基于LabVIEW数据采集系统设计设计
- 格式:doc
- 大小:855.50 KB
- 文档页数:47
基于LabVIEW的数据采集与控制系统设计与开发LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款由美国国家仪器公司(National Instruments)开发的图形化编程环境。
它被广泛应用于各个领域的数据采集与控制系统设计与开发,因其灵活性和易用性而备受青睐。
本文将讨论基于LabVIEW的数据采集与控制系统的设计与开发,以及其在实际应用中的重要性和多样化的应用场景。
一、LabVIEW的基本原理与特点LabVIEW是一种基于图形编程的系统设计工具,通过将各种可观测现象抽象为虚拟仪器在计算机上进行模拟,实现对数据的采集、分析和控制。
LabVIEW以图形化的方式展示程序结构,用户可以通过简单拖拽的方式连接各个模块,形成完整的功能系统。
对于初学者来说,LabVIEW提供了友好的界面和直观的图形表示方法,降低了学习曲线的陡度,使得使用者可以更快入门。
二、基于LabVIEW的数据采集系统设计与开发1. 系统需求分析与设计:在设计数据采集系统前,首先需要对系统的需求进行分析和明确。
这包括所需采集的数据类型、所需处理的数据量、采样速率等。
根据需求分析的结果,可以制定系统的整体架构,并选择合适的硬件和传感器。
2. 硬件选择与配置:基于LabVIEW的数据采集与控制系统可以与各种硬件设备进行交互。
根据系统的需求,选择适当的采集卡、传感器和执行器等硬件设备,并进行相应的配置。
LabVIEW提供了丰富的硬件驱动和接口,使得用户可以方便地与各种硬件设备进行通信。
3. 界面设计与开发:LabVIEW提供了丰富的用户界面设计工具,可以根据系统需求设计出直观、美观的界面。
通过界面,用户可以实时观察到采集到的数据,进行参数设置和控制操作。
设计界面时,需要考虑用户操作的便捷性和实时性,使得系统在使用过程中更加友好和高效。
4. 数据采集与处理:通过LabVIEW的数据采集模块,可以实时获取传感器采集的数据。
《基于LabVIEW的数据采集及分析系统的开发》篇一一、引言随着科技的不断发展,数据采集及分析系统在各个领域的应用越来越广泛。
LabVIEW作为一种强大的软件开发环境,被广泛应用于数据采集、处理和分析等方面。
本文将介绍基于LabVIEW 的数据采集及分析系统的开发过程,包括系统设计、硬件配置、软件实现、数据采集与处理以及系统应用等方面的内容。
二、系统设计1. 需求分析在系统设计阶段,首先需要进行需求分析。
根据实际应用场景,确定系统的功能需求,如数据采集、数据处理、数据存储、数据分析等。
同时,还需要考虑系统的性能需求,如实时性、准确性、稳定性等。
2. 系统架构设计根据需求分析结果,设计系统的整体架构。
系统架构应包括数据采集模块、数据处理模块、数据存储模块、数据分析模块等。
各个模块之间应具有良好的接口,以便于后续的维护和扩展。
三、硬件配置1. 数据采集设备数据采集设备是系统的重要组成部分,需要根据实际需求选择合适的设备。
常见的数据采集设备包括传感器、仪表、PLC等。
这些设备应具有高精度、高稳定性的特点,以保证数据的准确性。
2. 数据传输设备数据传输设备用于将采集的数据传输到上位机进行处理。
常见的数据传输设备包括数据线、串口服务器、网络设备等。
在选择数据传输设备时,需要考虑传输速度、传输距离、抗干扰能力等因素。
四、软件实现1. LabVIEW软件开发环境LabVIEW作为一种强大的软件开发环境,被广泛应用于数据采集及分析系统的开发。
在软件开发过程中,需要熟悉LabVIEW 的基本操作和编程语言,以便于实现系统的各项功能。
2. 数据采集与处理在软件实现阶段,需要编写相应的程序实现数据的采集与处理。
程序应能够实时获取传感器等设备的测量数据,并对数据进行处理和分析。
同时,还需要考虑数据的存储和显示等问题。
五、数据采集与处理1. 数据采集数据采集是系统的重要功能之一。
通过编写相应的程序,实现从传感器等设备中实时获取测量数据的功能。
《自动化技术与应用》2009年第28卷第10期46 | T echniques of Automation & Applications 计算机应用Computer Applications基于LabVIEW的单片机多路数据采集系统的设计顾亚雄1,朱翠英2,许方华2(1.西南石油大学电信院,四川 成都 610500;2.西南石油大学研究生部,四川 成都 610500)摘 要:本文运用虚拟仪器的设计思想,介绍了一种基于LabVIEW软件平台的多路数据采集系统的设计原理及过程。
数据采集部分摒弃了NI公司的采集板卡而采用MSP430F149单片机系统,降低了系统的开发成本。
利用LabVIEW开发环境设计上位机的监测界面,上位机通过串行口与MSP430F149单片机通信,从而实现对多路数据的采集与监测。
本设计系统增设有报警功能,报警门限可通过上位机监测界面进行设置。
运用LabVIEW进行系统开发具有很强的灵活性,能较容易地实现系统的各项功能,并使系统具有很强扩展性。
