刘氏备战2011中考数学压轴题精选6
- 格式:doc
- 大小:1.21 MB
- 文档页数:15
(1)矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(-2,0),直线AB交x轴于点A(1,0).(1)求直线AB的解析式;(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,是的S△PAG= S△PEH,若存在,求点P 的坐标;若不存在,请说明理由.解答:解:(1)设经过A(1,0),B(0,3)的直线AB的解析式为y=kx+3;设k+3=0,解得k=-3.∴直线AB的解析式为y=-3x+3.(2)进过A、B、C三点的抛物线的解析式为y=ax2+bx+3∵D(-2,0),B(0,3)是矩形OBCD的顶点,∴C(-2,3);则解得∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,∴顶点E(-1,4).(3)存在.解法1:∵EH∥x轴,直线AB交EH于点F.∴将y=4代入y=-3x+3得F(- ,4)∴EF=有平移性质可知FH=AG=2∴EH=EF+FH= +2=设点P的纵坐标为y p①当点P在x轴上方时,有S△PAG= S△PEH得×2×y p= ×××(4-y p)解得y p=2∴-x2-2x+3=2解得x1=-1+ ,x2=-1-∴存在点P1(-1+ ,2),点P2(-1- ,2)②当点P在x轴下方时由S△PAG= S△PEH得×2×(-y p)=∴-y p=4-y p∴y p不存在,∴点P不能在x轴下方.综上所述,存在点,使得S△PAG= S△PEH.解法2:∵EH∥x轴,直线AB交BH于点F.∴将y=4代入y=-3x+3得F(- ,4),∴EF= .由平移性质可知FH=AC=2.∴EH=EF+FH= +2=设点P到EH和AG的距离分别为h1和h2由S△PAG= S△PEH得∴h1=h2显然,点P只能在x轴上方,∴点P的纵坐标为2∴-x2-2x+3=2解得,∴存在点,点使得S△PAG= S△PEH.(2)如图,在等腰梯形ABCD中,AD∥BC,AE⊥BC于点E.DF⊥BC于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题:(1)直接写出当x=3时y的值;(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,图形M成为等腰梯形?图形M成为三角形?(4)直接写出线段PQ在运动过程中所能扫过的区域的面积.解答:解:(1)由等腰梯形的性质得:BE=EF=FC=2,∴S M=S△BPE+S△QFC+S梯形QFEP= BE•x FC•y+ •EF= ×2x+ ×2y+ ×2=2(x+y),把S M=10,x=3代入上式,解得y=2.(2)由等腰梯形的性质得:BE=EF=FC=2,∵S△BEP+S梯形PEFQ+S△FCQ=S梯形M,∴×2x+ (x+y)×2+ ×2y=10,∴y=-x+5,由,得1≤x≤4.(3)若图形M为等腰梯形(如图1),则EP=FQ,即x=-x+5,解得x= .∴当x= 时,图形M为等腰梯形.若图形M为等腰三角形,分两种情形:①当点P、Q、C在一条直线上时(如图2),EP是△BPC的高,∴BC•EP=10,即×6x=10,解得x= ;②当点B、P、Q在一条直线上时(如图3),FQ是△BQC的高,∴BC•F Q=10,即×6×(-x+5)=10,解得x= ;∴当x= 或时,图形M为三角形.(4)线段PQ扫过的部分是两个全等的三角形,且都是以x最小时AP的长为底,AD的长为高,在(2)中已经求得x的取值范围为1≤x≤4,所以此时AP=AE-x min=3,那么线段PQ扫过的面积即为:2S=2××3×1=3cm2;评分说明:(4)中不写单位不扣分,线段PQ在运动过程中所能扫过的区域为图4中阴影部分.(3)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.解答:解:(1)同意,连接EF,则根据翻折不变性得,∠EGF=∠D=90°,EG=AE=ED,EF=EF,∴Rt△EGF≌Rt△EDF,∴GF=DF;(2)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=2DF,∴CF=x,DC=AB=BG=2x,∴BF=BG+GF=3x;在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2∴y=2 x,∴;(3)由(1)知,GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n•DF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2∴y=2x ,∴或.(4)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),则有解得,∴抛物线的解析式为y= x2+x-4.(2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n),则AD=m+4,MD=-n,n= m2+m-4,∴S=S△AMD+S梯形DMBQ-S△ABO==-2n-2m-8=-2×=-m2-4m(-4<m<0);∴S最大值=4.(3)设P(x,x2+x-4).①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=-x,则Q(x,-x).由PQ=OB,得|-x-(x2+x-4)|=4,解得x=0,-4,-2±2 .x=0不合题意,舍去.由此可得Q(-4,4)或(-2+2 ,2-2 )或(-2-2 ,2+2 );②如图2,当BO为对角线时,易知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).故满足题意的Q点的坐标有四个,分别是(-4,4),(-2+2 ,2-2 ),(-2-2 ,2+2 ),(4,-4),.(5)(2010•三明)如图①,抛物线经过点A(12,0)、B(-4,0)、C(0,-12).顶点为M,过点A的直线y=kx-4交y轴于点N.(1)求该抛物线的函数关系式和对称轴;(2)试判断△AMN的形状,并说明理由;(3)将AN所在的直线l向上平移.平移后的直线l与x轴和y轴分别交于点D、E(如图②).当直线l 平移时(包括l与直线AN重合),在抛物线对称轴上是否存在点P,使得△PDE是以DE为直角边的等腰直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.解答:解:(1)设抛物线的函数关系式为y=ax2+bx+c;∵抛物线过点C(0,-12),∴c=-12;(1分)又∵它过点A(12,0)和点B(-4,0),∴,解得;∴抛物线的函数关系式为y= x2-2x-12,(3分)抛物线的对称轴为x=4.(5分)(2)解法一:∵在y=kx-4中,当x=0时,y=-4,∴y=kx-4与y轴的交点N(0,-4);(6分)∵y= x2-2x-12= (x-4)2-16,∴顶点M(4,-16);(7分)∵AM2=(12-4)2+162=320,AN2=122+42=160,MN2=42+(16-4)2=160,∴AN2+MN2=160+160=320=AM2,AN=MN;(9分)∴△AMN是等腰直角三角形.(10分)解法二:过点M作MF⊥y轴于点F,则有MF=4,NF=16-4=12,OA=12,ON=4;(6分)∴MF=ON,NF=OA,(7分)又∵∠AON=∠MFN=90°,∴△AON≌△NFM;(8分)∴∠MNF=∠NAO,AN=MN;(9分)∵∠NAO+∠ANO=90°,即∠MNF+∠ANO=90°,∴∠MNA=90;∴△AMN是等腰直角三角形.