2005年高考.重庆卷.文科数学试题精析详解
- 格式:doc
- 大小:848.71 KB
- 文档页数:11
2005年普通高等学校招生全国统一考试 数学(全国2文科卷)试题精析详解一、选择题(5分⨯12=60分)(1)函数f(x)=|sin x+cos x|的最小正周期是(A)4π (B) 2π(C) π (D)2π 【思路点拨】本题考查三角函数的化简和绝对值的概念和数形结合的思想.【正确解答】()|sin cos |)|f x x x x ϕ=+=+,f(x)的最小正周期为π. 选C【解后反思】三角函数的周期可以从图象上进行判断,但是一个周期函数加绝对值后的周期不一定减半.如tan y x =的最小正周期为π,但是,|tan |y x =的最小正周期也是π,因此,对函数的性质的运用必须从定义出发,要学会用定义来研究问题.(2)正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点.那么,正方体的过P 、Q 、R 截面图形是(A)三角形 (B)四边形 (C)五边形 (D)六边形【思路点拨】本题考查平面的作法和空间想象能力,根据公理1可从P 、Q 在面内作直线,根据公理2,得到面与各棱的交点,与棱相交必与棱所在的两个面都有交线段.【正确解答】画图分析.作直线PQ 交CB 的延长线于E ,交CD 的延长F ,作直线ER 交1CC 的延长线于G ,交1BB 于S ,作直线GF 交1DD 于H ,交11C D H ,连结PS,RT,HQ ,则过P 、Q 、R 的截面图形为六边形PQHTRS , 故选D.【解后反思】要理解立体几何中的三个公理及3个推论是确定平面的含义,但不必深入研究.. (3)函数y=x 2-1(x ≤0)的反函数是(A)y=1+x (x ≥-1) (B) y=-1+x (x ≥-1) (C) y=1+x (x ≥0) (D) y=-1+x (x ≥0)【思路点拨】本题考查反函数的求法.CC 1【正确解答】解法1:21y x x =-⇒=0x ≤得x =1y ≥-)所以反函数为1)y x =≥- 解法2:分析定义域和值域,用排除法.【解后反思】遇到反函数的选择题考查时,可根据互为反函数的性质,验证定义域和值域即可.(4)已知函数y=tan ωx 在(-2π,2π)内是减函数,则 (A )0<ω≤1 (B)-1≤ω<0 (C) ω≥1 (D) ω≤-1 【思路点拨】本题考查参数ω对于函数tan y x ω=性质的影响. 【正确解答】由正切函数的性质,正切函数tan y x =在(-2π,2π)上是增函数,而tan y x ω=在(-2π,2π)内是减函数,所以ππω-≥,即10ω-≤<.选B【解法2】可用排除法,∵当ω>0时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除(A),(C),又当|ω|>1时正切函数的最小正周期长度小于π,∴tan y x ω=在(,)22ππ-内不连续,在这个区间内不是减函数,这样排除(D),故选(B)。
2005年普通高等学校招生全国统一考试(浙江卷)数学试题(文科)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的最小正周期是( )(A)2π(B) π (C) 2π (D) 4π 解:T=22π=π,选(B)2.设全集{}{}{}1,2,3,4,5,6,7,1,2,3,4,5,3,4,5,6,7U P Q ===,则()UP C Q =( )(A) {}1,2 (B) {}3,4,5 (C) {}1,2,6,7 (D){}1,2,3,4,5 解:U C Q ={1,2,},故()UPC Q ={1,2},选(A)3.点()1,1-到直线10x y -+=的距离是( )(A)12 (B)32解:点()1,1-到直线10x y -+=的距离2=,选(D) 4.设()1f x x x =--,则12f f⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=( ) (A) 12- (B)0 (C)12(D) 1解:1()2f =11|1|||22--=0, 12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=f(0)=1,选(D)5.在()()5611x x ---的展开式中,含3x 的项的系数是( ) (A)5- (B) 5 (C) 10- (D) 10解:()51x -中x 3的系数为10,()61x --中x 3的系数为-20,∴()()5611x x ---的展开式中x 3的系数为-10,选(C)6.从存放号码分别为1,2,…,10的卡片的盒子中,在放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) (A)0.53 (B) 0.5 (C) 0.47 (D) 0.37 解:取到号码为奇数的频率是1356181153100100++++==0.53,选(A)7.设αβ、为两个不同的平面,l m 、为两条不同的直线,且,l m αβ⊂⊂,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题解:命题②有反例,如图中平面α∩平面β=直线n,l ,m αβ⊂⊂ 且l ∥n,m ⊥n,则m ⊥l,显然平面α不垂直平面β 故②是假命题;命题①显然也是假命题, 因此本题选(D)8.已知向量()()5,3,2,a x b x =-=,且a b ⊥,则由x 的值构成的集合是( ) (A){}2,3 (B){}1,6- (C) {}2 (D) {}6解:由a b ⊥得a b ⋅=0,即(x-5)·2+3×x=0解得x=2,选(C) 9.函数21y ax =+的图象与直线y x =相切,则a =( )(A)18(B)14 (C)12 (D)1解:由题意,得210ax x -+=有两个等实根,得a=14,选(B) 10.设集合(){},|,,1A x y x y x y =--是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )解:由题意可知0010.111x y x y x y x y x y x yx y y x>⎧⎪>⎪⎪-->⎨+>--⎪⎪--+>⎪--+>⎩得102102112x y x y ⎧<<⎪⎪⎪<<⎨⎪⎪<+<⎪⎩由此可知A 所表示的平面区域(不含边界的阴影部分)是(A )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分。
