G 是AC 的中点.∴. ∴. (4分)(2)如图2所示:∵△ABC ≌△FDE ,∴∠B=∠1.∵∠C=90°,ED ⊥AB ,∴∠A+∠B=90°,∠A+∠2=90°, ABC D E∴∠B=∠2,∴∠1=∠2,∴GH=GD ,∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD ,∴AG=GH ,∴点G 为AH 的中点; (6分)在Rt △ABC 中,,∵D 是AB 中点, ∴, 连接BH .∵DH 垂直平分AB ,∴AB=BH .设AH=x ,则BH=x ,CH=8-x ,由勾股定理得:(8-x )2+62=x 2,解得x=254, (8分) ∴DH=222515()544-=. (9分) ∴S △DGH =12S △ADH=12×12×154×5=7516. (10分) 28.解:(1)如图2,作BE ⊥AC 于点E ,在AC 的延长线上取点D ,使得DE=AE ,连接BD ,则BE 是中垂线,故AB=BD ,∠A=∠D .∵3∠A+∠ABC=180°和∠A+∠ABC+∠BCA=180°,∴∠BCA=2∠A ,又∵∠BCA=∠D+∠CBD ,∴∠BCA=∠A+∠CBD=2∠A ,则∠CBD=∠A ,∴DC=BC=8,∴AD=DC+AC=8+10=18,∴AE=AD=9,∴EC=AD ﹣CD=9﹣8=1.∴在直角△BCE 和直角△AEB 中,利用勾股定理得到:BC 2﹣CE 2=AB 2﹣AE 2,即82﹣12=AB 2﹣92,解得 AB=12.故答案是:9;12;(每空2分)(2)作BE ⊥AC 于点E ,在AC 的延长线上取点D ,使得DE=AE ,连接BD ,则BE 是边AD 的中垂线,故AB=BD ,∠A=∠D .①∵3∠A+2∠B=180°,∠A+∠ABC+∠BCA=180°,∴2∠A+∠ABC=∠ACB,∵∠ACB=∠D+∠DBC,∴2∠A+∠ABC=∠D+∠DBC,∵∠A=∠D,∴∠A+∠ABC=∠DBC,BD=AB=c,即∠DCB=∠DBC,∴DB=DC=c,设EC=x,∴DE=AE=∴EC=AE﹣AC=﹣b=,∵BE2=BC2﹣EC2,BE2=AB2﹣AE2,∴a2﹣()2=c2﹣()2,解得,b=.(8分)。
八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取()的木棒.A. 10cmB. 20cmC. 50cmD. 60cm2.△ABC中,若∠A=60゜,∠B=65゜,则∠C等于()A. 65゜B. 55゜C. 45゜D. 75゜3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. ∠BCA=∠DCAB. ∠BAC=∠DACC. ∠B=∠D=90∘D. CB=CD4.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A. 9B. 12C. 7或9D. 9或125.一个多边形的内角和比外角和的3倍多180度,那么这个多边形的边数是()A. 7B. 8C. 9D. 106.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A. −1B. −7C. 1D. 77.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A. 6个B. 5个C. 4个D. 3个8.如图,在△ABC中,AB=AC,∠A=30°,以C为圆心,CB的长为半径作圆弧,交AB于点D,连接CD,则∠ACD等于()A. 30∘B. 45∘C. 60∘D. 75∘9.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A. 30∘B. 45∘C. 60∘D. 75∘10.下列说法正确的是()A. 等腰三角形的高、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的二倍D. 等腰三角形的两个底角相等二、填空题(本大题共5小题,共15.0分)11.如图所示的方格中,∠1+∠2+∠3= 度.12.如图,平面上两个正方形与正五边形都有一条公共边,则∠α等于______度.13.如图所示,已知∠A=27°,∠CBE=90°,∠C=30°,则∠D的度数为______度.14.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是______.15.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,则∠ACB的度数为______度.三、解答题(本大题共9小题,共75.0分)16.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠A=∠F.17.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.18.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.19.