(10分)(3)存在,点P的坐标分别为:(4,-16),(4,-8),(4,-3),(4,6)(14分)参考解答如下:∵y=kx-4过点A(12,0),∴k= ;直线l与y= x-4平行,设直线l的解析式为y= x+b;则它与x轴的交点D(-3b,0),与y轴交点E(0,b);∴OD=3OE;设对称轴与x轴的交点为K;(Ⅰ)以点E为直角顶点如图;①根据题意,点M(4,-16)符合要求;②过P作PQ⊥y轴,当△PDE为等腰直角三角形时,有Rt△ODE≌Rt△QEP,∴OE=PQ=4,QE=OD;∵在Rt△ODE中,OD=3OE,∴OD=12,QE=12,∴OQ=8,∴点P的坐标为(4,-8);(Ⅱ)以点D为直角顶点;同理在图①中得到P(4,6),在图②中可得P(4,-3);综上所得:满足条件的P的坐标为:(4,-16),(4,-8),(4,-3),(4,6).(6)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…试解决下列问题:(1)填空:①<π>= (π为圆周率);②如果<2x-1>=3,则实数x的取值范围为(2)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= 的所有非负实数x的值;(4)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足<>=n的所有整数k的个数记为b.求证:a=b=2n解答:解:(1)①3;②由题意得:2.5≤2x-1<3.5,解得:;(2)①证明:设<x>=n,则为非负整数;又,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(3)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(4)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2-n+1,n2-n+2,n2-n+3,…,n2-n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.(7)如图,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.解答:解:(1)将A(4,0)、B(1,3)两点坐标代入抛物线的方程得:,解之得:b=4,c=0;所以抛物线的表达式为:y=-x2+4x,将抛物线的表达式配方得:y=-x2+4x=-(x-2)2+4,所以对称轴为x=2,顶点坐标为(2,4);(2)点p(m,n)关于直线x=2的对称点坐标为点E(4-m,n),则点E关于y轴对称点为点F坐标为(m-4,n),则FP=OA=4,即FP、OA平行且相等,所以四边形OAPF是平行四边形;S=OA•|n|=20,即|n|=5;因为点P为第四象限的点,所以n<0,所以n=-5;代入抛物线方程得m=-1(舍去)或m=5,故m=5,n=-5.(8)25、如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若,设CE=x,△ABC的周长为y,求y关于x的函数关系式.分析:(1)当∠B=30°时,∠A=60°,此时△ADE是等边三角形,则∠PEC=∠AED=60°,由此可证得∠P=∠B=30°;若△AEP与△BDP相似,那么∠EAP=∠EPA=∠B=∠P=30°,此时EP=EA=1,即可在Rt △PEC中求得CE的长;(2)若BD=BC,可在Rt△ABC中,由勾股定理求得BD、BC的长;过C作CF∥DP交AB于F,易证得△ADE∽△AFC,根据得到的比例线段可求出DF的长;进而可通过证△BCF∽△BPD,根据相似三角形的对应边成比例求得BP、BC的比例关系,进而求出BP、CP的长;在Rt△CEP中,根据求得的CP 的长及已知的CE的长即可得到∠BPD的正切值;(3)过点D作DQ⊥AC于Q,可用未知数表示出QE的长,根据∠BPD(即∠EDQ)的正切值即可求出DQ的长;在Rt△ADQ中,可用QE表示出AQ的长,由勾股定理即可求得EQ、DQ、AQ的长;易证得△ADQ∽△ABC,根据得到的比例线段可求出BD、BC的表达式,进而可根据三角形周长的计算方法得到y、x的函数关系式.解答:(1)解:∵∠B=30°,∠ACB=90°,∴∠BAC=60°.∵AD=AE,∴∠AED=60°=∠CEP,∴∠EPC=30°.∴三角形BDP为等腰三角形.∵△AEP与△BDP相似,∴∠EPA=∠DPB=30°,∴AE=EP=1.∴在Rt△ECP中,EC= EP= ;(2)设BD=BC=x.在Rt△ABC中,由勾股定理,得:(x+1)2=x2+(2+1)2,解之得x=4,即BC=4.过点C作CF∥DP.∴△ADE与△AFC相似,∴,即AF=AC,即DF=EC=2,∴BF=DF=2.∵△BFC与△BDP相似,∴,即:BC=CP=4.∴tan∠BPD= .(3)过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1-a.∴且,∴DQ=3(1-a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+[3(1-a)]2,解之得.∵△ADQ与△ABC相似,∴.∴.∴三角形ABC的周长,即:y=3+3x,其中x>0.。
2011年中考数学压轴预测100题精选(11-20题)【11】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)【12】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,D 第24题图①D E第24题图②第24题图③且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.【13】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.【14】在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图). (1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数;(3)设M B N ∆的周长为p ,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.7),且顶点C的横坐标为4,该图象在x 轴上截得的【15】如图,二次函数的图象经过点D(0,39线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【16】如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点EO ABD 的面积S 满足:123S S ?若存在,求点E 的坐标; 若不存在,请说明理由.【17】如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.(第26题)【18】如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【19】如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO (1)试比较EO 、EC 的大小,并说明理由 (2)令;四边形四边形CNMN CFGHS S m,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说明理由。
