熔点与沸点
- 格式:ppt
- 大小:2.22 MB
- 文档页数:21
测温物质的选择,为何不选水作为测温物质1.熔点和沸点在标准状态下水的熔点(凝固点)是0℃,水的沸点是100℃,而水银的熔点(凝固点)是-38.5℃,沸点是357℃;酒精的熔点(凝固点)是-114℃,沸点是78℃;好的煤油熔点(凝固点)是-30℃,沸点是325℃。
如果用装水的温度计测量气温,冬天在0℃以下,水凝固成了冰,无法测量;当温度达到100℃水就会沸腾,虽然由于管内随着水蒸气压强的增大会提高水的沸点,但其中水的体积膨胀与蒸汽压强增大的比例关系很复杂,不是正比关系,所以不能用其测量100℃以上的温度。
水银就不同了,用它可以测量-38.5℃~357℃之间的温度;酒精虽然沸点不高,但是它的熔点(凝固点)是-114℃,即在零下114℃以上都不会冻结;用煤油可测量-30℃~325℃之间的温度。
2.热膨胀系数水的热膨胀系数为 2.1×10-3/℃,水银、酒精、煤油的热膨胀系数分别为 1.8×10-4/℃、1.1×10-3/℃、1.0×10-3/℃。
同样体积的液体都升高1℃,酒精和煤油膨胀的体积约是水的 5 倍,那么在利用体积变化的刻度方面,水的刻度距离小,酒精和煤油的刻度距离大,相同的温度间隔距离大,不仅为测量和读数带来方便,且能够测量较小温度变化值。
3.比热容水的比热容为 4.2×103J/(kg·℃),水银、酒精、煤油的比热容分别为0.14×103J/(kg·℃)、2.4×103J/(kg·℃)、2.1×103J/(kg·℃):水的比热容是水银的30 倍,如果质量相同的水和水银,吸收相等的热量,水银升高的温度是水的30 倍;可见用装水的温度计对于被测物体的温度影响大,达到热平衡的时间长;而水银温度计对于被测物体的温度影响小,达到热平衡的时间短。
特别是测量比较小的物体,如果温度计对它有影响,其温度的测量值就不准确了。
概念1.熔点:晶体在熔化过程中温度保持不变,晶体开始熔化时的温度是熔点。
温度高于熔点,物质呈液态;温度低于熔点,物质呈固态;温度等于熔点,物质呈固态、呈液态或呈固态与液态共存。
熔化条件:1.达到熔点; 2.继续吸热2.沸点:所有液体在沸腾时温度都保持不变,这个温度叫做沸点.液体达到沸点后,若要保持沸腾必须继续加热.同种液体的沸点受大气压强的影响,通常所说的水的沸点是100℃,是指在1标准大气压的条件下.3.晶体:一类固体在刚吸热时温度升高,并不熔化,但当温度升高到某一值时虽然继续吸热但温度不变,同时固体越来越少,液体越来越多,一直到固态完全转化为液态时温度才继续升高。
这一类固体被称为晶体。
熔化时不变的温度被称为熔点。
4.非晶体:另一类固体吸热温度持续升高,在升温的过程中逐渐变软、变稀变为液态,这一类固体被称为非晶体。
非晶体没有熔点。
经典例题:把盛有冰块的大试管插入烧杯里的碎冰块中,用酒精灯对烧杯底部慢慢加热,在烧杯中的冰块未完全熔化之前试管中的冰块能否完全熔化?[解析]:冰是晶体。
晶体熔化的条件是达到熔点并吸热。
烧杯中碎冰在加热时会达到熔点开始熔化,可熔化过程中温度维持0o C不变,所以试管中的冰在温度低于0o C时可以从烧杯里的冰水混合物中吸热,但内外温度相等都是0o C时,试管中的冰不能再从烧杯吸热,不满足晶体熔化条件。
答案:试管中的冰能达到熔点不能吸热不熔化烧杯试管中装有水,用酒精灯对烧杯加热,试管中的水能沸腾吗?[解析]:液体沸腾条件:①达到沸点②吸热烧杯中的水吸热升温最终达到沸点并沸腾。
可试管中的水只能从烧杯中的水吸热,当其温度达到沸点时内外温度相等,不能继续吸热不沸腾。
答案:试管中的水能达到沸点但不沸腾。
物态变化知识总结1、温度:物体的冷热程度叫温度。
2、摄氏温度(符号:t 单位:摄氏度<℃>)。
瑞典的摄尔修斯规定:①把纯净的冰水混合物的温度规定为0℃②把1标准大气压下纯水沸腾时的温度规定为100℃③把0到100℃之间分成100等份,每一等份就是一℃。
熔点、沸点、凝固点与压强的关系原因分析一、熔点、沸点、凝固点1、凝固点凝固点是晶体物质凝固时的温度,不同晶体具有不同的凝固点。
在一定压强下,任何晶体的凝固点,与其熔点相同。
同一种晶体,凝固点与压强有关。
凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。