关键词:虚拟仪器;MSP430单片机;多路数据采集中图分类号:TP368.1 文献标识码:B 文献标识码:2003-7241(2009)10-0046-04A Single-chip Multi-channel Data Acquisition SystemBased on LabVIEWGU Ya-xiong1, ZHU Cui-ying2, XU Fang-hua2( 1. School of Electronic Information Engineering, Southwest Petroleum University, Chengdu 610500 China;2. Dept. of post graduation, Southwest Petroleum University, Chengdu 610500 China )Abstract: This paper introduces a multi-channel data acquisition system based on LabVIEW by using the concept of virtual instrument. A MSP430F149 single-chip microcomputer system is used for data acquisition, and the monitoring interface of the host computer is developed by using the LabVIEW. An alarm function is also added to the system, and the alarm threshold can be set on the monitoring interface of the PC.Key words: virtual instrument; MSP430 single-chip; multi-channel data acquisition1 引言虚拟仪器(Virtual Instrument)是基于计算机的软硬件测试平台,已经在工业控制领域得到广泛的应用。
摘要虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密地融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。
本设计是基于LabVIEW 2010开发平台而简单模拟设计的一个四通道数据采集系统,其中下位机是采用单片机模拟产生实时温度数据,上位机系统则具有数据同时采集、采集数据实时显示、存储与管理、报警系统、数据记录查看等功能,实现了四通道温度数据采集的目的。
本文首先概述了虚拟仪器技术,LabVIEW开发平台,然后简单那介绍了数据采集的相关理论,最后具体讲解了本设计的各个模块在LabVIEW 上是如何实现的。
关键字:虚拟仪器;数据采集;LabVIEWAbstractVirtual instrument(VI) combines computer science, bus technology, software engineering with measurement instrumentation technology, making use of the computer powerful digital processing ability realize most of the functions of the instrument, breaking the traditional instrument, forming the framework of a new instrument model.This design is based on LabVIEW 2010 development platform and simple simulation design of a four channel data acquisition system, including lower machine is produced by single chip microcomputer simulation real-time temperature data, PC system has data collection, data collection and real-time display, storage and management, alarm system, data record check, and other functions, realize the four channel temperature data collection purpose.This paper first summarizes the virtual instrument technology, LabVIEW development platform, and then simple that introduces the data acquisition of relevant theory, and finally to explain in detail the design of each module in LabVIEW on how it is done.Key words: Virtual Instrument; Data acquisition;LabVIEW目录摘要....................................................................................................................... - 1 -Abstract ..................................................................................................................... - 2 -目录................................................................................................................... - 3 -第一章绪论........................................................................................................... - 5 -1.1 