中考数学压轴题汇编(7套)1、按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=12时,y=x +()11002x -,即y=1502x +。
∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)……3分 又当x=20时,y=1100502⨯+=100。
而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分(2)本题是开放性问题,答案不唯一。
若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。
如取h=20,y=()220a x k -+,……8分∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+。
………14分 2、已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点.(1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)由(1)2(33)m m -=+,得m =-k = ····· 2分(2)如图1,作B E x ⊥轴,E 为垂足,则3CE =,BE =,BC =,因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF mm =>,则1AF =,12AD m =,由点(1A--,,得点11(1)D m --,.因此11(1)(23)m --+=解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形. ······ 5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH m m =>,则2DH =,22CD m = 由点(10)C -,,得点22(1)D m -+, 因此22(1)3m m -+=.解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(2D -,,四边形ABCD 是梯形. ·············· 9分综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或D 10分图1图23、如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-=………2分(2)(30)A -, (54)B , (04)C ,…………5分把点A 坐标代入254y ax ax =-+中,解得16a =-………6分 215466y x x ∴=-++…………………………………………7分(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M . 过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =,5.5AN =,52BM =① ········································································································· 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= ················· 8分在1Rt ANP △中,1PN ====152P ⎛∴ ⎝⎭, ························· 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ====10分25822P ⎛∴ ⎝⎭, ························11分 ③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△. 312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = ··············· 13分3(2.51)P ∴-, ··························· 14分注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分. 4、如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 ,∴ k = 4 ×2 = 8 . (2) 解法一:如图12-1,∵ 点C 在双曲线上,当y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1 . ∴ 点C 的坐标为 ( 1, 8 ). ∵ 点C 、A 都在双曲线8y x=上 , ∴ S △COE = S △AOF = 4 。
1,2011宁夏2、2011宁夏3.(2011.24广州14分)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1- S2为常数,并求出该常数。
4.(2011广州,25,14分)如图7,⊙O中AB是直径,C是⊙O上一点,∠ABC=450,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上。
(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;(3)将△DCE绕点C逆时针旋转α(00<α<900)后,记为△D1CE1(图8),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明:若不是,说明理由。
5、2011福建莆田6、2011福建莆田7、8、9、2011甘肃兰州10、11,12,13(2011北京)14、15、16(福建龙岩2011)17、18(哈尔滨2011)19、(连云港2011)20,21,(湖北襄阳2011)22、(烟台2011)23、24、(广东茂名)(江苏盐城)25、(江苏盐城)26、(广西桂林10分)如图,在锐角△ABC 中,AC 是最短边;以AC 中点O 为圆心,12AC长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是 AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若12C EF OCDS S ∆∆=,且AC =4,求CF 的长.27.(广西桂林12分)已知二次函数21342y x x =-+的图象如图.(1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.28、29、(湖北孝感)30(湖北黄石)31、32、(湖南怀化)33、(天津)34、(辽宁大连)35、(广东清远)36、(福建泉州)37、(广东深圳)38、(陕西)39、(河南)40(河南)41、(江苏苏州)42、(江苏苏州)43.(上海)已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.44.(上海14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13E M P ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图45、(广东)46、(广东)47、(河北)48、(河北)49、(四川宜宾)50、(浙江嘉兴、舟山)51、(浙江嘉兴、舟山)52(江西南昌)53(山东日照)54、(山东威海)55、(山东德州)56、57、(浙江金华)58、59、60、(浙江义乌)61、(江苏无锡)62、63(安徽)64、65、66、67(四川乐山)65、四川乐山6667、四川乐山68、69、(安徽芜湖)69、安徽芜湖70、江西71,72山东临沂71.