卫星通信原理论文
- 格式:doc
- 大小:33.50 KB
- 文档页数:5
卫星移动通信系统的论文(通用)摘要:在卫星移动通信系统中,位置管理性能的优劣直接影响系统的服务质量。
位置管理中的位置更新和位置寻呼是其中的关键,低频率的位置区更新以及一次寻呼成功能降低信令开销,节省网络资源,优化网络配置。
而基于动态位置区的更新策略,可动态调整位置区的更新时刻,减轻网络负荷。
关键词:位置管理;位置更新;通信论文1、引言卫星通信与传统的地面蜂窝移动通信相比,其突出的优点是不可取代的。
首先,卫星通信系统通过空中卫星作为其中继站,对移动终端的上行信号进行转发,使得通信的覆盖区域大,通信距离远。
其次,在卫星通信系统中,只要是在卫星的波束覆盖区域内,所有的地球站以及移动终端都能利用这颗卫星进行机动灵活的相互间的具有多址联接性通信,并且卫星采用的是微波频段,其通信频带宽,通信容量大。
最后,卫星通信系统都有一个共同的特点,即通信的成本与距离无关,通信线路稳定,质量好。
在卫星通信系统中,由于中、低轨卫星系统路径损耗小,传播时延低,对用户终端的有效全向辐射功率和接收机品质因素的值要求低,可支持手持机直接通过卫星进行通信,因此低轨通信卫星系统是现在研究的热点。
移动性管理技术作为卫星移动通信的一项关键技术,关系到整个网络的性能。
随着卫星通信技术的发展,通信系统小区容量不断的增加,用户接入的增加使得网络在处理终端移动性的信令开销和数据库的负荷也随着增加,良好的移动性管理策略可以大大的降低系统运行的负荷,显著提高系统的性能。
移动性管理(mobilitymanagement)是移动通信领域的一个具有挑战性的问题。
2、位置管理移动性管理主要包括:位置管理和切换管理。
在移动通信网络系统中,移动终端可以不受固定的点到点的限制而自由的移动,并且移动终端可以在任何时刻、任何地方、随时随地的接入到通信系统中,亦能和网络时刻的建立链接,进行相关的业务功能。
移动通信网络系统的优越性为移动性终端提供了动态服务,系统如何识别移动终端的位置信息,并且为其保证正常的通信,成为移动通信的重要特征,这主要是通过位置管理来实现的。
卫星通信技术的原理和应用场景卫星通信技术是一种通过地球轨道上的人工卫星来进行信息传输的通信方式。
它利用卫星的广域覆盖和高速传输能力,实现了全球范围内的通信服务。
本文将介绍卫星通信技术的原理以及它在不同应用场景中的运用。
让我们来了解卫星通信技术的原理。
卫星通信系统由地面站、卫星和用户终端组成。
当用户终端需要发送信息时,地面站将这些信息通过射频信号发送到卫星。
卫星接收到信号后,再通过射频信号将这些信息传送至另一个地面站。
地面站将信号解码,并将信息发送给相应的用户终端。
这个过程中,卫星作为中继器连接了不同地区的地面站,实现了长距离传输。
卫星通信技术的应用场景非常广泛,以下是其中几个重要的应用领域:1. 电视广播和卫星电视:卫星通信技术在电视广播和卫星电视领域发挥了重要作用。
通过卫星传输信号,电视节目可以实现全球范围内的广播。
卫星电视也可以通过卫星接收信号,提供高清晰度、多频道的电视节目服务。
2. 军事通信:卫星通信在军事领域中具有重要作用。
卫星通信系统可以提供安全可靠的通信网络,满足军队在各种环境下的通信需求。
卫星通信还能实现情报、监视和遥感等功能,为军事行动提供支持。
3. 灾害应急通信:卫星通信技术在自然灾害和紧急情况下的通信中发挥了重要作用。
当地面通信基础设施被破坏或不可用时,卫星通信可以提供即时、可靠的通信服务。
救援人员可以通过卫星通信系统与指挥中心进行联系,协调救援行动。
4. 国际国内长途通信:卫星通信技术还可用于国际和国内长途通信。
由于地球是曲面的,对于远距离通信,光纤通信等传统的通信方式可能存在信号衰减的问题。