在凝固过程中,液体转变为固体,同时放出热量。
所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。
非晶体物质则无凝固点。
液-固共存温度浓度越高,凝固点越低,液体变为固体的过程叫凝固2、沸点饱和蒸汽压:在一定温度下,与液体或固体处于相平衡的蒸汽所具有的压力称为饱和蒸汽压. 沸点:在一定压力下,某物质的饱和蒸汽压与此压力相等时对应的温度。
沸腾是在一定温度下液体内部和表面同时发生的剧烈汽化现象。
液体沸腾时候的温度被称为沸点。
浓度高,沸点高,不同液体的沸点是不同的,几种不同液体的沸点/摄氏度(在标准大气压下)液态铁:2750液态铅:1740水银(汞):357亚麻仁油:287食用油:约250萘:218煤油:150甲苯:111水:100酒精:78乙醚:35液态氨:—33液态氧:—183液态氮:-196液态氢:-253液态氦:—268。
9所谓沸点是针对不同的液态物质沸腾时的温度.液体开始沸腾时的温度。
沸点随外界压力变化而改变,压力低,沸点也低。
沸点:液体发生沸腾时的温度;即物质由液态转变为气态的温度.当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度。
液体的沸点跟外部压强有关。
当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低.例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上。
又如,在高山上煮饭,水易沸腾,但饭不易熟。
这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐浙下降.(在海拔1900米处,大气压约为79800帕(600毫米汞柱),水的沸点是93。
闪点,熔点,沸点
"闪点"、"熔点"和"沸点"都是物质的物理性质,用来描述不同条件下物质的状态和行为。
1. **闪点**(Flash Point):闪点是指液体物质在一定的温度和气压下,能够释放出足够的蒸气,形成可燃气体混合物并在外部点火源作用下引发闪燃的最低温度。
闪点通常用来评估液体的易燃性和火灾危险性。
2. **熔点**(Melting Point):熔点是指物质从固体状态变为液体状态时的温度。
在熔点以下,物质呈固体形态,而在熔点以上,物质则为液体。
熔点通常用来标识纯度和确定物质的性质。
3. **沸点**(Boiling Point):沸点是指物质在一定的气压下,从液体状态变为气体状态的温度。
沸点以下,物质为液体,而在沸点以上,物质则为气体。
沸点通常用来确定液体的挥发性和烹饪温度。
熔点、沸点、凝固点与压强的关系原因分析一、熔点、沸点、凝固点1、凝固点凝固点是晶体物质凝固时的温度,不同晶体具有不同的凝固点。
在一定压强下,任何晶体的凝固点,与其熔点相同。
同一种晶体,凝固点与压强有关。
凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。
在凝固过程中,液体转变为固体,同时放出热量.所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。
非晶体物质则无凝固点。
液-固共存温度浓度越高,凝固点越低,液体变为固体的过程叫凝固2、沸点饱和蒸汽压:在一定温度下,与液体或固体处于相平衡的蒸汽所具有的压力称为饱和蒸汽压。
沸点:在一定压力下,某物质的饱和蒸汽压与此压力相等时对应的温度.沸腾是在一定温度下液体内部和表面同时发生的剧烈汽化现象。
液体沸腾时候的温度被称为沸点。
浓度高,沸点高,不同液体的沸点是不同的,几种不同液体的沸点/摄氏度(在标准大气压下)液态铁:2750液态铅:1740水银(汞):357亚麻仁油:287食用油:约250萘:218煤油:150甲苯:111水:100酒精:78乙醚:35液态氨:-33液态氧:—183液态氮:-196液态氢:-253液态氦:—268。
9所谓沸点是针对不同的液态物质沸腾时的温度。
液体开始沸腾时的温度。
沸点随外界压力变化而改变,压力低,沸点也低。
沸点:液体发生沸腾时的温度;即物质由液态转变为气态的温度。
当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度.液体的沸点跟外部压强有关。