(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.72.26(2011•临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM垂直x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.73.74(2011)济南中考74.济南中考75. 7、(2011•青岛)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm76. 14、(2011•青岛)如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=_________.77. 24、(2011•青岛)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA 的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.。
2011年中考数学压轴题精选(91-100题)答案n=2+c,解:法1:由题意得【091】(1) 1分 2n-1=2+c.解得……2分 1 法2:∵抛物线y=x2-x+c的对称轴是x=,211 且-(-1) =2-,∴ A、B两点关于对称轴对称. 22 ∴ n=2n-11分∴ n=1,c=-1. 2分 15 ∴有 y=x2-x-1 3分=(x-)2-. 245 ∴二次函数y=x2-x-1的最小值是-. ……4分4 (2)解:∵点P(m,m)(m>0),∴PO=2m.∴22≤2m ≤2+2. ∴2≤m≤1+2. ……5分法1:∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴ m=m2-m+c,即c=-m2+2m. ∵开口向下,且对称轴m=1,∴当2≤m≤1+2 时,有-1≤c≤0. (6)分法2:∵2≤m≤1+2,∴1≤m-1≤2. ∴1≤(m-1)2≤2.∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即1-c=(m-1)2. ∴1≤1-c≤2.∴-1≤c≤0. ……6分∵点D、E关于原点成中心对称,法1:∴ x2=-x1,y2=-y1. y1=x12-x1+c, ∴∴2y1=-2x1,y1=-x1. -y1=x12+x1+c. 设直线DE:y=kx. 有-x1=kx1. 由题意,存在x1≠x2. ∴存在x1,使x1≠0. 7分∴ k=-1. ∴直线DE: y=-x. 8分法2:设直线DE:y=kx. 则根据题意有 kx=x2-x+c,即x2-(k+1) x+c=0. ∵-1≤c≤0,∴(k+1)2-4c≥0.∴方程x2-(k+1) x+c=0有实数根. 7分∵ x1+x2=0,∴ k+1=0. ∴ k=-1. ∴直线DE: y=-x. 8分 y=-x, 33 若则有 x2+c+=0.即 x2=-c-. 3 88 y=x2-x+c+. 8333 ① 当-c-=0时,即c=-时,方程x2=-c-有相同的实数根,8883 即直线y=-x与抛物线y=x2-x+c+有唯一交点. ……9分8333 ② 当-c->0时,即c<-时,即-1≤c<-时,888 13 方程x2=-c-有两个不同实数根,83 即直线y=-x与抛物线y=x2-x+c+有两个不同的交点. ……10分83333 ③ 当-c-<0时,即c>-时,即-<c≤0时,方程x2=-c-没有实数根,88883 即直线y=-x与抛物线y=x2-x+c+没有交点. ……11分8【092】解:(1)如图,在坐标系中标出O,A,C三点,连接OA,OC.y∵∠AOC≠90°,∴∠ABC=90°,327 A B 12故BC⊥OC, BC⊥AB,∴B(,1).(1分,)xO-112345 C 7-12即s=,t=1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,得,y=x2+mx-m与 y=1(线段AB)相交,2 y=x mx m, y=1.由(x-1)(x+1+m)=0,(3分)∴1=x2+mx-m,x 1,x m 1得.123x2∵=1<,不合题意,舍去.(4分)1x∴抛物线y=x2+mx-m与AB边只能相交于(,1),23759 m 2222∴≤-m-1≤,∴.①(5分)2mm 4m, 24又∵顶点P()是直角梯形OABC的内部和其边上的一个动点,m70 7 m 022∴,即.② (6分)442∵,(或者抛物线22m 4m2) 4m(m 2 1 1( 1)y=x2+mx-m顶点的纵坐标最大值是1)∴点P一定在线段AB的下方.(7分)又∵点P在x轴的上方,2m 4m 0m(m 4) 0,4∴, 2或者 m 4 0m 4 0 .(*8分)m 0,m 0,∴ 4 m(9分) 0. ③(9分)2m 4m2m2 ( )m(3m 8) 0.3432又∵点P在直线y=x的下方,∴,(10分)即或者 3m 8 03m 8 0.(*8分处评分后,m 0,m 0,分),或m 0.3 ④ 8m此处不重复评分)8 m (113 4 .(12分)由①②③④ ,得说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.BOACOABCPDPHH【093】解:(1)连结与交于点,则当点运动到点时,直线平分矩形的面积.理由如下: H ∵矩形是中心对称图形,且点为矩形的对称中心. OABCDP又据经过中心对称图形对称中心的任一直线平分此中心对称图形的面积,因为直线过矩形OABCDPH的对称中心点,所以直线平分矩形的面积.…………2分 3P(,2)2P 由已知可得此时点的坐标为. y kx bDP, 3420k b 2.k b 设直线的函数解析式为. 5k b 021313,.则有解得420y x 1313DP所以,直线的函数解析式为:. 5分△△DOMABCM(2)存在点使得与相似. yM(0,y)DP如图,不妨设直线与轴的正半轴交于点.m OMBCOMAB.因为,若△DOM与△ABC相似,则有或 DOM ABCODABODBC,)m144ODAB54.所以点满足条件.当时,y3OMBC1515m y M(0即,解得 3,)m233ODBC53.所以点满足条件.当y4OMAB2020m y M(0时,即,解得15M(0, )34也满足条件.由对称性知,点152015M(0,)M(0,)M(0, )123△△DOMABC434M、、.综上所述,满足使与相似的点有3个,分别为9分5 P2(3)如图,过D作DP⊥AC于点P,以P为圆心,半径长为画圆,过点D分别作的切线DE、DF,5 P2点E、F是切点.除P点外在直线AC上任取一点P1,半径长为画圆,过点D分别作的切线DE1、DF1,点E1、F1是切点.在△DEP和△DFP中,∠PED=∠PFD,PF=PE,PD=PD,22∴S四边形DEPF=2S∴△DPE≌△DPF.15 DE PE DE PE DE△DPE=2×.∴当DE取最小值时,S四边形DEPF的值最小.y∵,,222DE DP PE222DE DP PE∴.11P22DE DE 0 DPDP,1111F2222DE DE DP DPCB∴.∵11E DE DEP x∴.由点的任意性知:DE是11A DOFD点与切点所连线段长的最小值.……12分1在△ADP与△AOC中,∠DPA=∠AOC,P1∠DAP=∠CAO,∴△ADP∽△AOC.DPCODP432 DP.