2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k kn n P P C k P --=)1()(第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A.5)2(22=+-y x B.5)2(22=-+y xC.5)2()2(22=+++y x D.5)2(22=++y x 2.=+-)12sin 12)(cos 12sin 12(cos ππππ ( )A.23-B.21-C.21D.233.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得x x f 的0)(<的取值范围是( )A.)2,(-∞B.),2(+∞C.(-∞,-2)∪(2,+∞)D.(-2,2)4.设向量a =(-1,2),b =(2,-1),则(a ·b )(a +b )等于 ( )A.(1,1)B.(-4,-4)C.-4D.(-2,-2)5.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为( )A.)3,0(B.)2,3(C.)4,3(D.)4,2(6.已知βα,均为锐角,若qp q p 是则,2:),sin(sin :πβαβαα<++<的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有( )A.1个B.2个C.3个D.4个8.若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于 ( )A.5B.7C.9D.119.若动点),(y x 在曲线)0(14222>=+b b y x 上变化,则y x 22+的最大值为 ( )A.⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b bB.⎪⎩⎪⎨⎧≥<<+)2(2)20(442b b b bC.442+bD.b 210.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( )A.4B.5C.6D.7第二部分(非选择题共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上.11.若集合}0)5)(2(|{},34|{2<--∈=<+-∈=xxRxBxxRxA,则A∩B= .12.曲线3xy=在点(1,1)处的切线与x轴、直线2=x所围成的三角形的面积为 .13.已知βα,均为锐角,且=-=+αβαβαtan),sin()cos(则 .14.若yxyx-=+则,422的最大值是 .15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .16.已知BA),0,21(-是圆FyxF(4)21(:22=+-为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为 .三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤.17.(本小题满分13分)若函数)4sin(sin)2sin(22cos1)(2ππ+++-+=xaxxxxf的最大值为32+,试确定常数a的值.18.(本小题满分13分)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响.(Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.19.(本小题满分13分)设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R. (1)若3)(=x x f 在处取得极值,求常数a 的值; (2)若)0,()(-∞在x f 上为增函数,求a 的取值范围.20.(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC. 已知,21,2,2===AECDPD求(Ⅰ)异面直线PD与EC的距离;(Ⅱ)二面角E-PC-D的大小. 21.(本小题满分12分)已知中心在原点的双曲线C的右焦点为(2,0),右顶点为)0,3 ((1)求双曲线C的方程;(2)若直线2:+=kxyl与双曲线C恒有两个不同的交点A和B,且2>⋅(其中O为原点).求k的取值范围.22.(本小题满分12分)数列).1(0521681}{111≥=++-=++naaaaaannnnn且满足记).1(211≥-=nabnn(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列}{nb的通项公式及数列}{nnba的前n项和.nS.。
【试题答案】2005年普通高等学校招生全国统一考试文科数学试题(必修+选修I)参考答案一. 选择题:1. C2. D3. B4. B5. D6. C7. B 8. A 9. C 10. A 11. C 12. C二. 填空题:13. 216 14.15. 192 16. ①,④三. 解答题:17. 本小题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。
满分12分。