当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低。
例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上.又如,在高山上煮饭,水易沸腾,但饭不易熟.这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐浙下降.(在海拔1900米处,大气压约为79800帕(600毫米汞柱),水的沸点是93。
实验项目名称:微量法熔沸点测定一、实验目的1.了解熔点及沸点测定的意义;2.掌握熔点及沸点测定的操作方法二、实验基本原理(或主、副反应式)熔点是固体有机化合物固液两态在大气压力达成平衡的温度,纯净的固体有机化合物一般都有固定的熔点,固液两态之间的变化是非常敏锐的,自初熔至全熔温度不超过0.5-1摄氏度。
沸点即化合物受热时其蒸汽压升高,当达到与外界大气压相等时,液体开始沸腾,此时液体的温度即是沸点,物质的沸点与外界大气压的改变成正比。
熔点和沸点都是化合物的重要物理常数,有一定实际意义。
三、主要试剂及主、副产物的物理常数(列举实验所涉及的主要物质与试剂需要的物理常数就可以)四、主要试剂规格及用量乙酰苯胺,苯甲酸和乙酰苯胺混合物,纯净水,液体规格用量一般是在5—10ml 左右,固体药品只需填满试管底部。
五、实验装置图(这部分请画在实验预习本上)见预习报告的图示六、实验简单操作步骤1熔点管的制备(毛细管一端用小火封闭,直至毛细管封闭端的内径有两条细线相交或无毛的现象)——2试样的装入(填满底部即可)——3熔点的测定(小火缓慢加热,记录当毛细管中样品开始塌落并有液体产生时和固体完全消失时的温度)——4沸点的测定(放入水浴中进行加热,在到达液体的沸点时,将有大量气泡快速逸出,停止加热,使浴温自行下降,当气泡不再冒出而液体刚要进入毛细管的瞬间,此时的温度即为该液体的沸点)——5实验完毕,整理好仪器七、注意事项1、拉伸毛细管时,玻璃管必须均匀加热,并注意使端头封闭,以防影响测定。
2、样品的填装必须紧密结实,高度约2—3mm.3、熔点测定时,注意使温度计水银球位于b形管上下两叉口之间。
4、控制升温速度,并记录样品熔点范围。
5、微量法测定沸点应注意加热不能过快,被测液体不能太少,以防液体全部汽化。
判断何时为样品的沸点,并正确记录。
姓名: 班级: 日期:。
闪点,熔点,沸点【最新版】目录1.物质的相态变化2.闪点、熔点与沸点的定义3.闪点、熔点与沸点之间的关系4.闪点、熔点与沸点在生活和工业中的应用正文物质的相态变化是我们生活中常见的现象,如冰融化成水,水沸腾变成蒸汽等。
这些相态变化背后,涉及到物质的一些基本性质,如闪点、熔点和沸点。
闪点,指的是液体在特定温度和压力下,释放出的蒸汽足以形成可燃性混合物的最低温度。
简单来说,就是液体在一定条件下能被点燃的最低温度。
熔点,是指固体在加热到一定温度时,变为液体的温度。
这是固体与液体的分界点。
沸点,则是液体在标准大气压下(1 个大气压,即 101.3 千帕斯卡),变为气体的温度。
这是液体与气体的分界点。
闪点、熔点和沸点之间的关系十分密切。
以水为例,水的熔点是 0 摄氏度,沸点是 100 摄氏度。
当水的温度低于 0 摄氏度时,水呈固态,即冰。
当温度上升到 0 摄氏度,冰开始融化,此时水为液态。
当温度继续上升到 100 摄氏度,水开始沸腾,变为蒸汽,即水蒸气。
在 1 标准大气压下,水的沸点为 100 摄氏度。
如果大气压力增加,水的沸点会升高;反之,如果大气压力降低,水的沸点会降低。
闪点、熔点与沸点在生活中有着广泛的应用。
例如,我们在使用和储存化学品、油品等物质时,需要了解这些物质的闪点、熔点和沸点,以确保安全。
在烹饪中,食物的加热也需要掌握好温度,以保持食物的口感和营养。
此外,在工业生产中,闪点、熔点和沸点也起着重要作用,如石油化工、制冷剂生产等领域。
总之,闪点、熔点和沸点是描述物质相态变化的重要参数,它们之间的关系密切,并在生活和工业中发挥着重要作用。
熔点沸点比较嘿,你们知道吗?我觉得熔点和沸点这两个词听起来好神秘呀!今天我就来给大家讲讲熔点和沸点到底是啥。
有一次呀,我看到妈妈在厨房里煮鸡蛋。