如图,某货轮上午8时20分从A处出发,此时观测到海岛B的方位为北偏东60°,该货轮以每小时30海里的速度向东航行到C处,此时观测到海岛B的方位为北偏东30°,继续向东航行到D处,观测到海岛B的方位为北偏西30°.当货轮到达C 处时恰好与海岛B相距60海里,求该货轮到到达C,D处的时间.20.如图,△ABC中,∠BAC的角平分线AD和线段BC的垂直平分线FD相交于点D,DE⊥AC于点E.求证:AB+AC=2AE.21.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.22.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)设第一次书包的进价为x元/个,则第二次的进价为______元/个;设第一次购进书包y个,则第二次购进书包______个.(直接写答案)(2)根据(1)设的未知数,列方程组并解答:第一次每个书包的进价是多少元?(3)在第二次的销售过程中,若按80/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求利润不少于480元,问最低可打几折?23.如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;AF.(2)HE=1224.已知,点A,B分别在x轴,y轴上,K(2,2)是边AB上的一点,CK⊥AB交x轴于C.(1)如图①,求OB+OC的值;(2)如图②,延长KC交y轴于D,求S△ACK-S△OCD的值;(3)如图③,点P为AK上任意一点(P不与A,K重合),过A作AE⊥DP于E,连EK,求∠DEK的度数.答案和解析1.【答案】B【解析】解:设第三边的长为xcm,则30-20<x<30+20,10<x<50,四个选顶中只有答案B是20cm,在这个范围内,故选B.根据两边之和大于第三边,两边之差小于第三边,得出第三边x的取值为:10<x<50,作出判断.本题考查了三角形的三边关系,已知三角形的两边长,则第三边的范围为大于两边差且小于两边和.2.【答案】B【解析】解:∵∠A+∠B+∠C=180゜,∴∠C=180゜-60°-65°=55°.故选B.直接根据三角形内角和定理计算.本题考查了三角形内角和定理:三角形内角和是180°.3.【答案】A【解析】解:A、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故A选项符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故D选项不符合题意;故选:A.本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.【答案】B【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【答案】C【解析】解:根据题意可得:(n-2)•180°=3×360°+180°,解得:n=9.经检验n=9符合题意,所以这个多边形的边数是9.故选C.多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.本题考查了多边形内角与外角,解答本题的关键在于结合多边形的内角和公式寻求等量关系并构建方程.6.【答案】A【解析】解:∵点A(m-1,3)与点B(2,n+1)关于x轴对称,∴,∴,∴m+n=3+(-4)=-1.故选A.本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.本题考查了对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】B【解析】解:图中45°的角有∠CBC',∠ABE,∠AEB,∠EDC′,∠DEC′.共5个.故选B.根据折叠的性质,∠CBC′=45°;∴∠ABE=∠AEB=∠EDC′=∠DEC′=45°.本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.8.【答案】B【解析】解:∵AB=AC,∠A=30°,∴∠ACB=∠ABC=(180°-∠A)=(180°-30°)=75°,∵以C为圆心,BC的长为半径圆弧,交AC于点D,∴BC=CD,∴∠BCD=180°-2∠ACB=180°-2×75°=30°,∴∠ACD=∠ABC-∠BCD=75°-30°=45°.故选:B.根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根据∠ACD=∠ABC-∠BCD计算即可得解.本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.9.【答案】D【解析】解:∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选D.根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.本题考查的是三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.10.