而卫星通信通过卫星之间的中继,可以实现长距离通信,扩大了通信范围。
5. 航空航天通信:卫星通信技术在航空航天领域中也得到了广泛应用。
它可以为飞机和航天器提供通信支持,包括导航、监控、气象信息等。
卫星通信可以确保飞机和航天器在飞行过程中保持与地面的联系,提高安全性和效率。
综上所述,卫星通信技术是一种在全球范围内实现信息传输的重要通信方式。
卫星通信毕业论文卫星通信毕业论文【关键词】通信论文前言宽带卫星通信系统,是通信系统的重要组成部分,而OFDM技术, 则是确保宽带卫星通信系统功能能够有效实现的基础。
将该技术应用到系统中,对于系统通信质量与信息传输速率的提高具有重要价值。
1、宽带卫星通信概述1.1宽带卫星通信简介1.2宽带卫星通信面临的问题2、OFDM系统原理2.1OFDM符号调制及解调OFDM的原理在于将单路串行的数据进行划分,使其成为多路并行的数据形式,在此基础上,对其加以调制,使其能够在频谱相同的不同子载波上完成传输过程。
在此过程中,需要保证不同子载波具有两两相交的特点。
在OFDM系统下,调制过程相对简单,只需采用一种数字调制方法,便可支持全部数据传输完成。
2.2循环前缀OFDM具有对抗多径时延扩展的功能,为避免前后两个OFDM符号之间发生ISI问题,可通过在其中加入保护间隔的方法实现对各个符号的保护。
保护间隔的长度一般为L, L需保证能够大于最大时延扩展,只有这样,才能够有效避免信号与信号之间互相干扰的问题发生。
可以采用空符号代表保护间隔,但该种方法通常会对正交情况产生影响。
采用循环前缀的方法,将周期扩展插入到OFDM符号与符号之间,能够有效解决上述问题,使OFDM的对抗多径时延扩展功能更好的实现。
2. 3收发机系统收发机系统的工作流程如下:①接受信号。
②对信号进行电磁转换。
③将传输过程中的循环前缀删除。
④对信号串联与并联的形式进行转换。
⑤对信号进行处理。
⑥转换信号串并联形式。
⑦解调,得到信息接收比特流。
2.4同步误差分析应从频率偏移、符号定时偏差、采样时钟频率偏移三方面,对同步误差进行分析。
以频率偏移为例,其所造成的同步误差如下:频率偏移一半在发射机与接收机之间发生,多由子载波件的整数倍偏移以及小数倍偏移而构成。
前者不会导致ICI发生,而后者则会引发ICI。
将子载波间隔控制在2%以内,能够避免上述问题发生。
3、宽带卫星通信系统中的OFDM同步技术3.1同步算法同步算法主要包括Schmidl&Cox算法、利用PN序列前导符的算法等多种。
论述卫星光通信技术的发展与应用论文随着我国卫星技术的进步和社会对信息的需要,需要使用卫星进行信息传播的状况越来越多,为了保障信息的实时性和快速性,需要卫星通信过程中越来越高频段的使用。
同时,现代化的卫星星座技术的提高也需要星间链路的建立,利用激光远胜于使用微波,但是激光产生的降雨影响比较大。
通过选择适当的波长和在不同的地点分设地面站的方式,可以有效地克服激光带来的不良影响。
卫星光通信技术具有宽阔的进展空间。
一、卫星光通信技术的工作原理首先,在对地表网络系统中的通信信号进行处理后,经过编码和调控,将通信信号加载后使其进入地球上的激发放射设备中,促使激光脉冲的信号发出,放射的工作通过光学卫星天线进行。
在大气层的通道处理后,借助通信卫星来负责接收信号、进行解调,在卫星上实现光通信技术,将信号转输到地面的光学卫星天线上连续工作、进行译码、解调的任务,进而到达两个卫星地球站的全光双工通信的目的。
二、卫星光通信技术的基本特征与一般的卫星微波相比,卫星光通信技术具有许多特征。
包括: (1)拓展了新型的卫星通信渠道,扩大了卫星通信的容量,使数据传输的速度到达100Gb/s,而且运用卫星光通信技术具有潜在的优点。
在现阶段,我国的卫星中的微波带宽度是2GHz( Ku波段和C 波段)左右,但是激光的频带宽大于105GHz,通信设施中不会有多余信号的干扰。