那个鸡蛋在水里咕嘟咕嘟地煮着,好有意思。
我就问妈妈:“妈妈,为什么水会咕嘟咕嘟冒泡泡呢?” 妈妈说:“这是因为水被加热到了沸点,就会变成水蒸气冒出来。
” 哇,原来这就是沸点呀。
水的沸点是 100 摄氏度呢。
那什么是熔点呢?我又开始好奇啦。
后来呀,有一天我看到一块巧克力在太阳底下晒着。
不一会儿,巧克力就变得软软的了。
我想,这是不是巧克力的熔点到了呢?我赶紧跑去问爸爸。
爸爸说:“巧克力的熔点比较低,所以在热一点的地方就会变软。
” 哦,我明白了。
熔点就是一个东西从固体变成液体的温度。
我又想起来,冬天的时候,我们会看到水变成冰。
那冰的熔点是多少呢?我去查了查书,发现冰的熔点是 0 摄氏度。
当温度高于 0 摄氏度的时候,冰就会变成水啦。
那沸点和熔点有什么不一样呢?我觉得呀,沸点是让东西变成气体的温度,而熔点是让东西从固体变成液体的温度。
比如说水,到了 100 摄氏度就变成水蒸气了,这就是沸点。
而巧克力呢,热一点就变软了,那就是熔点比较低。
我还知道一些其他东西的熔点和沸点呢。
比如说铁,铁的熔点可高啦,有一千多度呢。
要是我们把铁放在火里烧,烧得好热好热,它才会变成液体。
还有酒精,酒精的沸点比较低,很容易就变成气体了。
我们身边有好多东西都有自己的熔点和沸点呢。
我们可以通过观察这些东西的变化,来了解熔点和沸点。
比如说,我们可以看看冰在什么温度下会变成水,水在什么温度下会变成水蒸气。
这样我们就能更好地理解熔点和沸点啦。
嘿,你们现在知道熔点和沸点是什么了吧?是不是很有趣呢?我们可以一起去发现更多东西的熔点和沸点哦。
水的沸点熔点凝固点1.引言水是我们生活中必不可少的物质之一,它具有许多特殊的性质,其中包括沸点、熔点和凝固点。
这些性质在生活中有着广泛的应用,本文将深入探讨水的沸点、熔点和凝固点的基本概念、物理意义以及相关知识。
2.水的沸点水的沸点指的是水在标准大气压下达到沸腾状态所需的温度,一般情况下,水的沸点为100℃。
当水达到沸腾状态时,其分子将离开水面,形成水蒸气,这是由于水分子内部的热运动增加,使得水分子内部的相互作用力减弱,最终显现为沸腾现象。
水的沸点在不同的环境下会有所不同,大气压的大小是影响水的沸点的重要因素之一。
当大气压低于标准大气压时,水的沸点将会下降;而当大气压高于标准大气压时,水的沸点会升高。
因此,在高海拔地区,水的沸点比海平面上的水更低,而在水深超过10米的海洋中,水的沸点比普通的水稍高。
3.水的熔点水的熔点指的是水从固态转化为液态的温度,水的熔点为0℃。
当水的温度低于0℃时,水分子内部的运动速度会减缓,使得水分子之间的相互作用力增强,从而形成了冰晶体。
冰晶体是一种规则排列的分子团,由水分子组成,呈现出六边形的晶体结构。
与水的沸点不同的是,水的熔点并不受大气压的影响,而是取决于水分子内部的相互作用力。
当水分子之间的相互作用力增强时,需要更高的能量才能打破这种相互作用关系,水分子才能转化为液态。
4.水的凝固点水的凝固点指的是水从液态转化为固态的温度,水的凝固点同样为0℃。
当水温度下降到0℃时,水分子内部的热运动会减缓,使得水分子之间的相互作用力增强,无法克服分子之间的相互作用力,从而形成冰晶体。
需要注意的是,水在凝固时会释放出一定的热量,也就是所谓的凝固热。
这是因为水分子在凝固时,正在释放它们内部势能储备。
这种能量释放可以用来使周围的水温度升高。
5.水的沸点、熔点和凝固点的应用水的沸点、熔点和凝固点在生活中广泛应用。
下面是一些具体的例子。
1.在烹饪中,沸点是厨师们使用的重要指标。
烹调时需将食材放在沸腾的水中,因为温度高于沸点的水足以杀死细菌。
一、分子晶体熔、沸点的变化规律分子晶体是依靠分子间作用力即范德华力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低。
1.分子构型相同的物质,相对分子质量越大,熔、沸点越高。
分子间作用力有三个来源,即取向力、诱导力和色散力。
卤素单质自非极性分子构成,只存在色散力,随相对分子质量增大,分子内电子数增多,由电子和原子核的不断运动所产生的瞬时偶极的极性也就增强,因而色散力增大,导致熔、沸点升高。
同理,稀有气体的熔、沸点变化也符合这规律,相对原子质量越大,熔、沸点越高。
2.分子构型相同的物质,能形成氢键时,熔、沸点升高。