∴E55DACA8.∴.∴,即1102425347122DE DP PE 25410 3471347144∴S四边形DEPF=,即S=. 14分(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.)2y ax bx c,则【094】解:(1)令二次函数16a 4b c 0 a b c 0 c 2 1分 42 c 2 2分 132y x x 21 a23 bA,B,C22 过三点的抛物线的解析式为4分3 O,022 5分2 AB(2)以为直径的圆圆心坐标为53 OC OO为圆切线6分 OCD DCO 90° CDO OC CDCOO OCO 90 COO DCO°△OCO∽△CDOOO/OC OC/OD 8分38/2 2/OD OD 23坐标为 9分(3)存在 10分 3X 2抛物线对8 0, 3 D称轴为 33( r,r)F( r,r)r22E设满足条件的圆的半径为,则的坐标为或132y x x 222E而点在抛物线上2222 2929r 1 r 1 2122 13332 r ( r) ( r) 22929 1 1 x22EF故在以为直径的圆,恰好与轴相切,该圆的半径为,12分 5注:解答题只要方法合理均可酌情给分C0(,2) B【095】(1)(4,0),. 2分132y x x 222. 4分△ABC(2)是直角三角形.5分132x x 2 0y 022证明:令,则. x 1,x 4.12 A( 1,0). 6分 AB 5,AC 5,BC 25解法一:. 7. △ABC是直角三角形.8分分222 AC BC 5 20 25 ABCOAO1 AO 1,CO 2,BO 4, BOOC2解法二:, △AOC∽△COB.7分AOC COB 90°ACO CBO. CBO BCO 90°,.即. △ABC是直角三角形.8ACO BCO 90° ACB 90°分 ①COGFAB H (3)能.当矩形两个顶点在上时,如图1,交于. y GF ∥AB , E D △CGF ∽△CAB . O A B x F H GFCH G C ABCO . 9分 图1 62CH x GF xDE x5解法一:设,则,, 2DG OH OC CH 2 x 5. 22 2 S ·2 x xx 2x 矩形DEFG55 2255 x 522 =. 10分 5x S2当时,最大. 5 DE ,DG 1 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 10 5xDE GF DG x2解法二:设,则. 10 5x55522 S x · x 5x (x 1) 矩形DEFG2222.10分 x 1S 当时,最大. 5 DG 1,DE 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 y 7 D O A B x G G C②CABF 当矩形一个顶点在上时,与重合,如图2, GDAG DG ∥BC △AGD ∽△ACBBCAF ,.. AC 5,BC 25GD x 解法一:设,, x1 x 2S x ·5 x 5x GF AC AG 5 矩形DEFG 22 2 . 15 2 x 5 22=. 12分 x 5S 当时,最大. 3 535 D ,0 22 AD AG GD OD GD 5,AG 2 222,. 13分 AC 5BC 25AG 5 x GD 25 2xDE x GC x 解法二:设,,,,.. 2 55 5 2x x 2 x·25 2x 2x 25x S22 S2 矩形DEFG= 12分当时,最大, 3,AG 535D,022 AD AG GD OD . GD 52 222 .. 13分 1 ,0 2 AB综上所述:当矩形两个顶点在上时,坐标分别为,(2,0); 3 ,0 2 AB当矩形一个顶点在上时,坐标为14分【096】(1)因所求抛物线的顶点M的坐标为故可设其关系式为………………(1分) (2,4), 2 y ax 2 4又抛物线经过O(0,0),于是得,………………(2分) 解2 a0 2 4 0得a=-1 ………………(3分) 2 y x 2 4∴所求函数关系式为,即. ……………(4分)2y x 4x(2)① 点P不在直线ME上. ………………(5分) 根据抛物线的对称性可知E点的坐标为(4,0),又M的坐标为(2,4),设直线ME的于是得,关系式为y=kx+b. 4k b 0k 2 2k b 4b 8 解得 8所以直线ME的关系式为y=-2x+8. ……(6分) 55 55 P, 22 22由已知条件易得,当t ……………(7分) 时,OA=AP,∵ P点的坐标不满足直线ME的关系式y=-2x+8. 5 2∴当t时,点P不在直线ME 上. ………………(8分) ② S存在最大值. 理由如下:………………(9分) ∵点A在x轴的非负半轴上,且N在抛物线上,∴ OA=AP=t. ∴点P,N的坐标分别为(t,t)、(t,-t 2+4t) ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t …(10分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴1122S=DC·AD=×3×2=3. ………………(11分) (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵4222 PN∥CD,AD⊥CD,2213 11 t∴S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3=321S 最大24. …………(12分) 其中(0<t<3),由a=-1,0<<3,此时3 2时,以点P,N,C,D为顶点的多边形面积有最大值,综上所述,当t214这个最大值为. ………………(13分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合. 3)(4,D.【097】解:(1)点的坐标为(2分)392y x x84(2)抛物线的表达式为.(4分)Px(3)抛物线的对称轴与轴的交点符合条件.1yO x ∴.1 M P OA∥CB∵, P A 6 POM CDO3B OPM DCO 90°C D ,∵13y x 4Rt△POM∽Rt△CDO∴.(6分)1 9x 3∵抛物线的对称轴,P(3,0)P∴点的坐标为.(7分)11POOD过点作的垂线交抛物线的对称轴于点.2y∵对称轴平行∴.2 POM DCO 90°∵,于轴, PMO DOC∴点也符合条2Rt△PMO∽Rt△DOC∴.(8分)21 OPM ODCP∴,件,.22PO CO 3, PPO DCO 90°121Rt△PPO≌Rt△DCO∴.(9分)21PP CD 4∴.12P∵点在第一象限,2PP(3,4)∴点的坐标为,22P(3,0)P(3,4)P∴符合条件的点有两个,分别是,.(11分)12【098】解:(1)当t=4时,B(4,0) 设直线AB的解析式为y= kx+b . 把 A(0,6),B(4,0) 代入得:3 b=6k =- 2 , 解得: , 4k+b=0 b=63∴直线AB的解析式为:y=-x+6.………………………………………4分 2 (2) 过点C作CE⊥x轴于点E 由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC. BE CE BC1 AOBOAB2∴,11t∴BE= OB= AO=3,CE= ,222t∴点C的坐标为(t+3,).