解法一:为第二象限的角,,所以所以为第一象限的角,,所以所以解法二:为第二象限角,,所以为第一象限角,,所以故所以18. 本小题主要考查相互独立事件概率的计算,运用概率知识解决实际问题的能力,满分12分。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(I)记“甲队胜三局”为事件A,“甲队胜二局”为事件B,则所以,前三局比赛甲队领先的概率为(II)若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜,所以,所求事件的概率为19. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。
满分12分。
(1)证明:成等差数列,即又设等差数列的公差为d,则这样从而这时是首项,公比为的等比数列(II)解:所以20. 本小题主要考查直线与平面垂直、直线与平面所成角的有关知识,及思维能力和空间想象能力,考查应用向量知识解决数学问题的能力。
满分12分。
方法一:(I)证明:连结EPDE在平面ABCD内,又CE=ED,PD=AD=BC为PB中点由三垂线定理得在中,又PB、FA为平面PAB内的相交直线平面PAB(II)解:不妨设BC=1,则AD=PD=1为等腰直角三角形,且PB=2,F为其斜边中点,BF=1,且与平面AEF内两条相交直线EF、AF都垂直平面AEF连结BE交AC于G,作GH//BP交EF于H,则平面AEF 为AC与平面AEF所成的角由可知由可知与平面AEF所成的角为方法二:以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系(1)证明:设E(a,0,0),其中,则C(2a,0,0),A(0,1,0),B(2a,1,0),P(0,0,1),F(a,,)又平面PAB,平面PAB,平面PAB(II)解:由,得可知异面直线AC、PB所成的角为又,EF、AF为平面AEF内两条相交直线平面AEF与平面AEF所成的角为即AC与平面AEF所成的角为 21. 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,满分12分。
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n k n n P k C P P -=-一、 选择题(1) 函数 |cos sin |)(x x x f +=的最小正周期是(A ) 4π (B) 2π (C) π (D)2π (2)正方体 ABCD-A 1B 1C 1D 1中P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是(A )三角形 (B)四边形 (C)五边形 (D)六边形(3)函数 )0(12≤-=x x y 反函数是 (A)1+=x y )1(-≥x (B)y = -1+x )1(-≥x(C)y =1+x )0(≥x (D)y =-1+x )0(≥x(4)已知函数wx y tan =在)2,2(ππ-内是减函数,则 (A)10≤<w (B)01<≤-w (C)1≥w (D)1-≤w(5)抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(A) 2 (B) 3 (C) 4 (D) 5 (6)双曲线19422=-y x 的渐近线方程是 (A) x y 32±= (B) x y 94±= (C) x y 23±= (D)x y 49±= (7)如果数列||n a 是等差数列,则(A) 1345a a a a ++< (B)1345a a a a +=++(C)1345a a a a +>+ (D)1345a a a a = (8)10)2(y x -的展开式中46y x 项的系数是 (A)840 (B)-840 (C)210 (D) -210(9)已知点)0,3(),0,0(),1,3(C B A 设BAC ∠的平分线AE 与BC 相交于E,那么有λ=其中λ等于(A) 2 (B) 21 (C)-3 (D)31- (10)已知集合2{|47},{|60}M x x N x x x =-≤≤=-->则N M ⋂为(A){|4237}x x x -≤<-<≤或 (B){|4237}x x x -<≤-≤<或(C){|23}x x x ≤->或 (D){|23}x x x <-≥或(11)点P 在平面上作匀速直线运动,速度向量)3,4(-=v (即点P 的运动方向与v 相同,且每秒移动的距离|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(A)(-2,4) (B)(-30,25) (C)(10,-5) (D)(5,-10)(12)△ABC 的顶点B 在平面a 内,A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,AC=5,则AC 与a 所成的角为(A)60° (B)45° (C)30° (D)15°第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参阅公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率乃是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限乃是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数乃是( ) A .-14 B .14 C .-28 D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别乃是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C .3D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率乃是 ( )A .2 B .12C .2D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制乃是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B=( )A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 乃是AB 上的点,则点P 到AC 、BC的距离乘积的最大值乃是 三.解读回答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器乃是否需要照顾相互之间没有影响。
