几何概型
- 格式:ppt
- 大小:722.00 KB
- 文档页数:22
几何概型计算公式一、几何概型的定义。
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
1. 一维(长度型)几何概型。
- 设试验的全部结果所构成的区域长度为L(Ω),构成事件A的区域长度为L(A),那么事件A发生的概率P(A)=(L(A))/(L(Ω))。
- 例如:在区间[a,b]上随机取一个数x,若A={xc≤slant x≤slant d},其中a≤slant c≤slant d≤slant b,则L(Ω)=b - a,L(A)=d - c,P(A)=(d - c)/(b - a)。
2. 二维(面积型)几何概型。
- 设试验的全部结果所构成的区域面积为S(Ω),构成事件A的区域面积为S(A),那么事件A发生的概率P(A)=(S(A))/(S(Ω))。
- 例如:在边长为1的正方形内随机取一点M,若A=“点M到正方形某一边的距离小于(1)/(4)”,则S(Ω)=1×1 = 1,S(A)=1×(1)/(2)= (1)/(2)(这里是通过计算符合条件的区域面积得到的),P(A)=(S(A))/(S(Ω))=(1)/(2)。
3. 三维(体积型)几何概型。
- 设试验的全部结果所构成的区域体积为V(Ω),构成事件A的区域体积为V(A),那么事件A发生的概率P(A)=(V(A))/(V(Ω))。
- 例如:在棱长为1的正方体容器内随机取一点N,若A=“点N到正方体某一个面的距离小于(1)/(3)”,则V(Ω)=1×1×1 = 1,V(A)=1×1×(1)/(3)=(1)/(3),P(A)=(V(A))/(V(Ω))=(1)/(3)。
3.3几何概型3.3.1几何概型【知识提炼】1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度( 面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的基本事件有无限多个 .(2)每个基本事件出现的可能性相等 .3.几何概型的概率公式P(A)=________________________________________【即时小测】1.思考下列问题:(1)几何概型的概率计算一定与构成事件的区域形状有关?提示:几何概型的概率只与它的长度(面积或体积)有关,而与构成事件的区域形状无关.(2)在射击中,运动员击中靶心的概率是在(0,1)内吗?提示:不是.根据几何概型的概率公式,一个点的面积为0,所以概率为0.2.如图所示,在地面上放置着一个等分为8份的塑料圆盘,若将一粒玻璃球丢在该圆盘中,则玻璃球落在A区域内的概率是()A. B. C. D.1【解析】选A.玻璃球丢在该圆盘内,玻璃球落在各个区域内是随机的,并且落在该圆盘内的任何位置是等可能的,因此该问题是几何概型.由于A区域占整个圆形区域面积的,所以玻璃球落入A区域的概率为.3.在1000mL水中有一个草履虫,现从中随机取出3 mL水样放到显微镜下观察,则发现草履虫的概率是.【解析】由几何概型知,P=.答案:4.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为.【解析】由题意,得0<a<,所以根据几何概型的概率计算公式,得事件“3a-1<0”发生的概率为.答案:5.在{(x,y)|0≤x≤1,0≤y≤1}中,满足y>x的事件的概率为.【解析】由0≤x≤1且0≤y≤1得到的正方形面积为S=1,而y=x恰把其面积二等分,故P= .答案:【知识探究】知识点几何概型的概念及公式观察图形,回答下列问题:问题1:几何概型与古典概型有何区别?问题2:如何求得几何概型中事件A发生的概率?【总结提升】几何概型与古典概型的异同点类型古典概型几何概型异同一次试验的所有可能不同点(基本一次试验的所有可能出现的结果出现的结果(基本事件事件的个数) (基本事件)有无限多个)有有限个类型古典概型几何概型异同相同点(基本事件每一个试验结果(即基本事件)发生的可能性大小相等发生的等可能性)【题型探究】类型一与长度有关的几何概型【典例】1.取一根长为5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率为 ()A. B. C. D.2.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A. B. C. D.【解题探究】1.典例1中,剪得两段的长都不小于2m,应将绳子几等分?提示:五等分2.典例2中如何确定点P的位置?提示:在矩形ABCD中,分别以A,B为圆心,以AB长为半径作弧交CD分别于E,F,点P在线段EF上时满足题意.【解析】1.选D.如图所示.记“剪得两段绳长都不小于2m”为事件A.把绳子五等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的,所以事件A发生的概率P(A)= .2.选D.如图,在矩形ABCD中,分别以B,A为圆心,以AB长为半径作弧交CD分别于点E,F,当点P在线段EF上运动时满足题设要求,所以E,F为CD的四等分点,设AB=4,则DF=3,AF=AB=4,在直角三角形ADF中,所以【方法技巧】求解与长度有关的几何概型的步骤(1)找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,(2)找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率.(3)利用几何概型概率的计算公式P=计算.【变式训练】平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率.【解析】设事件A:“硬币不与任一条平行线相碰”.为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,这样线段OM长度(记作|OM|)的取值范围是[0,a],只有当r<|OM|≤a时,硬币不与平行线相碰,其长度范围是(r,a].所以答案:类型二与面积有关的几何概型【典例】1.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()2.(2015·蚌埠高一检测)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是.