在常温下,绝大多数非金属元素的氢化物都是气态的(只有H20例外),气态氢化物的熔、沸点理应遵循第1条规律,随着相对分子质量的增大而升高,但是自于NH3、H20、HF可以形成氢键,使简单分子缔合成较大的分子,在发生相变时,不仅要克服原有的分子间作用力,而且要吸收更多的能量,使缔合分子解聚,因而造成NH3、H20、HF的熔、沸点反常,特别是水分子中有2个H-O键和2对孤对电子,一个水分子可以同时形成2个氢键,所以水的熔、沸点最高,在常温下呈液态。
含有-OH或-NH2的化合物,如含氧酸、醇、酚、胺等,因分子间能形成氢键,它们的熔、沸点往往比相对分子质量相近的其它物质高。
以CHCl3为例,氯仿是强极性分子,但不形成氢键,相对分子质量为119.5,熔点-63.5℃,沸点61.2℃,而相对分子质量仅有60,但含-0H的乙酸熔点为16.6℃,沸点为117.9℃。
磷酸、硼酸相对分子质量都不超过100,但由于氢键的形成,使它们在常温下都呈固态。
3.相对分子质量相近时,分子的极性越强,熔、沸点越高。
表中所列氢化物的相对分子质量相近,且都是等电子体,但它们的熔、沸点却有较大差别。
甲硅烷是非极性分子,熔、沸点最低,从左到右,随分子极性的增强,熔、沸点逐渐升高。
怛极性最强的HCl却反常地低于H2S,这是由于氯原子半径小于硫原子半径,HCl分子小于H2S分子,使色散力变小,故熔、沸点较H2S低。
熔点、沸点、凝固点与压强的关系原因分析一、熔点、沸点、凝固点1、凝固点凝固点是晶体物质凝固时的温度,不同晶体具有不同的凝固点。
在一定压强下,任何晶体的凝固点,与其熔点相同。
同一种晶体,凝固点与压强有关。
凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。
在凝固过程中,液体转变为固体,同时放出热量.所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。
非晶体物质则无凝固点。
液-固共存温度浓度越高,凝固点越低,液体变为固体的过程叫凝固2、沸点饱和蒸汽压:在一定温度下,与液体或固体处于相平衡的蒸汽所具有的压力称为饱和蒸汽压. 沸点:在一定压力下,某物质的饱和蒸汽压与此压力相等时对应的温度。
沸腾是在一定温度下液体内部和表面同时发生的剧烈汽化现象。
液体沸腾时候的温度被称为沸点. 浓度高,沸点高,不同液体的沸点是不同的,几种不同液体的沸点/摄氏度(在标准大气压下)液态铁:2750液态铅:1740水银(汞):357亚麻仁油:287食用油:约250萘:218煤油:150甲苯:111水:100酒精:78乙醚:35液态氨:—33液态氧:-183液态氮:-196液态氢:-253液态氦:-268.9所谓沸点是针对不同的液态物质沸腾时的温度。
液体开始沸腾时的温度。
沸点随外界压力变化而改变,压力低,沸点也低。
沸点:液体发生沸腾时的温度;即物质由液态转变为气态的温度。
当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度。
液体的沸点跟外部压强有关。
当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低。
例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上.又如,在高山上煮饭,水易沸腾,但饭不易熟。
这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐浙下降.(在海拔1900米处,大气压约为79800帕(600毫米汞柱),水的沸点是93.5℃).在相同的大气压下,液体不同沸点亦不相同.这是因为饱和汽压和液体种类有关。
化学学习中物质的熔点、沸点规律晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。
非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。
沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01×105Pa)时,称正常沸点。
外界压强越低,沸点也越低,因此减压可降低沸点。
沸点时呈气、液平衡状态。