【答案】D【解析】解:A、应为等腰三角形底边上的高、中线、顶角平分线互相重合,故错误;B、顶角相等的两个等腰三角形,若对应边不等,则不全等,故错误;C、等腰三角形中腰可以是底边的2倍的,故错误;D、等腰三角形的两个底角相等是正确.故选D.根据等腰三角形的性质分析各个选项.本题考查了对等腰三角形的性质的正确理解.11.【答案】135【解析】【分析】本题主要考查了全等图形,根据网格结构的特点找出全等三角形以及等腰直角三角形是解题的关键.标注字母,然后根据网格结构可得∠1与∠3所在的三角形全等,然后根据全等三角形对应角相等可以推出∠1+∠3=90°,再根据∠2所在的三角形是等腰直角三角形可得∠2=45°,然后进行计算即可得解.【解答】解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△EDA(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135.12.【答案】72【解析】解:正五边形的一个内角为108°,正方形的每个内角是90°,所以∠α=360°-108°-90°-90°=72°.先分别求出正五边形的一个内角为108°,正方形的每个内角是90°,再根据圆周角是360度求解即可.主要考查了多边形的内角和.多边形内角和公式:(n-2)•180°.13.【答案】33【解析】解:∵∠DFC=∠A+∠C=27°+30°=57°,∵∠FBD=∠CBE=90°,∴∠D=90°-∠DFB=33°,故答案为:33.根据外角的性质得到∠DFC=∠A+∠C=27°+30°=57°,由对顶角的性质得到∠FBD=∠CBE=90°,根据三角形的内角和即可得到结论.本题考查了三角形的内角和,三角形的外角的性质,熟练掌握三角形的内角和是解题的关键.14.【答案】33【解析】解:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×22×3=33.故答案为:33.根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.15.【答案】70【解析】解:∵DA=DB=DC,∴∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,∴∠ACB=x+y,∵∠DAB=20°,∴∠ABD=20°,∵∠ABC+∠ACB+∠BAC=180°,∴20+y+x+y+20+x=180,x+y=70,∴∠ACB=70°,故答案为:70.先根据等边对等角得:∠DAB=∠ABD,∠DBC=∠DCB,∠DAC=∠ACD,设∠DCA=x,∠DCB=y,根据三角形的内角和列方程得:20+y+x+y+20+x=180,则x+y=70,所以∠ACB=70°.本题考查了等腰三角形的性质,明确等边对等角是本题的关键,还利用了整体的思想解决问题.16.【答案】证明:∵点B,C,D,E在同一直线上,BC=DE,∴BC+CD=DE+CD,即:BD=CE,在△ABD与△FEC中,∴ AB=FE∠B=∠E BD=CE,∴△ABD≌△FEC(SAS),∴∠A=∠F.【解析】先根据SAS判定△ABD≌△FEC,再根据全等三角形的对应角相等,得出∠A=∠F.本题主要考查了全等三角形的判定与性质的综合应用,解题时注意:两边及其夹角对应相等的两个三角形全等.17.【答案】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°-∠A=90°-30°=60°,∴∠CBD=∠ABC-∠ABD=60°-30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难度不大,需熟练掌握.18.【答案】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【解析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.19.【答案】解:由己知,得∠BAC=30°,∠ACB=120°,∠BCD=∠BDC=60°∴∠ABC=∠BAC=30°∴AC=BC=60(海里)∠CBD=60°∴t1=60÷30=2(小时)∴△BCD是等边三角形∴BC=CD=60(海里)∴t2=60÷30=2(小时),∴t3=2+2=4(小时).答:轮船到达C处是上午10时20分,轮船到达D处的时间是下午12时20分.或轮船到达C处用了2小时,到达D处用了4小时.【解析】根据题意,求得已知角的度数,根据特殊角的三角函数值求得AC、BC的值,从而求得CD的值,根据行程问题的求法再求轮船到达C处和D处的时间即可.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.【答案】证明:连接DB、DC,作DM⊥AB于M.∵FD是BC的垂直平分线,∴BD=CD,∵AD平分∠BAC,DM⊥AB,DE⊥AC,∴DM=DE,∠DMB=∠CED=90°,在Rt△DMB和Rt△DNC中,BD=DCDM=DE∴Rt△DMB≌Rt△DEC(HL),∴BM=CE,在Rt△ADM和Rt△ADE中,AD=AD,DM=DE∴△ADM≌△ADE,∴AM=AE,∴AB+AC=(AM-BM)+(AE+EC)=2AE.