引言......................................................................................................... - 5 -1.2 数据采集的意义和任务......................................................................... - 5 -1.3 虚拟仪器在数据采集中的应用价值..................................................... - 5 -1.4 本设计所做的工作................................................................................. - 6 -第二章设计原理................................................................................................... - 6 -2.1 数据产生................................................................................................. - 6 -2.2 串口接收................................................................................................. - 7 -2.3 分通道显示............................................................................................. - 8 -2.3.1 数据分离..................................................................................... - 8 -2.3.2 门限设置..................................................................................... - 8 -2.3.3 波形显示..................................................................................... - 9 -2.4 华氏转换................................................................................................. - 9 -2.5 报警系统............................................................................................... - 10 -2.6 数据文件存储....................................................................................... - 10 -2.6.1 建立头文件............................................................................... - 10 -2.6.2 数据TXT存储........................................................................... - 11 -2.7 记录数据读取....................................................................................... - 11 -2.8 面板设计............................................................................................... - 12 -第三章程序的调试............................................................................................. - 12 -3.1 调试结果............................................................................................... - 13 -3.1.1 波形显示................................................................................... - 13 -3.1.2 缓冲区字符串........................................................................... - 13 -3.1.3 数据存储文件........................................................................... - 13 -3.1.4 报警........................................................................................... - 14 -3.1.5 华氏转换................................................................................... - 