【解题探究】1.典例1中要求质点落在以AB为直径的半圆内的概率,需要先求什么?提示:需要求长方形ABCD的面积及以AB为直径的半圆的面积. 2.典例2中,如何求阴影部分的面积?提示:利用“割补法”.【解析】1.选B.由题意AB=2,BC=1,可知长方形ABCD的面积S =2×1=2,以AB为直径的半圆的面积故质点落在以AB为直径的半圆内的概率2.如图所示,设OA=OB=r,则两个以为半径的半圆的公共部分面积为两个半圆外部的阴影部分面积为所以所求概率为答案:【方法技巧】处理面积型几何概型的策略设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上的概率为【变式训练】(2015·福建高考)如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()【解题指南】求出点C和点D的坐标,转化成面积型几何概型的概率计算.【解析】选B.因为四边形ABCD为矩形,B(1,0)且点C和点D分别在直线y=x+1和形的面积上,所以C(1,2)和D(-2,2),所以阴影部分三角S矩形=3×2=6,故此点取自阴影部分的概率【补偿训练】(2015·衡水调研)在面积为S的矩形ABCD内随机取一点P,则△PAB的面积不大于的概率是_________.【解析】如图,作PE⊥AB,设矩形的边长AB=a,BC=b,PE=h,由题意得,所以由几何概型的概率计算公式得所求概率答案:类型三与体积有关的几何概型【典例】1.(2015·成都高一检测)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1.称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()2.有一个底面圆的半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为.【解题探究】1.典例1中,满足题意的区域是什么?提示:满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.2.典例2中,求解与体积有关的几何概型关键是什么?提示:解与体积有关的几何概型关键是确定基本事件构成的体积与所求基本事件构成的体积.【解析】1.选C.依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1,所以满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为2.先求点P到点O的距离小于1或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积则点P到点O的距离小于1或等于1的概率为:故点P到点O的距离大于1的概率为:答案:【延伸探究】1.(改变问法)若典例1中条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于的概率.【解析】到A点的距离小于的点,在以A为球心,半径为的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为所以2.(变换条件)若典例2中的条件变为在棱长为2的正方体ABCD-- A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,结果如何?【解析】与点O距离等于1的点的轨迹是一个半球面,半球体积为:“点P与点O距离大于1”事件对应的区域体积为则点P与点O距离大于1的概率是【方法技巧】1.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为2.解决与体积有关的几何概型的关键点解决此类问题的关键是注意几何概型的条件,分清所求的概率是与体积有关还是与长度有关,不要将二者混淆.【补偿训练】正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,则使四棱锥M-ABCD的体积小于的概率为________.【解析】正方体ABCD-A1B1C1D1中,设M-ABCD的高为h,则又S=1,四边形ABCD所以h=若体积小于则h<即点M在正方体的下半部分,所以答案:【补偿训练】(2015·临沂高一检测)如图所示,A是圆上一定点,在圆上其他位置任取一点A′,连接AA′,得到一条弦,则此弦的长度小于或等于半径长度的概率为()【解析】选C.如图所示,要使弦的长度小于或等于半径长度,只要点A′在劣弧A′1A′2上.AA′1=AA2′=R,所以∠AOA1′=∠AOA2′=故由几何概型的概率公式得。
几何概型1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D的测度的测度. 说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积;(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段l是线段L的一部分,向线段L上任投一点,若落在线段l上的点数与线段l的长度成正比,而与线段l在线段L上的相对位置无关,则点落在线段l上的概率为:P=l的长度/L的长度(2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G 上的相对位置无关,则点落在区域g上概率为:P=g的面积/G的面积(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点,若落在区域v上的点数与区域v的体积成正比,而与区域v在区域V上的相对位置无关,则点落在区域v上的概率为:P=v的体积/V的体积。