【解析】连接DB、DC,作DM⊥AB于M.根据HL证出Rt△DMB≌Rt△DNC,Rt△ADM≌△ADE即可.本题考查了全等三角形的性质和判定,线段的垂直平分线性质,角平分线的性质的应用,解题的关键是灵活运用所学知识,熟练掌握全等三角形的判定和性质,属于中考常考题型.21.【答案】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,AC=AB∠C=∠BAE,CD=AE∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°-∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【解析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.22.【答案】1.2x;(y-20)【解析】解:(1)设第一次书包的进价为x元/个,则第二次的进价为1.2x元/个;设第一次购进书包y个,则第二次购进书包(y-20)个.(直接写答案)故答案是:1.2x;(y-20);(2)设第一次每个书包的进价是x元,-20=,x=50.经检验得出x=50是原方程的解,且符合题意,即:第一次书包的进价是50元.设最低可以打z折.2400÷(50×1.2)=4080×20+80×0.1z•20-2400≥480y≥8故最低打8折.(1)根据信息“第一次每个书包的进价是x元,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个”填空.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.23.【答案】解:(1)∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=45°,∴∠ACB=∠ABC=12(180°-∠BAC)=12(180°-45°)=67.5°.(2)连结HB,∵AB=AC,AE平分∠BAC,∴AE⊥BC,BE=CE,∴∠CAE+∠C=90°,∵BD⊥AC,∴∠CBD+∠C=90°,∴∠CAE=∠CBD,∵BD⊥AC,D为垂足,∴∠DAB+∠DBA=90°,∵∠DAB=45°,∴∠DBA=45°,∴∠DBA=∠DAB,∴DA=DB,在Rt△BDC和Rt△ADF中,∠BDC=∠ADFBD=AD∠CAE=∠CBD∴Rt△BDC≌Rt△ADF(ASA),∴BC=AF,∵DA=DB,点G为AB的中点,∴DG垂直平分AB,∵点H在DG上,∴HA=HB,∴∠HAB=∠HBA=12∠BAC=22.5°,∴∠BHE=∠HAB+∠HBA=45°,∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,∴∠BHE=∠HBE,∴HE=BE=12BC,∵AF=BC,∴HE=1AF.2【解析】(1)根据等腰三角形性质和三角形内角和定理求出即可;(2)证△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理等知识点的应用,主要考查学生的推理能力,难度偏大.24.【答案】解:(1)如图①,过K作KM⊥x轴,KN⊥y轴,垂足分别为M、N,则∠KNO=∠KMO=90°,∵∠BOA=90°,∴四边形OMKN是矩形,∴∠NKM=90°,∴∠NKC+∠CKM=90°,∵K(2,2),∴KM=KN=2,∴矩形OMKN是正方形,∴OM=ON=2,∵CK⊥AB,∴∠BKN+∠NKC=90°,∴∠BKN=∠CKM,∵∠KNB=∠CMK=90°,∴△KNB≌△KMC,∴CM=BN,∴OB+OC=ON+BN+OC=ON+CM+OC=ON+OM=2+2=4;(2)如图2,∵∠AKC=∠MKN=90°,∴∠AKM=∠NKD=90°-∠CKM,∵∠KND=∠KMA=90°,KM=KN,∴△AMK≌△DNK,∴S△AMK=S△DNK,∴S△ACK-S△OCD=S△AMK+S△CKM-S△OCD,=S△DNK+S△CKM-S△OCD,=S正方形OMKN+S△OCD-S△OCD,=2×2,=4.(3)由(2)得:△AMK≌△DNK,∴AK=DK,在DE上截取DF=AE,连接KF,∵AE⊥EF,DK⊥AB,∴∠DKP=∠AEP=90°,∵∠KPD=∠EPA,∴∠KDF=∠KAE,∴△KDF≌△KAE,∴KF=KE,∠DKF=∠AKE,∵∠DKP=90°,∴∠DKF+∠FKP=∠AKE+∠FKP=∠FKE=90°,∴△FKE是等腰直角三角形,∴∠DEK=45°.【解析】(1)如图①,作辅助线,构建全等三角形,先证明四边形OMKN为正方形得:OM=ON=2,再证明△KNB≌△KMC,则CM=BN,代入OB+OC中可得结论;(2)如图②,证明△AMK≌△DNK,则S△AMK=S△DNK,所以S△ACK-S△OCD拆成和与差的形式并等量代换得结果为4;(3)如图③,作辅助线,构建全等三角形,证明△KDF≌△KAE,得KF=KE,∠DKF=∠AKE,再得△FKE是等腰直角三角形,所以∠DEK=45°.本题是三角形的综合题,考查了全等三角形、正方形、矩形的性质和判定;以证明三角形全等为关键,利用全等三角形对应边相等和对应角相等得出边与角的关系;同时利用了全等三角形的面积也相等,在求解三角形面积的差时,利用三角形面积相等关系进行变形并加减得出与正方形的面积相等,从而得出结论.。