14 -3.1.6 波形回显................................................................................... - 14 -3.2 调试问题与解决方案........................................................................... - 15 -3.2.1 字符串缓冲区........................................................................... - 15 -3.2.2文件存储................................................................................... - 15 -3.2.3 华氏转换................................................................................... - 15 -3.2.4 波形回显................................................................................... - 16 -3.3 调试心得和建议................................................................................... - 16 -第四章总结......................................................................................................... - 17 -参考文献................................................................................................................. - 18 -附录(一)单片机程序代码.................................................... 错误!未定义书签。
第一节系统整体结构系统的整体组成结构是测量目标经过传感器模块后转换成电信号,在由信号调理模块对信号做简单的调理工作,例如,scc-sg04全桥应变调整模块,scc-td02模块,scc-rtd01热电偶热电阻制约模块等,将调理好的信号传送到数据采集模块中进行数据采集,然后在用软件进行特定的处理。
在采集的过程中同时将数据保存到指定数据库里。
如图4-1多通道数据采集系统硬件结构图所示。
图4-1 多通道数据采集系统硬件结构图第二节数据采集系统的硬件设计一、PC机传统仪器很多情况完成某些任务必须借助复杂的硬件电路,而由于计算机数据具备极强的信号处理能力,可以替代这些复杂的硬件电路,这便是虚拟仪器最大的特点。
数据采集系统能够正常运行的前提便是选择一个优良的计算机平台。
由于数据采集功能器件通常工作在工业领域中,往往伴随着强烈的振动,噪声,电源线的干扰和电磁干扰等。
为了保证记录仪正常的运行,设计系统时选定工业计算机。
考虑到计算机平台的可靠运行工业计算机通常采取了抗干扰措施。
另一方面的考虑是工业计算机通常具有很多类型的接口,这样有利于功能进一步的扩展。
二、传感器传感器设备能接受到来自测量目标发来的信号,而且把接受到的讯息,通过设定的变换比例将其改变成为电信号亦或其它形式,从而能够完成数据信号的处理、存储、显示、记录和控制等任务。
传感器是系统进行检测与控制的第一步。
三、信号调理经过传感器的信号大多是要经过信号调理才可以被数据采集设备所接收,调理设备能够对信号进行放大、隔离、滤波、激励、线性化等处理。
由于不同类型的传感器各有不同的功能,除了考虑一些通用功能之外,还要依据不同传感器的性质和要求来实现特殊的信号调理功能。
信号调理电路的通用功能由如下几个方面:(1)放大功能为了提高系统的分辨率以及降低噪声干扰,微弱信号必须要进行放大,从而使放大之后信号电压与模数转换的电压范围一致。
信号在经过传感器之后便直接进入信号调理模进行调理,这样就不易受到外部环境的影响,从而使得信噪比进一步的改善。
基于LabVIEW的数据采集系统1 LabVIEW 部分设计1.1VISA 简介LabVIEW 提供了功能强大的VISA 库。
VISA(Virtual Instrument Software Architecture)虚拟仪器软件规范,是用于仪器编程的标准I/O 函数库及其相关规范的总称。
VISA 库驻留于计算机系统中,完成计算机与仪器之间的连接,用以实现对仪器的程序控制,其实质是用于虚拟仪器系统的标准的API。
VISA 本身不具备编程能力,它是一个高层API,通过调用底层驱动程序来实现对仪器的编程,其层次如图1 所示。
VISA 是采用VPP 标准的I/O 接口软件,其软件结构包含三部分,如图2 所示。
与其他现存的I/O 接口软件相比,VISA 的I/O 控制功能具有如下几个特点:适用于各种仪器类型(如VXI 仪器、GPIB 仪器、RS-232 串行仪器、消息基器件、寄存器器件、存储器器件等仪器);适用于各种硬件接口类型;适用于单、多处理器结构或分布式网络结构;适用于多种网络机制。
VISA 的I/O 软件库的源程序是唯一的,其与操作系统及编程语言无关,只是提供了标准形式的API 文件作为系统的输出。
1.2VISA 库中的串口通讯函数本文用到的主要的串口通讯函数调用路径为:Functions?Instrument I/O?VISA?VISA Advanced?Interface Specific?Serial 中。
(1)VISA Configure Serial Port 节点(图3 所示)该节点主要用于串口的初始化。