2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+b y x (b >0)上变化,则x 2+2y 的最大值为(A ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b bb b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。
2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 3. (天津卷)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A .2±B .34±C .21±D .43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A .43B . 72C . 86D . 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B ) (A )1 (B )2 (C )3 (D )47 (全国卷Ⅰ)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )(A )23 (B )23 (C )26 (D )332 A .)22,22(- B .)2,2(-C .)42,42(D .)81,81(-8.(全国卷II) 双曲线22149x y -=的渐近线方程乃是( C)(A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±9. (全国卷II)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)(B) (C) 65 (D) 5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率乃是(D )(A (B (C )2 (D 1 12. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离乃是( B )A .23+6B .21C .21218+D .2113 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标乃是( B) ( A )1617 ( B ) 1615 ( C ) 87( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后经过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B ) 31 ( C ) 22( D ) 2115.(湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为(D ) A .30ºB .45ºC .60ºD .90º16. (湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D ) A .30ºB .45ºC .60ºD .90º17. (湖北卷)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .38 18. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值乃是( C )A .21B .23 C .27 D .5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值乃是( )A .22-B .335-C .-3D .27-20. (广东卷)若焦点在轴上的椭圆2212x y m+=的离心率为12,则m=(B)32(C)83(D)2321. (全国卷III)已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为(C )(A )43 (B )53 (C(D22.(福建卷)已知F 1、F 2乃是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率乃是( D )A .324+B .13-C .213+ D .13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫ ⎝⎛-0,21A ,B 乃是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。
2005年重庆数学高考卷子
2005年重庆数学高考卷子指的是2005年参加重庆市高考的数学科目的试卷。
这份试卷是为了考察学生的数学知识和数学思维能力,是高考的重要组成部分。
以下是2005年重庆数学高考卷子题目:
1. 设全集U=R,集合A={x|x^2+ax+b=0},则下列关系中正确的是 ()
A. A=B={x|x^2-2x+4=0}
B. A B={2}
C. A∩B={2}
D. A∪B={x|x^2-2x+4=0}
2. 下列命题正确的是 ()
A. y = x^3 与 y = (1/x) 的图象关于原点对称
B. 若 a > b,则 a^2 > b^2
C. 若 x + 3 + y - 2 = 0,则 xy ≤ 9
D. 若 |x - 3| + (y - 4)^2 = 0,则 z = x + y 的最大值为 7
3. 若 (sin α + cos α)/(5sin α - tan α) = 1/2,则 cos 2α = ()
A. -7/9
B. -√5/3
C. -1/3
D. √5/3
4. 已知数列 {an} 的前 n 项和为 Sn,且满足 an + Sn = n,若数列 {( - 1)^n ×an} 的前 n 项和为 Tn,则 Tn = _______.