…………………………………………………………2分2方法一:1011t115 y S梯形AOEC= OE·(AO+EC)= (t+3)(6+)=t2+t+9,22244 A 11 D S△ AOB= AO·OB= ×6·t=3t,22 C 11t3S△ BEC= BE·CE= ×3×= t,2224 B x O E ∴S△ ABC= S梯形AOEC- S△AOB-S△ BEC 11531 = t2+t+9-3t-t = t2+9. 4444方法二:1∵AB⊥BC,AB=2BC,∴S△ABC= AB·BC= BC2. 21在Rt△ABC 中,BC2= CE2+ BE2 = t2+9,41即S△ABC= t2+9.…………………………………………………………2分4(3)存在,理由如下:y ①当t≥0时. Ⅰ.若AD=BD.又∵BD∥y轴 A D ∴∠OAB=∠ABD,∠BAD=∠ABD,∴∠OAB=∠BAD. C 又∵∠AOB=∠ABC,∴△ABO∽△ACB,OBBC1 t1 B O x E AOAB2,∴= ,∴t=3,即B(3,0). ∴62Ⅱ.若AB=AD.延长AB 与CE交于点G, 1 C 又∵BD∥CG∴AG=AC过点A画AH⊥CG 于H.∴CH=HG= CG y D 2GEAO18由△AOB∽△GEB,得=,∴GE= . BEOBt A H t181t18 E 又∵HE=AO=6,CE=∴+6=×(+)2t22t x O B G ∴t2-24t-36=0 解得:t=12±65. 因为t≥0,所以t=12+65,即B(12+65,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为钝角,故BD ≠ AB. D 当t≥12时,BD≤CE<BC<AB. ∴当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F. tt A 可求得点C的坐标为(t+3,),∴CF=OE=t+3,AF=6-,22由BD∥y轴,AB=AD得,∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB∴∠BAO=∠FAC, E O 又∵∠AOB=∠AFC=90°,∴△AOB∽△AFC, x B C F 11t6 BOAO tt 3 6 CFAF2 ,∴,∴∴t2-24t-36=0 解得:t=12±65.因为-3≤t<0,所以t=12-65,即B (12-65,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F, A tt可求得点C的坐标为(t+3,),∴CF= -(t+3),AF=6-,22∵AB=BD,∴∠D=∠BAD. E B xO 又∵BD∥y轴,∴∠D=∠CAF,∴∠BAC=∠CAF. 又∵∠ABC=∠AFC=90°,AC=AC,∴△ABC≌△AFC,∴AF=AB,CF=BC, F C t∴AF=2CF,即6- =-2(t+3),解得:t=-8,即B(-8,0). 2综上所述,存在点B使△ABD为等腰三角形,此时点B坐标为: D B1 (3,0),B2 (12+65,0),B3 (12-65,0),B4(-8,0). ...........................4分【099】解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分) (2) 情形1 如图21,AB为弦,CD为垂直于弦AB 的直径. ..............................3分结论:(垂径定理的结论之一). (4)分证明:略(对照课本的证明过程给分). ……………………………………………………………7分情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交结论:. D 证明:略. mn 于点P. PA PB PC PD n情形3 (图略)AB为弦,CD为弦,且与在圆外相交于结论:. m 证明:略. A B P 点P. PA PB PC PD OC 情形4 如图23,AB为弦,CD为弦,且AB∥CD. 第25题图结论: = . BC AD 证明:略. (上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称. …………………………………………8分 BAC x BAD x ABC 90 x设,则,.…………………………………………9分ABC又D是的中D 180 ABC2 CAD CAD AC点,所以,2 2x 180 (90 x)即 (10)分x BAC 30 解得.………………………………………………………………………………………11分3AB AC AF 3 FB2(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆12 n E C D C D n G m B A O O F OB的十二等分点,然后说明)【100】解:(1)令得2 (2b) 4(m a)(m a) 0222a b m由勾股定理的逆定理和抛物线的对称性知a b△ABM是一个以、为直角边的等腰直角三角形2y a(x 2) 1(2)设,∵△ABM是等腰直角三角形∴斜边上的中线等于斜边的一半,又顶点M(-2,-1) 1AB 12∴,即AB=2,∴A(-3,0),B(-1,0) 2y a(x 2) 1a 1将B(-1,0) 代入中得∴抛物线的解析式为,即y k x(3)设22y (x 2) 1y x 4x 3平行于轴的直线为y k 2解方程组得,(21y x 4x 3k 1)x 2 k 1x 2 k 1k 1 k2k 1x∴线段CD的长为,∵以CD为直径的圆与轴相切,据题意得,1 51 51 5k ( 2,)( 2,)2k k 1222∴,解得,∴圆心坐标为和 13。
新世纪教育网精选资料 版权全部 @新世纪教育网教材过关二十五概率初步一、填空题1. 五张标有 1、2、 3、 4、 5 的卡片,除数字外,其余没有任何差别 .现将它们反面向上,从中任取一张,获得卡片的数字为偶数的概率是 ________________.答案:25提示: 摸到 5 种卡片的可能结果是 5 种,摸到偶数的可能性是2 种 .2.连掷一枚均匀的骰子五次都没有获得 6 点,第六次获得 6 点的概率是 ________________.答案:16提示: 第 6 次掷骰子依旧是一个随机事件,点数向上的概率没有发生变化 .3.一个口袋中装有 4 个白色球, 1 个红色球, 7 个黄色球,搅匀后随机从袋中摸出1 个球是白色球的概率是 ________________.答案:134种状况 ,则41提示: 结果有 12 种 ,此中白色球有=.1234.小华买了一套科普读物,有上、中、下三册,要齐整地摆放在一层书架上,此中恰巧摆成 “上、中、下”次序的概率是 ________________.答案:16分析: 上、中、下的全摆列有6种状况 .5.某学校的初一( 1)班,有男生 20 人,女生 23 人 .此中男生有 18 人住宿,女生有 20 人住宿 .现随机抽一名学生,则:①抽到一名男生的概率是 ________________ ;②抽到一名住宿男生的概率是 ________________g ;③抽到一名走读女生的概率是 ________________.答案:2018 34343 43提示: 被抽到每一种状况的可能性是同样的.6.小明和爸爸进行射击竞赛, 他们每人都射击 10 次 .小明击中靶心的概率为0.6,则他击不中靶心的次数为 ________________________ ;爸爸击中靶心 8 次,则他击不中靶心的概率为___________________. 答案: 420%提示: 击不中靶心的次数用打靶的次数乘以击不中靶心的概率 .第二个空是用击不中靶心的频次来预计击不中靶心的概率 . 二、选择题7.随机掷一枚均匀的硬币两次,两次正面都向上的概率是A. 