主要参数意义如下:VISA resource name:VISA 资源名称,本文指串口号。
baud rate:波特率,默认为9600。
data bits:一帧信息中的位数,LabVIEW 中允许5~8 位数据,默认值为8 位。
stop bits:一帧信息中的停止位的位数,可为1 位、1 位半或2 位。
江苏科技大学本科毕业设计(论文)学院电子信息学院专业电子信息工程学生姓名赵越班级学号1140302124指导教师张贞凯二零一五年六月江苏科技大学本科毕业论文基于NI myDAQ的数据采集系统的设计Design of data acquisition system based on myDAQ摘要在从前,各种数据采集都是通过人工的方式进行的,所以一直存在很大的局限性,即无法做到对大量的实验数据的分析处理。
随着电子科技的发展,人们可以同时采集大量的信号数据并且通过计算机处理分析这些数据。
虚拟仪器仅是一个程序化的仪器,这种仪器和计算机结合使用,使得人们可以在事先编好的程序下完成对数据的一系列处理分析工作。
本文着重研究了几种典型的基于NI myDAQ的数据采集系统,设计了很多实用的虚拟仪器。
如虚拟数字电压表,它代替了传统的电压表,提高了测量效率和精准度。
连续脉冲序列产生VI,它能够产生任意占空比,任意频率的方波。
在脉冲宽度测量中,可以通过设置计数方式等方便快捷地测量出脉冲序列的宽度。
连续信号采集则是通过DAQmx API 采集信号,执行连续的硬件定时信号采集。
简单的边沿计数VI可以选择计数的方式,方便快捷地统计出一个方波的波峰个数。
同时本文在原有数据采集系统的基础上对部分系统进行升级改进,实现了更加丰富的功能。
关键词:虚拟仪器;LabVIEW;NI myDAQAbstractIn the past, a variety of data acquisition is performed by artificial means, it has a lot of limitations, which can not be done on a large number of experimental data .With the development of electronic technology, people can collect and processing large amounts of signal data and analyze the data through computers .Virtual instrument is only a procedural instrument. It is possible to complete a series of data processing and analysis work in the pre-programmed procedures with the combination of virtual instrument and computers.This paper focuses on some typical data acquisition system based on NI myDAQ and designs many useful virtual instrument. Such as Virtual digital voltmeter, which replaced the traditional voltmeter and improved the efficiency and accuracy. Continuous pulse sequence VI, it can generate a any duty and any frequency square wave. Pulse width measurement can measure the width of the pulse sequence quickly and easily by setting the counting methods. Continuous signal acquisition is to acquire signals by using DAQmx API. Simple Edge Count VI can choose the way of counting, it can count the number of a square wave crest quickly and easily. Meanwhile, based on the original data acquisition system .This paper upgrade part of the system to achieve a richer function.Keywords: Virtual instrument; LabVIEW,; NI myDAQ目录第一章绪论 (1)1.1 研究背景及意义 (1)1.2 国内外发展现状 (1)1.3 虚拟仪器 (2)1.3.1 虚拟仪器产生的背景 (2)1.3.2 虚拟仪器的概念 (3)1.3.3 虚拟仪器的开发语言 (3)1.4 本文的主要结构 (4)第二章 DAQ简介 (5)2.1 数据采集卡的硬件简介 (5)2.2 数据采集卡的软件简介 (6)2.3 设置NI myDAQ设备 (6)2.4 本章小结 (10)第三章 LabVIEW简介 (11)3.1 LabVIEW和G语言的概述 (11)3.2 LabVIEW编程环境 (12)3.2.1 启动界面 (13)3.2.2 前面板 (13)3.2.3 程序框图 (14)3.3 浅谈G语言 (16)3.3.1 G 语言简介 (16)3.3.2 G 语言的特色——数据流 (18)3.3.3 G 语言的基本结构 (20)3.4 LabVIEW界面设计 (23)3.5 本章小结 (23)第四章基于NI