归纳与技巧:几何概型基础知识归纳1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).基础题必做1.(教材习题改编)设A (0,0),B (4,0),在线段AB 上任投一点P ,则|P A |<1的概率为( ) A.12 B.13 C.14D.15解析:选C 满足|P A |<1的区间长度为1,故所求其概率为14.2. 有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13.3.分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.4-π2B.π-22C.4-π4D.π-24解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P =2π-44=π-22.4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P =0.05.答案:0.055.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60360=16.答案:16解题方法归纳1.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是否包含在事件之内不影响所求结果.与长度、角度有关的几何概型典题导入[例1] 已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)圆C 的圆心到直线l 的距离为________;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为________. [自主解答] (1)根据点到直线的距离公式得d =255=5;(2)设直线4x +3y =c 到圆心的距离为3,则|c |5=3,取c =15,则直线4x +3y =15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是23,则可得直线4x +3y =15截得的圆弧所对的圆心角为60°,故所求的概率是16.[答案] 5 16本例条件变为:“已知圆C :x 2+y 2=12,设M 为此圆周上一定点,在圆周上等可能地任取一点N ,连接MN .”求弦MN 的长超过26的概率.解:如图,在图上过圆心O 作OM ⊥直径CD .则MD =MC =2 6. 当N 点不在半圆弧CM D 上时,MN >2 6. 所以P (A )=π×232π×23=12.解题方法归纳求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1) 已知A 是圆上固定的一点,在圆上其他位置上任取一点A ′,则AA ′的长度小于半径的概率为________.(2)在Rt △ABC 中,∠BAC =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为________.解析:(1)如图,满足AA ′的长度小于半径的点A ′位于劣弧BA C 上,其中△ABO 和△ACO 为等边三角形,可知∠BOC =2π3,故所求事件的概率P=2π32π=13. (2)如图,在Rt △ABC 中,作AD ⊥BC ,D 为垂足,由题意可得BD =12,且点M 在BD 上时,满足∠AMB ≥90°,故所求概率P =BD BC =122=14. 答案:(1)13 (2)14与面积有关的几何概型典题导入[例2] (1) 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π(2)已知不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,x ≤a (a >0)表示平面区域M ,若点P (x ,y )在所给的平面区域M 内,则点P 落在M 的内切圆内的概率为( )A.(2-1)4πB .(3-22)πC .(22-2)πD.2-12π [自主解答] (1)法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB=14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2. 由题意知C ∈AB 且S 弓形AC =S 弓形B C =S 弓形O C , 所以S 空白=S △OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB=π-2π=1-2π.(2)由题知平面区域M 为一个三角形,且其面积为S =a 2.设M 的内切圆的半径为r ,则12(2a +22a )r =a 2,解得r =(2-1)a .所以内切圆的面积S 内切圆=πr 2=π[(2-1)·a ]2=(3-22)πa 2.故所求概率P =S 内切圆S=(3-22)π.[答案] (1)A (2)B解题方法归纳求解与面积有关的几何概型首先要确定试验的全部结果和构成事件的全部结果形成的平面图形,然后再利用面积的比值来计算事件发生的概率.这类问题常与线性规划[(理)定积分]知识联系在一起.以题试法2. 点P 在边长为1的正方形ABCD 内运动,则动点P 到顶点A 的距离|P A |≤1的概率为( )A.14B.12C.π4D .π解析:选C 如图,满足|P A |≤1的点P 在如图所示阴影部分运动,则动点P 到顶点A 的距离|P A |≤1的概率为S 阴影S 正方形=14×π×121×1=π4.与体积有关的几何概型典题导入[例3] (1) 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6(2)一只蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中始终保持与正方体玻璃容器的6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一个位置的可能性相同,那么蜜蜂飞行是安全的概率为( )A.18B.116C.127D.38[自主解答] (1)点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球的外部.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. (2)由题意,可知当蜜蜂在棱长为10的正方体区域内飞行时才是安全的,所以由几何概型的概率计算公式,知蜜蜂飞行是安全的概率为103303=127.[答案] (1)B (2)C解题方法归纳与体积有关的几何概型是与面积有关的几何概型类似的,只是将题中的几何概型转化为立体模式,至此,我们可以总结如下:对于一个具体问题能否应用几何概型概率公式,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.以题试法3. 在体积为V 的三棱锥S —ABC 的棱AB 上任取一点P ,则三棱锥S —APC 的体积大于V3的概率是________. 