5. 若 f(x) = |lg(x - 1)|,关于实数 a 的方程 f(a) + f(3a) = 2 有解,则实数 a 的取值范围为 ()
A. (1/4,1/2)
B. (1/4,1/2]
C. [1/4,1)
D. [1/4,1]。
2005年普通高校招生考试重庆数学试卷分析
张晓斌
【期刊名称】《数学教学通讯:中教版》
【年(卷),期】2005(000)09S
【摘要】这次参加重庆市普通高考数学考试的学生共有147653人,其中理科94757人,约占64.18%,文科52896人,约占35.82%.
【总页数】9页(P1-9)
【作者】张晓斌
【作者单位】重庆市高考阅卷组;重庆市教育科学研究院
【正文语种】中文
【中图分类】G632.474
【相关文献】
1.2007重庆数学试卷分析 [J], 龙云飞;邓礼咸
2.2007重庆数学试卷分析 [J], 龙云飞;邓礼咸
3.2007重庆数学试卷分析 [J], 龙云飞;邓礼咸
4.重庆市2002年普通高校招生考试理解综合能力试卷分析 [J], 汪勃
5.评卷圆满结束招生即将开始——湖北省2005年普通高校招生考试综述 [J], 无因版权原因,仅展示原文概要,查看原文内容请购买。
2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题(文史类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y x B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x解:∵圆5)2(22=++y x 的圆心(-2,0)关于原点对称的点为(2,0),∴圆5)2(22=++y x 关于原点对称的圆为(x-2)2+y 2=5,选(A).2.=+-)12sin 12)(cos 12sin 12(cosππππ( )A .23-B .21-C .21 D .23解:(cossin)(cossin)cos121212126πππππ-+==,选(D) 3.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)(=x f ,则使得 x x f 的0)(<的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)解:∵函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,∴f(-2)=0, 在]0,(-∞上0)(<x f 的x 的取值范围是(2,0]-,又由对称性[0,)+∞,∴在R 上fx)<0仰x的取值范围为(-2,2),选(D)4.设向量a =(-1,2),b =(2,-1),则(a ·b )(a +b )等于 ( ) A .(1,1) B .(-4,-4) C .-4 D .(-2,-2) 解:(a ·b )(a +b )=[-2+(-2)](1,1)=(-4,-4),选(B)5.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为 ( )A .)3,0(B .)2,3(C .)4,3(D .)4,2(解∵|x-2|<2的解集为(0,4),log 2(x 2-1)>1的解集为)(,+∞⋃-∞,∴不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集)4,3(,选(C) 6.已知βα,均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵由α、β均为锐角,:,2q παβ+<得0<α<α+β<2π∴sin(α+β)>sin α,但α、β均为锐角,sin α<sin(α+β),不一定能推出α+β<2π,如α=6π,β=3π就是一个反例,选(C)7.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个解:命题①③是真命题,选(B)8.若nx )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于 ( )A .5B .7C .9D .11解:3x 的项的系数为332n C ,x 的项的系数为12n C ,由题意得332n C =812n C 解之得n=5,选(A)一了9.若动点),(y x 在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为( )A .⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2)20(442b b b bC .442+bD .b 2解:由题意可设x=2cos α,y=bsin α,则x 2+2y=4cos 2α+2bsin α=-4sin 2α+2bsin α+4=-2(sin 2α-bsin α-2)=-2(sin α-2b )2+4+22b ,∴22x y +的最大值为2404424b b b b ⎧+<<⎪⎨⎪≥⎩,选(A)10.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面 各连接中点,已知最底层正方体的棱长为2,且该塔形 的表面积(含最底层正方体的底面面积)超过39,则 该塔形中正方体的个数至少是 ( ) A .4 B .5 C .6 D .7解:k 层塔形的各层立方体的边长,增加的表面积以及k 层塔形的 表面积一览表如下:由上表可以看出要使塔形的表面积(含最底层正方体的底面面积)超过39,则 该塔形中正方体的个数至少是6层,选(C)第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.