(2)减轻了卫星通信设备的.重量,特殊是对于卫星运载的设施来说,重量的减轻能够降低耗费的能源量。
有利于延长卫星的使用年限,提高星上的处理效率。
(3)增添了卫星通信过程的保密工作。
使用激光进行卫星通信能够起到有效的指向作用,而且放射过程中的激光束很窄,一般的发散角都属于毫弧级别的,因此在通信过程中具有良好的保密性。
(4)卫星光通信技术能够有效的避开干扰因素,而且要优于卫星微波通信技术。
(5)卫星光通信也具有明显的缺点。
最重要的是激光星地链路受大气中的降雨、烟尘、雾霆的影响比微波大。
卫星跟踪通信技术论文(全文)一、卫星的跟踪技术跟踪系统由基本形式均由天线、馈源、接收设备(或计算机)、伺服操纵单元等组成。
按照天线跟踪目标的方式分类有:①手动跟踪②程序跟踪③自动跟踪1、手动跟踪手动跟踪是指根据经验或预知的目标位置数据(如卫星轨道位置)随时间变化的规律,用人工按时调整天线的指向,或者是根据收到信号的大小用人工方式操纵跟踪系统,使其接收最强的信号(用频谱仪或接收机监视)。
手动跟踪可以每隔一段时间进行一次。
手动跟踪系统由天线、频谱仪(或接收机)、伺服操纵器等组成。
手动跟踪设备最为简单,可应用于地面站小口径天线对同步卫星的跟踪等指向精度和实时性要求较低的场合。
2、程序跟踪将卫星的星历数据和天线平台地理坐标和姿态数据一并输入计算机,计算机对这些数据进行处理、运算、比较,得出卫星轨道和天线实际角度在标准时间内的角度差值,然后将此值送入伺服操纵器,驱动天线,消除误差角。
不断地比较、驱动,使天线一直指向卫星。
程序跟踪可以应用在地面或车载小口径天线对卫星的跟踪。
由于地球的密度不均匀和其他干扰的影响,星历数据会随着时间有小的变化,一般很难计算出长时间的精确轨道数据。
从而进行长时间的跟踪会有积存的误差。
3、自动跟踪自动跟踪是指根据地球站天线接收到卫星所发的信标信号,通过变频、放大输入跟踪接收机,检测出俯仰和方位误差信号,根据误差信号大小和方向由伺服操纵器驱动天线转台系统,使天线自动地对准卫星。
这种跟踪方式没有误差积存,可以长时间连续跟踪。
由于卫星位置受影响的因素太多,无法长期预测卫星轨道,故目前大、中型地球站主要采纳自动跟踪为主,手动跟踪和程序跟踪为辅的方式。
按照自动跟踪原理和设备组成,自动跟踪可以具体分为三种体制:步进跟踪、圆锥扫描跟踪和单脉冲跟踪。
3、1步进跟踪步进跟踪是指天线指向以一定的步进向接收电平增大的方向进行不断调整。
步进跟踪是开环方式,跟踪精度较低,跟踪速度较慢。
步进跟踪适用于要求跟踪速度较低的系统中,如漂移速度较慢的同步卫星的跟踪。
卫星通信原理卫星通信是一种重要的远程通信方式,通过卫星作为信号传输的中继器,实现了全球范围内的通信覆盖。
卫星通信系统由地面站、卫星和用户终端设备组成,其中卫星是系统中最关键的部分,承担着信号的中继和转发任务。
本文将介绍卫星通信的原理以及相关技术细节。
卫星通信的基本原理卫星通信系统的基本原理是利用地面站向卫星发送信号,再由卫星将信号转发给其他地面站或用户终端设备。
卫星通信系统主要包括下行链路和上行链路两部分。
下行链路是指从卫星向地面站或用户终端设备传输信号的链路,而上行链路则是指从地面站或用户终端设备向卫星传输信号的链路。
卫星通信系统中的卫星通常分为地球同步卫星和非地球同步卫星两种。
地球同步卫星的轨道与地球自转周期相同,因此在地面上看到的卫星位置相对固定,适用于提供稳定的通信服务;非地球同步卫星则以不同速度绕地球运行,可以覆盖更广阔的地区,但通信时延更大。
卫星通信系统的组成地面站地面站是卫星通信系统中与卫星进行通信的终端设备,通常包括天线、发射器和接收器等部分。
地面站负责向卫星发送信号并接收来自卫星的信号,将信号转换成电信号后传输给用户设备或其他地面站。