解析:如图,三棱锥S —ABC 的高与三棱锥S —APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM 、BN 分别为△APC 与△ABC 的高,所以V S —APC V S —ABC =S △APC S △ABC =PM BN ,又PM BN =AP AB ,所以AP AB >13时,满足条件.设AD AB =13,则P 在BD 上,所求的概率P =BD BA =23. 答案:231. 在区间⎣⎡⎦⎤-π2,π2上随机取一个x ,sin x 的值介于-12与12之间的概率为( ) A.13 B.2π C.12D.23解析:选A 由-12<sin x <12,x ∈⎣⎡⎦⎤-π2,π2, 得-π6<x <π6.所求概率为π6-⎝⎛⎭⎫-π6π2-⎝⎛⎭⎫-π2=13.2. 在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A.16B.13C.23D.45解析:选C 设AC =x cm ,CB =(12-x )cm,0<x <12,所以矩形面积小于32 cm 2即为x (12-x )<32⇒0<x <4或8<x <12,故所求概率为812=23.3. 在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34D.14解析:选C 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0. ∵a ,b ∈[0,1],a +2b >0, ∴a -2b <0. 作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域,易得该函数无零点的概率P =1-12×1×121×1=34.4. 已知函数f (x )=kx +1,其中实数k 随机选自区间[-2,1].∀x ∈[0,1],f (x )≥0的概率是( )A.13 B.12 C.23D.34解析:选C 由∀x ∈[0,1],f (x )≥0得⎩⎪⎨⎪⎧f (0)≥0,f (1)≥0,有-1≤k ≤1,所以所求概率为1-(-1)1-(-2)=23. 5. 在水平放置的长为5米的木杆上挂一盏灯,则悬挂点与木杆两端的距离都大于2米的概率为( )A.15B.25C.35D.12解析:选A 如图,线段AB 长为5米,线段AC 、BD 长均为2米,线段CD 长为1米,满足题意的悬挂点E 在线段CD 上,故所求事件的概率P =15.6. 一只昆虫在边长分别为6,8,10的三角形区域内随机爬行,则其到三角形任一顶点的距离小于2的概率为( )A.π12 B.π10 C.π6D.π24解析:选A 记昆虫所在三角形区域为△ABC ,且AB =6,BC =8,CA =10,则有AB 2+BC 2=CA 2,AB ⊥BC ,该三角形是一个直角三角形,其面积等于12×6×8=24.在该三角形区域内,到三角形任一顶点的距离小于2的区域的面积等于A +B +C 2π×π×22=π2×22=2π,因此所求的概率等于2π24=π12.7. 若不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -3≤0表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.解析:∵y =x 与y =-x 互相垂直,∴M 的面积为3,而N 的面积为π4,所以概率为π43=π12.答案:π128. 如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向图2中虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设题图1长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h(2h +2)(2h +1)=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39. 投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为12米的小方块.试验是向板中投镖,事件A 表示投中阴影部分,则事件A 发生的概率为________.解析:∵事件A 所包含的基本事件与阴影正方形中的点一一对应,事件组中每一个基本事件与大正方形区域中的每一个点一一对应.∴由几何概型的概率公式得P (A )=⎝⎛⎭⎫12212=14. 答案:1410.已知|x |≤2,|y |≤2,点P 的坐标为(x ,y ),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.解:如图,点P 所在的区域为正方形ABCD 的内部(含边界),满足(x -2)2+(y -2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).故所求的概率P 1=14π×224×4=π16.11.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22即-1≤x +y ≤1,形成的区域如图中阴影部分,面积S 2=4,所求概率为P =S 2S =12.12. 已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a·b <0的概率.解:(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36个;由a·b =-1有-2x +y =-1,所以满足a·b =-1的基本事件为(1,1),(2,3),(3,5)共3个.故满足a·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6,且-2x +y <0}; 画出图形, 矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a·b <0的概率为2125.1.在区间[0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( ) A.14 B.13 C.12D.23解析:选C 由sin x +3cos x ≤1得2sin ⎝⎛⎭⎫x +π3≤1, 即sin ⎝⎛⎭⎫x +π3≤12. 