myDAQ的数据采集系统 (24)4.1 虚拟数字电压表 (24)4.1.1 电压表的前面板布置 (24)4.1.2 电压表的程序框图 (24)4.1.3 测试过程 (25)4.1.4 测试结果 (25)4.2 连续信号采集 (26)4.2.1 程序框图的设计 (26)4.2.2 系统前面板的布置 (26)4.2.3 测试过程 (27)4.2.4 测试结果 (27)4.3 简单的边沿计数 (27)4.3.1 程序框图的设计 (27)4.3.2 系统前面板的布置 (28)4.3.3 测试过程 (28)4.3.4 测试结果 (29)4.4 脉冲宽度测量 (29)4.4.1 程序框图的设计 (29)4.4.2 系统前面板布置 (30)4.4.3 测试过程 (30)4.4.4 测试结果 (31)4.5 连续脉冲序列产生 (31)4.5.1 程序框图的设计 (31)4.5.2 系统前面板的布置 (32)4.5.3 测试过程 (32)4.5.4 测试结果 (33)4.6 本章小结 (33)本文总结 (34)致谢 (35)参考文献 (36)第一章绪论本章主要讲述了基于NI MyDAQ的数据采集系统设计的背景和意义,国内外所设计的数据采集系统的开发现状以及尚未解决的问题,随后简要提及了虚拟仪器的基本知识,最后列出本文的主要结构。
基于LabVIEW数据采集系统设计设计毕业设计题目:基于LabVIEW数据采集系统设计院、系:电气工程系姓名:指导教师:系主任:2015年6月20日基于LabVIEW数据采集系统设计摘要工农业生产、现代科学研究及高新技术开发离不开温度参数的测量与分析。
现代电子检测技术正朝着高集成度、低功耗、可编程以及数字化的方向发展,传统指针式仪器仪表不能进行温度参数数字化处理与分享。
本设计介绍了一种基于LabVIEW编程软件数据采集系统设计方案,该方案采用了DS18B20温度传感器作为温度采集介质,处理器STC89C52作为温度采集模块的控制芯片。
LabVIEW是一种图像化的编程语言,在数据采集和仪器控制上得到了学术界、工业界认可,为实现仪器编程和数据采集系统提供了方便的途径。
设计中通过LabVIEW构建数据采集系统软件平台,将采集的温度数据进行处理并对处理结果进行相应判断。
系统设计具有实用价值,可以完成医疗卫生、工农业生产、科学技术研究、公共交通和活动场所等领域的温度数据采集工作。
系统设计完成后进行了性能测试,表明该系统能够对被测环境完成实时数据采集,存储、信号分析和实时图形显示等工作,系统设计简单、通用性好、可移植、易于操作、成品低可满足一部分市场需求。
关键词LabVIEW;温湿度传感器(DHT11);温度传感(DS18B20)Design of Data Acquisition System Based onLabVIEWAbstractThe measurement and analysis of the temperature parameters of the industrial and agricultural production, the modern scientific research and the hightech development. In modern times, the electronic measurement technology is developing towards the high degree of integration, low power consumption, programming and the direction of digital, traditional pointer type temperature indicator of temperature parameters of digital processing and sharing.This design introduces a kind of based on LabVIEW programmingsoftware data acquisition system design scheme, the scheme uses the temperature sensor DS18B20 as temperature gathering media processor STC89C52 as the control chip of the temperature acquisition module. provides a convenient way for the reali-zation of the instrument programming and data acquisition system. Through the LabVIEW, the software platform of the data acquisition system is built, the temperature data is processed and the corresponding judgment is made. The system design has the practical value, indu-strial and agricultural production, science and technology research, public transportation and activity place and so on domain temperature data collection work.After the completion of the system design of performance test, show that the system is capable to was measured that the environment to complete the