卫星卫星是卫星通信系统中最关键的部分,其主要功能是接收来自地面站的信号,经过处理后再转发给其他地面站或用户终端设备。
卫星上配备有接收天线和发射天线,用于接收和发送信号。
用户终端设备用户终端设备是卫星通信系统中最终的信号接收和发送终端,通常包括天线、接收器和发射器等部分。
用户终端设备接收来自卫星的信号并进行解码后,将信号传递给用户使用的终端设备,如手机、电视等。
卫星通信技术细节调制解调在卫星通信中,调制解调技术起着至关重要的作用。
调制是指将要发送的数字信号转换成模拟信号,以便在通信传输过程中进行传输;解调则是将接收到的模拟信号转换回数字信号。
常见的调制技术包括调频调制、调幅调制和调相调制等。
多址技术多址技术是在卫星通信中用于实现多用户同时通信的重要技术。
目录一、卫星通信的基本概念 3二、“天宫一号” 32.1 “天宫一号”结构 3 2.1.1 资源舱 4 2.1.2 实验舱 4 2.1.3 生命保障舱 4 2.2 “天宫一号”与“神州八号”的对接与分离 4 2.2.1 对接 5 2.2.2 分离7 2.3 “天宫一号”目标飞行器发射的意义8 2.3.1 对增强我国工业技术水平8 2.3.2 对空间探索的重要意义8 2.3.3 空间科学实验9 2.3.4 对医学和农业重要意义9 2.3.5 对通信技术的意义10 2.3.6 对国防的作用10卫星通信的应用一、卫星通信的基本概念卫星通信是指利用人造地球卫星作为中继站来转发或反射无线电信号,在两个或多个地面站之间进行通信。
其特点是:通信距离远;通信容量大;不受大气层骚动的影响,通信可靠。
简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。
卫星通信系统由卫星和地球站两部分组成。
卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。
二、“天宫一号”2011年9月29日发射升空的“天宫一号”属于应用卫星一类,它的任务主要有四个:(1)天宫一号目标飞行器作为交会对接的目标,与神舟八号配合完成空间交会对接飞行试验。
(2)保障航天员在轨短期驻留期间的生活和工作,保证航天员安全。
(3)开展空间应用(包括空间环境和空间物理探测等)、空间科学实验、航天医学实验和空间战技术实验。
(4)初步建立短期载人、长期无人独立可靠运行的空间实验平台,为建造空间站积累经验。
2.1 “天宫一号”结构2.1.1 资源舱天宫一号的电源分系统的所有设备(太阳能电池翼)都在资源舱内,并包括了为飞行器提供能量的燃料。
卫星通信技术的原理及应用卫星通信技术是现代通讯领域中的一种重要技术,其应用范围极为广泛,涵盖军事、民用、商业等多个领域。
卫星通信技术可以无视地球上的地形、气候等限制,实现全球无死角的通信覆盖,具有高可靠性、高灵活性、高保密性等特点。
本文将从卫星通信技术的原理及应用两个方面介绍卫星通信技术。
卫星通信技术的原理卫星通信技术的原理是利用卫星作为中转站实现全球通信覆盖。
卫星通信技术的基础是地球同步卫星技术,核心是中转转发和频谱分配。
地球同步卫星的轨道高度约为36000公里,因此天线从地球上看到的卫星位置在地球表面上几乎保持不变,因此被称为地球同步卫星。
具体来说,卫星通信技术分为两种模式,即主动模式和被动模式。
主动模式是指卫星发射信号送到地面站,从而实现卫星与地面站之间的通信互动。
被动模式是指卫星仅用于中转信号,由地面站发射信号送达卫星传输,卫星不会给地面站回发任何信号。
卫星通信技术的运作方式是:用户在地球上发射信号到指定的卫星上,卫星收到信号后,再将信号转发到另一地区的地面站,最后由该地面站传输信号给接收者。
卫星通信技术实现了地球上的任何一个角落与世界其他地区的无缝通信,这种功能是传统通信技术所无法实现的。