(1)由周期表看主族单质的熔、沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。
但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似。
还有ⅢA族的镓熔点比铟、铊低,ⅣA族的锡熔点比铅低。
(2)同周期中的几个区域的熔点规律①高熔点单质C,Si,B三角形小区域,因其为原子晶体,熔点高。
金刚石和石墨的熔点最高大于3550℃,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。
②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。
其中稀有气体熔、沸点均为同周期的最低者,而氦是熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。
金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。
最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。
(3)从晶体类型看熔、沸点规律原子晶体的熔、沸点高于离子晶体,又高于分子晶体。
金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大(但也有低的)。
在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。
判断时可由原子半径推导出键长、键能再比较。
如熔点:金刚石>碳化硅>晶体硅分子晶体由分子间作用力而定,其判断思路是:①结构性质相似的物质,相对分子质量大,范德华力大,则熔、沸点也相应高。
熔点和沸点。
熔点是指物质从固态变为液态的温度。
沸点是指物质从液态变为气态的温度。
熔点几乎不受压力影响。
沸点受压力影响较大,沸点随外界压力变化而改变,压力低,沸点也低。
沸点是液体的饱和蒸汽压等于外界压强时的温度,不同液体的沸点是不同的。
沸点随外界压力变化而改变,压力低,沸点也低。
液体的沸点跟外部压强有关。
当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低。
熔点指即在一定压力下,纯物质的固态和液态呈平衡时的温度,属于热力学一级相变过程。
物质熔点和沸点高低的比较比较物质的熔点和沸点的高低,通常按下列步骤进行,首先比较物质的晶体类型,然后再根据同类晶体中晶体微粒间作用力大小,比较物质熔点和沸点的高低,具体比较如下:一、判断所给物质的晶体类型,然后按晶体的熔点和沸点的高低进行比较,一般来说晶体的熔点和沸点的高低是:原子晶体>离子晶体>分子晶体,例如:晶体硅>氯化钠>干冰。
但并不是所有这三种晶体的熔点和沸点都符合该规律,例如:氧化镁(离子晶体)>晶体硅(原子晶体)。
而金属晶体的熔点和沸点变化太大,例如汞、铷、铯、钾等的熔点和沸点都很低,钨、铼、锇等的熔点和沸点却很高,所以不能和其它晶体进行简单的比较。
例如、(2002年高考上海试题第7小题,)下列有关晶体的叙述中错误的是A离子晶体中,一定存在离子键 B 原子晶体中,只存在共价键C 金属晶体的熔沸点均很高D 稀有气体的原子能形成分子分析:其中选项C中的说法就是错误的,如汞、铷、铯、钾等的熔点和沸点都很低。
A、B、D三者说法都正确,所以应选C。
二、当物质是同类晶体时,则分别按下列方式比较。
1.原子晶体因为构成原子晶体的微粒是原子,微粒间的作用力是共价键,则其晶体的熔点和沸点的高低则由共价键的键能大小决定,而键能大小又由共价键的键长决定,键长越短,而键长可以通过原子半径来比较,键能越大,熔点和沸点就越高。
例如:金刚石>金刚砂>晶体硅。
例如:(2004高考上海试题第10题)有关晶体的下列说法中正确的是()A.晶体中分子间作用力越大,分子越稳定B.原子晶体中共价键越强,熔点越高C.冰熔化时水分子中共价键发生断裂D.氯化钠熔化时离子键未被破坏分析:分子间作用力大小与分子的稳定性无关;原子晶体中共价键越强,原子间作用力越大,熔点就越高,说法正确;冰熔化时只破坏分子之间作用力,分子内共价键不变;而氯化钠熔化时其离子键一定要断裂才能变化成阴阳离子;所以正确选B,而A、C、D三者都错了。