real-time data acquisition, storage, signal analysis and real-time graphical display work, the system design is simple, good versatility, portability, easy operation, low product can meet part of the market demand.IKeywords LabVIEW;Temperature-Humidity sensor;Temperature sensor(DS18B20)I I目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景 (1)1.2 虚拟仪器介绍 (2)1.3 虚拟仪器技术发展现状 (3)1.3.1 国外发展情况 (3)1.3.2 国内发展情况 (4)1.4 本文主要研究内容 (5)第2章系统方案设计 (6)2.1 设计任务 (6)2.2 方案选择 (6)2.2.1 DS18B20介绍 (7)2.2.2 DHT11介绍 (7)2.2.3 XPT2046介绍 (8)2.3 方案确定 (9)2.3.1 DS18B20测温原理 (9)2.3.2 测试参数分析 (10)2.4 本章小结 (11)第3章数据采集系统硬件设计 (12)3.1 A/D和D/A模块设计 (12)3.2 串口通讯 (13)3.3 单片机最小系统介绍 (14)3.3.1 数据采集系统主要电路 (15)3.3.2 DS18B20与单片机接口电路 (16)3.3.3 振荡与复位电路 (16)3.3.4 主电路图 (16)3.4 本章小结 (17)第4章采集系统软件设计 (18)4.1 虚拟仪器开发软件 (18)4.2 下位机程序设计 (19)4.2.1 初始化程序 (19)4.2.2 读写时序函数 (21)4.2.3 温度采集模块程序 (21)4.3 上位机程序设计 (22)4.3.1 前面板主页界面 (22)III4.3.2 前面板实时数据测控 (23)4.3.3 前面板历史记录 (23)4.3.4 用户登录界面程序框图 (23)4.3.5 串口通讯程序框图 (24)4.3.6 温度显示和波形显示模块 (24)4.4 本章小结 (25)第5章数据采集系统调试 (26)5.1 系统调试 (26)5.2 系统评估升级 (28)5.3 本章小结 (28)结论 (29)致谢 (30)参考文献 (31)附录 (32)IV第1章绪论1.1课题研究背景电压、电流作为控制系统中基本物理量,是数字控制系统得以实现的前提。
温度数据无处不在存在于周围环境,温度实时变化对我们生活、生产产生重要影响。
在工业生产过程中,温度波动影响产品品质,甚至会导致产品报废,在能源和生物领域,温度不稳定会造成能源供应系统受阻,生物产品不达标等。
在生活中,温度的显著变化超出人的适应范围导致身体不适,容易引发感冒、中暑等症状。
因此,温度数据采集作为系统采集参数具有现实意义。
在社会生产环境中,生产系统内部与外界的热传递总会以各种方式进行热量交换,系统内部热源的干扰也是变化莫测。
为了促使生产系统与外界的热能量交换尽可能的符合生产工艺要求,就需要采取控制技术来实现生产系统内部温度处于一个相对稳定理想值。
根据热力学第二定律,两个温度相同的系统之间可以通过一定控制技术达到热平衡的,利用与目标系统温度同步的隔离层,实现目标系统与外界进行热隔离[1]。
另外,在大部分温度控制系统环境中,增温要比降温实现方法简单。
因此,对温度的控制精度要求比较高的情况下,禁止出现温度过冲现象,即不应许实际温度超过控制的目标温度,特别是隔热效果较好的系统环境,温度一旦出现过冲,将难以迅速实现温度下降。
因此,温度参数实时检测具有实用价值,便于温度超出正常范围内进行相应的温度补偿。
从第一台计算机出现至今应有60年历史,计算机应用由最初的国防事业蔓延至各行各业,加上电子技术、软件技术、网络技术和现代测量技术的发展,为现代测量技术发展提供了技术保障。
在上世纪90年代,由美国NI公司提出了新概念—虚拟仪器,标志着测量技术向一个新的方向转变。
虚拟仪器提出的主要思想是利用模块化硬件设计,结合软件完成各种测试、测量和自动化应用。
具体到测量技术上是指在通用的计算机平台上设计测试系统,用户操作这台计算机就可以对被测环境完成测试任务。
传统仪器由仪器设备生产厂商根据市场需求开发出满足用户需求的专用仪器,具有输入输出接口和仪器控制面板,该仪器呈现给用户的表现为功能单一,测试环境封闭。
传统意义上的仪器一般都由数据采集、数据分析、数据处理、人机交互和显示等几个基本部分组成,如果测试环境、测试物理量等发生变更则需要进行仪器整体变更设计,增加了产品成本。
然而,虚拟仪器只需在必要的数据采集硬件和通用计算机支持下,通过软件设计实现仪器的全部功能变更。
与传统仪器相比,虚拟仪器除了在性能、易用性、用户可定制性等方面具有更多优点外,在工程应用和社会经济效益方面也独树一帜。
例如一些技术水平不高,经济实力弱的公司在进行产品分析时,对于购置高档台式仪器如数字示波器、频谱分析仪、逻辑分析仪等仪器表现出一定压力。
而采用虚拟仪器技术仅需采购必要的通用数据采集硬件来完成自己的仪器系统设计。
用户可以植入系统算法应用于虚拟仪器,提供传统台式仪器不具备的功能,而且完全可以通过软件配置实现多功能集成于一体的仪器系统。
1.2虚拟仪器介绍虚拟仪器的概念由美国仪器公司提出,在计算机基础上通过增加相关硬件和软件构成,具有可视化界面的仪器,利用高性能的模块化硬件设计,结合功能高效的软件来完成数据采集与控制、数据处理与分析、数据显示等物理功能。
虚拟仪器脱胎于数字存储示波器,于1986年正式推出编程环境LabVIEW,标志虚拟仪器基本成型[2]。
微机及数字信号处理器运算速度提升实现了实时控制要求,利用通用计算机来管理仪器、组建仪器系统,进而完成传统仪器需要实现的功能。