卫星通信技术的应用一、军事领域卫星通信技术在军事通信领域中有着十分广泛的应用。
卫星通信技术可以使部队远程通信快速、可靠、安全,避免了信息突发事件所造成的通信中断。
在军事保密方面,卫星通信技术可以利用加密技术增强保密性,防止机密信息的泄露。
例如,卫星通信技术可以在军事电子战中对抗地面电子干扰装置,保证军事通信系统的连续性和战斗优势。
二、船舶与航空随着全球化的发展和航空、航海运输的发展,卫星通信技术已经成为航空、海洋运输领域中最常用的通信方式之一。
海洋运输中,卫星通信技术可以保证船舶与陆地的通信连续性,实现货船在海上安全运行的持续监测。
而在航空领域,卫星通信技术的应用可以帮助航空公司为乘客提供更佳的航班体验,例如可以在飞机上让乘客使用网络、电话等服务。
The Principal of Satellite Communication卫星通信原理张珏 10211155电子信息工程学院北京交通大学摘要(Abstract)交大没有笨学生只有懒学生卫星通信简单地说就是地球上的无线电通信站间利用卫星作为中继而进行的通信。
本论文将介绍直播卫星、卫星通信的原理、卫星通信系统等.近年来卫星通信新技术的发展层出不穷.卫星通信也是未来全球信息高速公路的重要组成部分,成为中国当代远距离通信的支柱。
关键字卫星通信系统多址联接直播卫星一、前言(Introduction)卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信.卫星通信系统由卫星和地球站两部分组成。
卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。
本文从以下结构来介绍卫星通信:第二部分讲述了现代卫星通信技术的背景以为卫星通信的优缺点;第三部分介绍了卫星通信的基本原理;第四部分介绍了卫星通信的基本概念;第五部分主要介绍了卫星通信系统的构成;第六部分介绍了卫星通信的特点和它所需要的关键技术;第七部分则介绍了有关直播卫星的相关知识;第八部分着重讲解了多址联接方式的内容;第九和第十部分总结了我国卫星通信的发展以及思考。
二、背景(Background)近年来卫星通信新技术的发展层出不穷。
例如甚小口径天线地球站(VSAT)系统,中低轨道的移动卫星通信系统等都受到了人们广泛的关注和应用。
卫星通信也是未来全球信息高速公路的重要组成部分。
它以其覆盖广、通信容量大。
通信距离远、不受地理环境限制、质量优、经济效益高等优点,1972年在中国首次应用,并迅速发展,与光纤通信、数字微波通信一起,成为中国当代远距离通信的支柱。
卫星通信论文范文3篇载波卫星通信论文1系统功能1.1信号采集天线对准某颗通信卫星(如中星6A)后,移动车载站上的卫星信标接收机会收到一定强度的卫星信标,信标值的大小用来衡量对星的准确度。
信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。
设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。
载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。
调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。
控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。
1.2信号处理通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。
当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。
CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。
车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。
同样在离开遮挡区超过5s 后发送开启消息给调制解调器线程,进而开启载波发射。
具体流程见图1“载波自动关闭流程图”。
1 引言
卫星通信,简单的说就是地球上(包括地面、水面和低层大气中)的无线电通信站之间利用人造卫星作为中继站转发或反射无线电波,以此来实现两个或多个地球站之间通信的一种通信方式。
它是一种无线通信方式,可以承载多种通信业务,是当今社会重要的通信手段之一
2卫星通信系统的基本组成
卫星通信系统由卫星和地球站两部分组成。
卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再返送回另一地球站。
地球站则是卫星系统与地面公众网的接口,地面用户通过地球站出入卫星系统形成链路。
由于静止卫星在赤道上空3600Km,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一般。
三颗相距120°的卫生就能覆盖正个赤道圆周。
故卫星通信易于实现越洋和洲际通信。
最适合卫星通信的频率是1~10GHz频段。
为了满足越来越多的需求,已开始研究应用新的频如12GHz,14GHz,20GHz及30GHz。
3 卫星通信的主要特点:
3.1优点方面:
(1)通信范围大,只要卫星发射的波束覆盖进行的范围均可进行通信。
(2)不易受陆地灾害影响。
(3)建设速度快。
(4)易于实现广播和多址通信。
(5)电路和话务量可灵活调整。
(6)同一信通可用于不同方向和不同区域。
3.2缺点方面:
(1)由于两地球站向电磁波传播距离有72000Km,信号到达有延迟。
(2)10GHz以上频带受降雨雪的影响。
(3)天线受太阳噪声的影响。
4卫星通信使用频率
(1) 频段(3.4-6.65GHz)
(2) 频段(10.95-18GHz)
(3) Ka频段(18-40GHz)
(4) L频段(1.12-2.6GHz)
(5) 其他频段(UHF,S,X,Q,V)
5 覆盖范围
5.1静止地球轨道(GEO)卫星
全球覆盖的固定卫星通信业务静止地球轨道(GEO)卫星,轨道高度大约为36 000km,成圆形轨道,只要三颗相隔120°的均匀分布卫星,就可以覆盖全球。
国际卫星通信组织的Intelsat I-IX代卫星。
是全球覆盖的最好例子,目前已发展到第九代。
卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再反送回另一地球站。
地球站则是卫星系统形成的链路。
由于静止卫星在赤道上空36000千米,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一样。
三颗相距120度的卫星就能覆盖整个赤道圆周。
故卫星通信易于实现越洋和洲际通信。
最适合卫星通信的频率是1一10GHz频段,即微波频段、为了满足越来越多的需求,已开始研究应用新的频段,如12GHz,14GHz,20GHz及30GHz。
5.2移动卫星通信
全球覆盖的移动卫星通信海事卫星通信系统Inmarsat是全球覆盖的移动卫星通信,目前工作的为第三代海事通信卫星,它们分布在大西洋东区和西区、印度洋区和太平洋区,第四代Inmarsat-4卫星,已于2005年3月发射了第一颗卫星,另一颗卫星亦准备发射,它们分别定点在64。
E和53。
W,具有一个全球波束,l9个宽点波束,228个窄点波束,采用数字信号处理器。
有信道选择和波束成形功能。
全球覆盖的低轨道移动通信卫星有“铱星”(Iridium)和全球星(G10balstar),“铱星”系统有66颗星,分成6个轨道,每个轨道有11颗卫星,轨道高度为765km,卫星之间、卫星与网关和系统控制中心之间的链路采用ka波段,卫星与用户间链路采用L波段。