2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
湖北省宜昌市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2011·绵阳) 王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A . 0根B . 1根C . 2根D . 3根2. (2分) (2015七下·邳州期中) 如图,△ABC的边BC上的高是()A . BEB . DBC . CFD . AF3. (2分)已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()A . (-3,2)B . (-3,-2)C . (3,2)D . (3,-2)4. (2分)在下列说法中是错误的()A . 在△ABC中,∠C=∠A-∠B,则△ABC为直角三角形.B . 在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.C . 在△ABC中,若a=c,b=c,则△ABC为直角三角形.D . 在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.5. (2分) (2019八下·忻城期中) 从n边形的一个顶点出发作对角线,这些对角线把这个n边形分成的三角形个数为()A . (n+1)个B . n个C . (n﹣1)个D . (n﹣2)个6. (2分) (2019八下·郑州月考) 如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A . 38°B . 34°C . 32°D . 28°7. (2分)(2017·石狮模拟) 如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于()A . 40°B . 50°C . 60°D . 70°8. (2分)在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是().A . (-2,6)B . (-2,0)C . (-5,3)D . (1,3)9. (2分) (2016八下·鄄城期中) 如图,在△ABC中,AB=AC,AE是经过点A的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,AD=CE,则∠BAC的度数是()A . 45°B . 60°C . 90°D . 120°10. (2分)如图,在△ABC中,∠ABC,∠ACB的平分线的交点P恰好在BC边的高AD上,则△ABC一定是()A . 直角三角形B . 等边三角形C . 等腰三角形D . 等腰直角三角形二、填空题 (共5题;共6分)11. (1分) (2020九下·武汉月考) 如图,在YABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是________度.12. (2分)(2019·温州) 图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO =FO=4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为________分米.13. (1分) (2016八上·江宁期中) 如图,∠A=100°,∠E=25°,△ABC与△DEF关于直线l对称,则△ABC 中的∠C=________°.14. (1分) (2019九上·无锡月考) 如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣ x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________.15. (1分)如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若的度数为,的度数为,则 PC+PD的最小值是________ 。
湖北省宜昌市点军区2015-2016学年八年级上学期期中考试
数学试题
本试题共24小题,满分120分,考试时间120分钟.
注意事项:
1.本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.
2.考试结束,请将本试题卷和答题卡一并上交.
一、选择题(每小题3分,共计45分)
1.下列图形中,是轴对称图形的是().
2.点P(1,-2)关于x轴对称的点的坐标是().