若集合}0)5)(2(|{},034|{2<--∈=<+-∈=x x R x B x x R x A ,则=B A .解:∵A=(-4,3),B=(2,5),∴A ∩B={x|2<x<3}12.曲线3x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 . 解:∵y '=3x 2,∵在(1,1)处切线为y-1=3(x-1),令y=0,得切线与x 轴交点(2,03),切线与直线x=2交于(2,4),∴曲线3(1,1)y x =在点处的切线与x 轴、直线2x =所围成的三角形的面积为S=1416842363⋅⋅==.. 13.已知βα,均为锐角,且=-=+αβαβαtan ),sin()cos(则 . 解:由已知得1-tan αtan β=tan α-tan β,∴tan α=1tan 11tan ββ+=+.14.若y x y x -=+则,422的最大值是 . 解:令x=2cos α,y=2sin α,则x-y=2cos α-2sin α=2sin(4πα-)≤2,∴若y x y x -=+则,422的最大值是15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .解;P=1128222101745C C C C ⋅+= 16.已知B A ),0,21(-是圆F y x F (4)21(:22=+-为圆心)上一动点,线段AB 的垂直平 分线交BF 于P ,则动点P 的轨迹方程为 . 解:由题意可知,动点P 的轨迹是椭圆,这个椭圆的焦点是A(-12,0)和F(12,0),定长2a=圆F 的半径2,因而动点P 的轨迹方程为13422=+y x 三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.解:)4sin(sin )2sin(21cos 21)(22ππ+++--+=x a x x x x f)4sin(cos sin )4sin(sin cos 2cos 2222ππ+++=+++=x a x x x a x x x )4sin()2()4sin()4sin(222πππ++=+++=x a x a x因为)(x f 的最大值为)4sin(,32π++x 的最大值为1,则,3222+=+a所以,3±=a 18.(本小题满分13分)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响. (Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.(Ⅰ)解:1078798109=⨯⨯=P ; (Ⅱ)解法一: 该种零件的合格品率为107,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)103(13=-解法二:恰好取到一件合格品的概率为189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)107(103)107()103(107333223213=+⋅+⋅⋅C C C19.(本小题满分13分)设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R . (1)若3)(=x x f 在处取得极值,求常数a 的值; (2)若)0,()(-∞在x f 上为增函数,求a 的取值范围.解:(Ⅰ)).1)((66)1(66)(2--=++-='x a x a x a x x f因3)(=x x f 在取得极值, 所以.0)13)(3(6)3(=--='a f 解得.3=a 经检验知当)(3,3x f x a 为时==为极值点.(Ⅱ)令.1,0)1)((6)(21===--='x a x x a x x f 得当),()(,0)(),,1(),(,1a x f x f a x a -∞>'+∞-∞∈<在所以则若时 和),1(+∞上为增 函数,故当)0,()(,10-∞<≤在时x f a 上为增函数.当),()1,()(,0)(),,()1,(,1+∞-∞>'+∞-∞∈≥a x f x f a x a 和在所以则若时 上为增函 数,从而]0,()(-∞在x f 上也为增函数.综上所述,当)0,()(,),0[-∞+∞∈在时x f a 上为增函数.20.(本小题满分13分)如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC. 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离;(Ⅱ)二面角E —PC —D 的大小.解法一:(Ⅰ)因PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,由三垂直线定理的逆定理知 EC ⊥DE ,因此DE 是异面直线PD 与EC 的公垂线.设DE=x ,因△DAE ∽△CED ,故1,1,2±===x x xCD AE x 即(负根舍去). 从而DE=1,即异面直线PD 与EC 的距离为1.(Ⅱ)过E 作EG ⊥CD 交CD 于G ,作GH ⊥PC 交PC 于H ,连接EH. 因PD ⊥底面, 故PD ⊥EG ,从而EG ⊥面PCD.因GH ⊥PC ,且GH 是EH 在面PDC 内的射影,由三垂线定理知EH ⊥PC. 因此∠EHG 为二面角的平面角.在面PDC 中,PD=2,CD=2,GC=,23212=-因△PDC ∽△GHC ,故23=⋅=PC CG PD GH ,又,23)21(12222=-=-=DG DE EG故在,4,,π=∠=∆EHG EG GH EHG Rt 因此中即二面角E —PC —D 的大小为.4π 解法二:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为x 、y 、 z 轴建立空间直角坐标系.