2005年6月底铱星用户达12.7万户,在卡特里娜飓风灾害时,“铱”星业务流量增加30倍,卫星电
话通信量增加5倍。
全球星(Globalstar)有48颗卫星组成,分布在8个圆形倾斜轨道平面内,轨道高度为1 389km,倾角为52度。
用户数逐年稳定增长,成本下降,2005年比2004年话音用户增长。
6多址联接方式
多址联接的意思是同一个卫星转发器可以联接多个地球站,多址技术是根据信号的特征来分割信号和识别信号,信号通常具有频率、时间、空间等特征。
卫星通信常用的多址联接方式有频分多址联接(FDMA)、时分多址联接(TDMA)、码分多址联接(CDMA)和空分多址联接(SDMA),另外频率再用技术亦是一种多址方式。
在微波频带,整个通信卫星的工作频带约有500MHz宽度,为了便于放大和发射及减少变调干扰,一般在卫星上设置若干个转发器。
每个转发器的工作频带宽度为36MHz或72MHz目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。
它对于点对点大容量的通信比较适合。
近年来,已逐渐采用时分多址技术,即每一地球站占用同一频带,但占用不同的时隙,它比频分多址有一系列优点,如不会产生互调干扰,不需用上下变频把各地球站信号分开,适合数字通信,可根据业务量的变化按需分配,可采用数字话音插空等新技术,使容量增加5倍。
另一种多址技术使码分多址(CDMA),即不同的地球站占用同一频率和同一时间,但有不同的随机码来区分不同的地址。
它采用了扩展频谱通信技术,具有抗干扰能力强,有较好的保密通信能力,可灵活调度话路等优点。
其缺点使频谱利用率较低。
它比较适合于容量小,分布广,有一定保密要求的系统使用。
7 卫星通信的应用范围
卫星通信的应用范围很广,涉及长途电话、传真、电视广播、娱乐、计算机联网、电视会议、电话会议、交互型远程教育、医疗数据、应急业务、新闻广播、交通信息、船舶、飞机的航行数据及军事通信等。
目前国内公众卫星通信网的干线已有37个大型C波段地球站,运行着3万5千条双向电路(占国内长途电路的5~6‰),另有4个试验地球站和约30台移动卫星通信车载站工作在Ku波段。
国际通信方面我国运营15座国际通信卫星地球站,开通了约1万3千
条双向电路(占国际长途电路的26%)。
中国通信广播卫星公司等具有国际点对点业务许可的单位开通了150~200条国际双向VSAT电路。
公众通信约使用50个转发器。
我国已有中央电视台的12套节目,中央人民广播电台和国际台的32路声音广播节目,以及31个省、自治区、直辖市的广播电视节目均通过通信卫星向全国传送。
目前我国广播电视节目共使用了11颗通信卫星(亚太1A、亚洲2号、亚洲3S、鑫诺1号、亚太2R、泛美3R号、泛美8号、泛美9号、泛美3R号、泛美10号、银河3R和热鸟3号)的32个转发器。
我国已建成的广播电视卫星地球站共31座,地面卫星收转台站52万多座。
与1985年上卫星时相比,我国广播电视人口覆盖率已由68.3%和68.4%上升为2001年底的92.9%和94.1%。
至2001年底国内VSAT经营者有43家。
双向VSAT站7000多个,单向VSAT站近17000个。
目前,经营性和专用性VSAT卫星通信网约达120个左右。
专网通信约使用14个转发器,经营性VSAT通信用了约14个转发器8 总结
卫星通信的花费巨大,但却有着不可替代的地方,在防止因自然灾害而发生的通信中断中会起着越来越重要的作用。
通过这次的结课论文,对卫星通信的原理,组成,工作频段,应用等有了初步的认识,在以后的日子里希望可以进一步的了解它。
课程论文卫星通信11022p20
纪凯。