1B. 1C.3D.142 4答案: A提示: 共有(正,反) ,(正,正),(反,正),(反,反) 4 种状况 . 8.以下事件中是必定事件的是 A. 翻开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.从必定高度落下的图钉,落地后钉尖向上D.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数 答案: B提示: 必定能发生的事件明显是 B 项 .9.以下说法正确的选项是A. 可能性很小的事件在一次试验中必定不会发生B.可能性很小的事件在一次试验中必定发生C.可能性很小的事件在一次试验中有可能发生D.不行能事件在一次试验中也可能发生 答案: C提示: 可能性很小的事件在一次试验中发生的可能性很小,但可能发生,而不行能事件,在试验中不会发生 .10.冰柜里有四种饮料: 5 瓶特种可乐、 12 瓶一般可乐、 9 瓶橘子水、 6 瓶啤酒,此中特种可 乐和一般可乐是含有咖啡因的饮料, 那么从冰柜里随机取一瓶饮料, 该饮料含有咖啡因的概率是5 315 17 A.B.C.D.3283232答案: D提示: 含有咖啡因的饮料共有17 种,饮料共有32 种.三、解答题11.(2010 四川遂宁中考 )将分别标有数学 2,3, 5 的三张质地,大小完整同样的卡片反面朝上放在桌面上,( 1)随机抽取一张,求抽到奇数的概率;( 2)随机抽取一张作为个位上的数字 (不放回),再抽取一张作为十位上的数字,能构成哪些两位数?并求出抽取到的两位数恰巧是 35 的概率 .解: (1)p= 2;3(2)1因此 P 为35= .6该事件发生的可能性 提示: 概率 =.全部事件发生的可能性12.如图 9-19,某电脑企业现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑 .希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出全部选购方案 (利用树状图或列表方法表示) ;(2) 假如 (1)中各样选购方案被选中的可能性同样,那么A 型号电脑被选中的概率是多少? (3) 现知希望中学用 10 万元购置甲、 乙两种品牌电脑共36 台 (价钱以下图 ) ,此中甲品牌电脑为 A 型号电脑,求购置的 A 型号电脑有多少台?图 9-19解: (1) 树状图以下:列表以下:甲AB C乙D(D,A)(D,B)(D,C)E(E,A)(E,B)(E,C)有 6 种可能结果:(A , D) ,( A ,E),( B, D),( B, E),( C, D),(C, E) .(2)由于选中 A 型号电脑有 2 种方案,即 (A ,D), ( A ,E),因此 A 型号电脑被选中的概率是1.3(3) 由 (2)可知,入采用方案( A , D)时,设购置 A 型号、 D 型号电脑分别为x, y 台,x y36,依据题意,得6000x 5000y100000.x80,解得y116.经查验不切合题意,舍去;入采用方案( A ,E)时,设购置 A 型号、E型号电脑分别为x, y 台,x y36,依据题意,得6000x 2000y100000.x7,解得y29.因此希望中学购置了 7 台 A 型号电脑 .13.一对骰子,假如掷两骰子正面点数和为2、11、12,那么甲赢;假如两骰子正面的点数和为 7,那么乙赢;假如两骰子正面的点数和为其余数,那么甲、乙都不赢.持续下去,直到有一个人赢为止 .(1)你以为游戏能否公正?并解说原由;(2)假如你以为游戏公正,那么请你设计一个不公正的游戏;假如你以为游戏不公正,那么请你设计一个公正的游戏 .答案:( 1)游戏不公正,点数和为2、11、12的概率为1 21=4=1,点数和为7 的概率36369为6=1.即甲、乙两方获胜的概率分别为1,1,不相等,因此游戏对两方不公正 . 36696(2) 可改为:一对骰子,假如掷两骰子正面点数和为2,那么甲赢;假如两骰子正面的点数和为 12,那么乙赢;假如两骰子正面的点数和为其余数,那么甲、乙都不赢持续下去,直到有一个人赢为止 .提示:游戏对两方公正是指两方获胜的概率相等.14.某池塘里养了鱼苗10 万条,依据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞销售,第一网捞出 40 条,称得均匀每条鱼重 2.5 千克,第二网捞出 25 条,称得均匀每条鱼重2.2 千克,第三网捞出 35 条,称得均匀每条鱼重 2.8 千克,试预计这个池塘中鱼的重量.答案:均匀每条鱼的重量:( 40× 2.5+25× 2.2+35 × 2.8)÷( 40+25+35 ) =2.53(千克) ; 池塘中鱼的重量:100 000× 95%× 2.53=240 350 (千克) .提示:求出 3 次捕捞的鱼每条鱼的均匀重量,用这个均匀重量预计整个池塘的鱼的重量.。
中考数学压轴题1:新情境应用问题Ⅰ、综合问题精讲:以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能力、阅读理解能力。
问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力.解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心.Ⅱ、典型题【1】(2005,宜宾)如图(8),在某海滨城市O附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张.(1)当台风中心移动4小时时,受台风侵袭的圆形区域半径增大到千米;又台风中心移动t小时时,受台风侵袭的圆形区域半径增大到千米.(2)当台风中心移动到与城市O距离最近时,这股台风是否侵袭这座海滨城市?请说明理.(参考数据2 1.41≈).≈,3 1.73点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程.【2】如图2-1-5所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里外的A点有一涉嫌走私船只正以 24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:⑴需要几小时才能追上(点B为追上时的位置)⑵确定巡逻艇的追赶方向(精确到0.1°).点拨:几何型应用题是近几年中考热点,解此类问题的关键是准确读图.【3】(2005,河南)(10分)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
2011年全国各地中考试题压轴题精选讲座六函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一X 围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。
又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值X 围来考虑最值,这就需要结合图像来解决。
【典型例题】【例1】(某某某某)如图,已知二次函数c x ax y ++=22)0(>a 图像的顶点M 在反比例函数xy 3=上,且与x 轴交于A ,B 两点。
(1)若二次函数的对称轴为21-=x ,试求c a ,的值;(2)在(1)的条件下求AB 的长;(3)若二次函数的对称轴与x 轴的交点为N ,当NO+MN 取最小值时,试求二次函数的解析式。
【思路点拨】(1)先求得二次函数c x ax y ++=22)0(>a 中的a ,再根据顶点在反比例函数xy 3=上,求出c 。
(3)可用含有a 的式子表示点M 、N 的坐标,即求出a 的值,再求得解析式。