由已知可得D (0,0,0),P (0,0,)2, C (0,2,0)设),0,2,(),0)(0,0,(x B x x A 则>).0,23,(),2,21,(),0,21,(-=-=x x x E 由0=⋅⊥CE PE CE PE 得,即.23,0432==-x x 故 由CE DE ⊥=-⋅=⋅得0)0,23,23()0,21,23(, 又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=,故异面直线PD 、 CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,y ,z ).由0=⋅得0)2,2,0(),,0(=-⋅z y 即),2,1,0(,2==y z 故可取作EF ⊥PC 于F ,设F (0,m ,n ), 则).,21,23(n m --= 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得, 又由F 在PC 上得).22,21,23(,22,1,222-===+-=EF n m m n 故 因,,⊥⊥故平面E —PC —D 的平面角θ的大小为向量DG EF 与的夹角.故,4,22||||cos πθθ===EF DG 即二面角E —PC —D 的大小为.4π21.(本小题满分12分)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅(其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A BA B A y y x x k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 22.(本小题满分12分)数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S 解法一:(I );22111,111=-==b a 故.320,2013;421431,43;3821871,87443322===-===-==b a b a b a 故故故(II )因231)34(3832)34)(34(=⨯=--b b ,2231222)34()34)(34(,)34()34(-=--=-b b b b故猜想.2,32}34{的等比数列公比是首项为=-q b n因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾),034,3436162038212)34(2,36162034368163421134).1(8162511111≠--=--=--=---=---=--=-≥-+=++++b b a a a b a a a a a b n a aa n n n n n n n n n n n n n 因故故2|34|=-q b n 确是公比为的等比数列. n n b b 23134,32341⋅=-=-故因, )1(34231≥+⋅=n b n n ,121211+=-=n n n n n b b a a b 得由 n n n b a b a b a S +++= 2211故)152(313521)21(31)(2121-+=+--=++++=n nn b b b n n n 解法二: (Ⅰ)由,052168,21121111=++-+=-=++n n n n n n n n a a a a b a a b 代入递推关系得 整理得,342,0364111-==+-+++n n n n n n b b b b b b 即 .320,4,38,2,143211=====b b b b a 所以有由(Ⅱ)由,03234),34(234,342111≠=--=--=++b b b b b n n n n所以故的等比数列公比是首项为,2,32}34{=-q b n).152(313521)21(31)(21,121211).1(34231,23134212211-+=+--=++++=+++=+=-=≥+⋅=⋅=-n nn b b b b a b a b a S b b a a b n b b n n n nn n n n n n n n n n n 故得由即解法三:(Ⅰ)同解法一 (Ⅱ)2342312)34(3832,38,34,32=⨯=-=-=-b b b b b b 因此故又因的等比数列公比是首项为猜想).1(81625,2231,2,32}{111≥-+=≠⋅=-=-+++n a a a a b b q b b nnn n nn n n n1222181625121121111----+=---=-++n n n n n n n a a a a a b b ;3681036636816--=----=n n n n n a a a a a 3681636816211211111212-----=---=-++++++n n n n n n n n a a a a a a b b ).(2361620368163624361n n n n n n n n b b a a a a a a -=--=-----=+ ,231,2}{,0321112n n n n n b b q b b b b ⋅=-=-≠=-++的等比数列是公比因 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---nn n n n n n n n n n n b a b a b a S b b a a b n +++=+=-=≥+⋅=+-=++++=-- 2211121,121211).1(342312)22(312)222(31故得由。