由于x ∈[0,π],故x +π3∈⎣⎡⎦⎤π3,4π3,因此当sin ⎝⎛⎭⎫x +π3≤12时,x +π3∈⎣⎡⎦⎤5π6,4π3,于是x ∈⎣⎡⎦⎤π2,π. 由几何概型公式知事件“sin x +3cos x ≤1”发生的概率为P =π-π2π-0=12.2.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=2π3.则点P 到点O 的距离小于或等于1的概率为2π32π=13,故点P 到点O 的距离大于1的概率为1-13=23.答案:233. 设AB =6,在线段AB 上任取两点(端点A 、B 除外),将线段AB 分成了三条线段. (1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形的概率; (2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形的概率. 解:(1)若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能情况是1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段长为2,2,2时,能构成三角形,故构成三角形的概率为P =13.(2)设其中两条线段长度分别为x ,y ,则第三条线段长度为6-x -y ,故全部试验结果所构成的区域为⎩⎪⎨⎪⎧0<x <6,0<y <6,0<6-x -y <6,即⎩⎪⎨⎪⎧0<x <6,0<y <6,0<x +y <6所表示的平面区域为△OAB .若三条线段x ,y,6-x -y 能构成三角形, 则还要满足⎩⎪⎨⎪⎧x +y >6-x -y ,x +6-x -y >y ,y +6-x -y >x ,即为⎩⎪⎨⎪⎧x +y >3,y <3,x <3所表示的平面区域为△DEF ,由几何概型知,所求概率为P =S △DEF S △AOB =14.1.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C 由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S 矩形ABCD =AD ×AB ,所以P (A )=12.2.在区间[0,1]上任取两个数a ,b ,则关于x 的方程x 2+2ax +b 2=0有实数根的概率为________.解析:由题意得Δ=4a 2-4b 2≥0, ∵a ,b ∈[0,1],∴a ≥b . ∴⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a ≥b ,画出该不等式组表示的可行域(如图中阴影部分所示).故所求概率等于三角形面积与正方形面积之比,即所求概率为12.答案:123. 设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22C.π6D.4-π4解析:选D 不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示坐标平面内的一个正方形区域,设区域内点的坐标为(x ,y ),则随机事件:在区域D 内取点,此点到坐标原点的距离大于2表示的区域就是圆x 2+y 2=4的外部,即图中的阴影部分,故所求的概率为4-π4.为( )A.14 B.34 C.964D.2764解析:选C 设事件A 在每次试验中发生的概率为x ,由题意有1-C 33(1-x )3=6364,得x =34,则事件A 恰好发生一次的概率为C 13×34×⎝⎛⎭⎫1-342=964.。
第5讲 几何概型一、知识梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A 是确定事件,(1)若A 是不可能事件,则P (A )=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P (A )=0不能推出A 是不可能事件.(2)若A 是必然事件,则P (A )=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P (A )=1不能推出A 是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B .13C.12D .23解析:选A.令t =2x,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0t 1+t 2>0t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P=14,选A.2.如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为________.解析:设OA =3,则AB =33,所以AP =3,由余弦定理可求得OP =3,∠AOP =30°,所以扇形AOC 的面积为3π4,扇形AOB 的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究) 角度一 与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A.π24+9π B .4π24+9πC.π18+9πD .4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x =2交抛物线y 2=4x 于A ,B 两点.点A ,B 在y 轴上的射影分别为D ,C .从长方形ABCD 中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC <12V S ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ABC <12V S ABC ,故使得V P ABC <12V S ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V FAMCD=13×S四边形AMCD×DF=14a3,V ADFBCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·安徽合肥模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。