【例2】(某某某某)如图,已知直线l 经过点A(1,0),与双曲线()0my x >x=交于点B(2,1).过点P(p ,p -1)( p >1)作x 轴的平行线分别交双曲线()0m y x >x =和()0my x <x =-于点M 、N .(1)求m 的值和直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB∽△PNA;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满 足条件的p 的值;若不存在,请说明理由.【思路点拨】 (2)先求p 的值,再利用对应线段成比例证△PMB ∽△PNA 。
(3)考虑点P 的位置,得1<p <3时的情况。
作延长MP 交x 轴于Q ,先求直线MP 的方程,再求出各点坐标(用p 表示),然后求出面积表达式,代入S △AMN =4S △AMP 后求出p 值。
2008年全国中考数学压轴题精选精析(三)21(08江西南昌24题)如图,抛物线2212191128y ax ax P y ax ax ⎛⎫=--+-=-- ⎪⎝⎭经过点且与抛物线,,相交于A B ,两点. (1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?(08江西南昌24题解析)解:(1) 点1928P ⎛⎫-⎪⎝⎭,在抛物线211y ax ax =--+上, 1191428a a ∴-++=, ··························· 2分解得12a =. ······························· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··· 5分当2111022x x --+=时,解得12x =-,21x =.点M 在点N 的左边,2M x ∴=-,1N x =. ···· 6分当2111022x x --=时,解得31x =-,42x =.点E 在点F 的左边,1E x ∴=-,2F x =.················· 7分 0M F x x += ,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称.··················· 8分 xx(3)102a => . ∴抛物线1y 开口向下,抛物线2y 开口向上. ····· 9分根据题意,得12C D y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.··············· 11分 A B x x x ≤≤,∴当0x =时,C D 有最大值2.··············· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分.22(08江西南昌25题)如图1,正方形A B C D 和正三角形EFG 的边长都为1,点E F ,分别在线段A B A D ,上滑动,设点G 到C D 的距离为x ,到B C 的距离为y ,记H EF ∠为α(当点E F ,分别与B A ,重合时,记0α= ).(1)当0α= 时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形A C 上?请说出你的理由,并求出此时x y ,的值(结果保留根号); (3)请你补充完成下表(精确到0.01):(4)若将“点E F ,分别在线段A B A D ,上滑动”改为“点E F ,分别在正方形A B C D 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.1.732sin 150.259sin 750.96644-==,≈,≈.)D 图1图2B (E A (F DC图3H DACB 图4x(08江西南昌25题解析)解:(1)过G 作M N AB ⊥于M 交C D 于N ,G K B C ⊥于K .60ABG ∠=,1B G =,2M G ∴=,12B M =. ························· 2分12x ∴=-,12y =. ·························· 3分(2)当45α= 时,点G 在对角线A C 上,其理由是: ············· 4分过G 作IQ BC ∥交A B C D ,于I Q ,, 过G 作JP A B ∥交A D B C ,于J P ,.A C 平分BCD ∠,GP GQ ∴=,G I G J ∴=.G E G F = ,R t R t G E I G F J ∴△≌△,G E I G F J ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠. 90EAF ∠=,45AEF AFE ∴∠=∠=.即45α= 时,点G 落在对角线A C 上. ··················· 6分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+= ,75GEI ∴∠= .在R t G E I △中,sin 754G I G E ==,14G Q IQ G I ∴=-=-. ······················ 7分14x y ∴==-·························· 8分方法二:当点G 在对角线A C 上时,有122++=··························· 7分解得14x =-14x y ∴==-·························· 8分(3)B (EA (FDCQα0 15 30 45 60 75 90x 0.13 0.03 0 0.03 0.13 0.29 0.50 y0.50 0.29 0.13 0.03 0 0.03 0.13···················· 10分 (4)由点G 所得到的大致图形如图所示:························ 12分 说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分;2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.23(08山东滨州23题)(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.BDCA(2)结论应用:①如图2,点M 、N 在反比例函数y=)0(>k xk 的图象上,过点M 作ME ⊥y 轴,过点N作NF ⊥x 轴,垂足分别为E ,F. 试应用(1)中得到的结论证明:MN ∥EF.y xONMF EH AC DB②若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断MN 与E 是否平行.(08山东滨州23题解析)(1)证明:分别过点C 、D 作.C G A B D H A B ⊥⊥、 垂足为G 、H ,则090.CGA DHB ∠=∠=C GD HA B C A B D ∴∴∴∴ 与的面积相等CG=DH四边形CGHD 为平行四边形AB CD.(2)①证明:连结MF ,NE设点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y , ∵点M ,N 在反比例函数()0k y k x= 的图象上,∴11x y k =,22x y k =2,M E y N F x O F x ⊥⊥∴= 1轴,轴OE=y112211221122EFM EFN EFM EFNS x y kS x y kS S ∴====∴=由(1)中的结论可知:MN ∥EF 。