A.(1,2)
B.(1,-2)
C.(-1,2)
D.(-1,-2)
3.已知△ABC有一个内角为100°,则△ABC一定是().
A.锐角三角形
B.钝角三角形
C.直角三角形
D.锐角三角形或钝角三角形
4.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是().
A.5
B.6
C.11
D.16
5.若三角形三个内角度数的比为1∶2∶3,则这个三角形的最小角是().
A.30°
B.45°
C.60°
D.90°
6.一个多边形的每个内角都等于108°,则这个多边形的边数为().
A.5
B.6
C.7
D.8
7.已知直角三角形中有一个角是30°,它对的直角边长是2厘米,则斜边的长是().
A.2厘米
B.4厘米
C.6厘米
D.8厘米
8.若等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为().
A.7cm
B.3cm
C.7cm或3cm
D.8cm
9.若等腰三角形的一个外.角是80°,则底角是().
A.40°
B.80°或50°
C.100°
D.100°或40°
10.如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的().
A.高
B.角平分线
C.中线
D.无法确定
11.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是().
A.15°
B. 25°
C.30°
D. 10°
12.如图,在四边形ABCD中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有().
A. 1对
B.2对
C. 3对
D.4对
(第10题)
(第11题)
(第12题)
13.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC 等于( ).
A.44°
B. 60°
C. 67°
D. 77°
14.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( ). A.∠A=∠C B. AD=CB C.BE=DF D. AD ∥BC
15.如图,点P ,Q 分别在∠AOB 的两边OA ,OB 上,若点N 到∠AOB 的两边距离相等,且PN =NQ ,则点N
一定是( ).
A.∠AOB 的平分线与PQ 的交点
B.∠OPQ 与∠OQP 的角平分线的交点
C.∠AOB 的平分线与线段PQ 的垂直平分线的交点
D.线段PQ 的垂直平分线与∠OPQ 的平分线的交点
二、解答题:(本大题共有9个小题,共计75分)
16. (6分)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.
17. (6分)如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .
(第17题)
B
C
D
A
O
D
18. (7分)如图,△ABC 中,∠A=80°,BE ,CF 交于点O ,∠ACF =30°,
∠ABE =20°,求∠BOC 的度数.
(第18题)
19. (7分)如图,已知△ABC 各顶点的坐标分别为A (-3,2),B (-4,-3), C (-1,-1),请你画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1的各点坐标.
(第19题)
20.(8分)如图,△ABC 中,点D 在边AB 上,AC =BC =BD ,AD =CD ,
求∠A 的度数.
(第20题)
21.(8分)如图,△ABC 中,BD 、CE 分别是AC 、AB 上的高,BD 与CE 交于点O .BD=CE (1)问△ABC 为等腰三角形吗?为什么?(4分) (2)问点O 在∠A 的平分线上吗?为什么?(4分)
(第21题)
22.(10分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E . (1)求证:△ACD ≌△AED ;(4分) (2)若∠B=30°,CD=1,求BD 的长.(6分)
(第22题)
23.(11分)在△ABC 中,CG 是∠ACB 的角平分线,点D 在BC 上,且∠DAC =∠B ,CG 和AD 交于点F .
(1)求证:AG =AF (如图1);(4分) (2)如图2,过点G 作GE ∥AD 交BC 于点E ,连接EF ,求证:EF ∥AB .(7分)
(第23题图1) (第23题图2)
24.(12分)如图1,A (-2,0),B (0,4),以B 点为直角顶点在第二象限作等腰直角△ABC . (1)求C 点的坐标;(3分)
(2)在坐标平面内是否存在一点P ,使△PAB 与△ABC 全等?若存在,求出P 点坐标,若不存在,请说明理由;(5分) (3)如图2,点E 为y 轴正半轴上一动点,以E 为直角顶点作等腰直角△AEM ,过M 作MN ⊥x 轴于N ,求OE-MN 的值.(4分)
:。