15.1.3轴对称图形的画法
- 格式:ppt
- 大小:895.00 KB
- 文档页数:21
第二课时:画轴对称图形1. 什么是轴对称图形?在图形学中,轴对称图形是指能够通过一个轴线对称的图形。
轴对称图形的特点是,对于任何图形中的点P,其关于轴线的对称点P’都存在,并且P与P’之间的距离相等。
轴对称图形通常具有对称性和平衡感,是艺术、设计和几何学中常见的概念。
2. 如何画轴对称图形?步骤一:选择轴线轴对称图形的第一步是选择一个轴线。
轴线可以是任何直线,可以是水平线、垂直线或倾斜线。
选择轴线时要考虑图形的对称性和美观性。
步骤二:标记关键点在轴线的两侧,需要标记图形上的几个关键点。
这些关键点将在后续步骤中用作绘制对称图形的基准点。
步骤三:绘制对称图形的一侧根据标记的关键点,绘制对称图形的一侧。
这一侧的图形可以是任意形状和线条的组合,但要保证相对于轴线的对称性。
步骤四:复制并翻转图形使用工具或手工复制并翻转绘制的一侧图形。
复制后的图形应该与轴线对称。
可以通过翻转纸张、使用对称工具或使用计算机软件来完成这个步骤。
步骤五:连接对称点将复制并翻转的图形与原始图形的对称点连接起来,形成完整的轴对称图形。
连接过程可以使用直线、曲线或其他形状。
3. 练习案例:画一个轴对称图形下面将以一个简单的案例来演示如何画一个轴对称图形。
步骤一:选择轴线在纸上选择一条竖直的轴线,作为轴对称图形的轴线。
步骤二:标记关键点在轴线的两侧,标记两个关键点A和B。
这两个关键点将成为绘制对称图形的基准点。
步骤三:绘制对称图形的一侧从A点开始,绘制一条直线到B点。
线段可以是任意长度和形状。
步骤四:复制并翻转图形将绘制的线段复制一份,并翻转到轴线的另一侧。
确保翻转后的线段与原始线段相对称。
步骤五:连接对称点使用直线连接A点和翻转后的线段的起点,连接B点和翻转后的线段的终点。
这样就形成了一个完整的轴对称图形。
4. 小结在这节课中,我们学习了如何画一个轴对称图形。
轴对称图形具有对称性和平衡感,是艺术、设计和几何学中常见的概念。
画轴对称图形的步骤包括选择轴线、标记关键点、绘制对称图形的一侧、复制并翻转图形以及连接对称点。
如何对称绘制图形在数学中,对称是一个重要的概念。
对称是指一个物体或图形在某个中心或轴线上的两侧是完全相同的。
对称性在数学中有很多应用,尤其在绘制图形时,对称性可以帮助我们更准确地绘制出所需的图形。
本文将介绍如何对称绘制图形,并通过实例来说明。
一、点对称点对称是最基本的对称形式。
当一个图形绕着某个点旋转180度后,与原图形完全重合,我们就称这个图形具有点对称性。
对称轴就是通过旋转的中心点所画出的轴线。
点对称的特点是图形的两侧完全一样。
例如,我们来绘制一个点对称的图形——正方形。
首先,我们需要确定对称轴的位置。
以正方形的中心点为对称轴,我们可以将正方形分为上下两部分,上下两部分完全对称。
接下来,我们只需要绘制其中一部分,然后将其沿对称轴进行旋转180度,就能得到完整的正方形。
二、轴对称轴对称是指一个图形相对于某条直线对称。
当一个图形绕着某条直线旋转180度后,与原图形完全重合,我们就称这个图形具有轴对称性。
对称轴就是通过旋转的直线所画出的轴线。
轴对称的特点是图形的两侧完全一样。
例如,我们来绘制一个轴对称的图形——五角星。
首先,我们需要确定对称轴的位置。
以五角星的中心线为对称轴,我们可以将五角星分为左右两部分,左右两部分完全对称。
接下来,我们只需要绘制其中一部分,然后将其沿对称轴进行翻转,就能得到完整的五角星。
三、辅助线的应用在对称绘制图形时,辅助线是非常有用的工具。
通过合理地引入辅助线,我们可以更容易地找到对称轴,并准确地绘制出所需的图形。
例如,我们来绘制一个对称的图形——心形。
首先,我们可以通过画两个圆弧来确定心形的上部分和下部分。
然后,我们可以引入一条垂直线,将上部分和下部分分开。
接下来,我们只需要在垂直线的两侧分别绘制一个半圆形,再在上部分和下部分之间绘制两个小圆弧连接起来,就能得到一个完整的心形。
通过以上的实例,我们可以看到对称绘制图形的方法和技巧。
在实际绘制图形时,我们可以根据具体情况选择合适的对称形式,并运用辅助线来辅助绘制。
4个方形轴对称图形画法步骤方形轴对称图形是指具有对称轴的正方形图形。
下面是四个常见的方形轴对称图形的画法步骤:1.十字花纹步骤一:在纸上画一个正方形,确定正方形的边长。
步骤二:从正方形的中心点画一条垂直线和一条水平线,将正方形分为四个小正方形。
步骤三:从每个小正方形的中心点向外画一条垂直线和一条水平线,与正方形的边相交。
步骤四:连接相交点,形成一个十字花纹的方形轴对称图形。
2.格子花纹步骤一:在纸上画一个正方形,确定正方形的边长。
步骤二:从正方形的中心点向四个方向分别画一条垂直线和一条水平线,将正方形分成四个小正方形。
步骤三:在每个小正方形的四个角上画一个小正方形。
步骤四:连接相邻小正方形的对角线,形成一个格子花纹的方形轴对称图形。
3.雪花花纹步骤一:在纸上画一个正方形,确定正方形的边长。
步骤二:从正方形的中心点向四个方向分别画一条垂直线和一条水平线,将正方形分成四个小正方形。
步骤三:在每个小正方形的中心点画一个小正方形。
步骤四:在每个小正方形的边上画一个小正方形。
步骤五:依次连接相邻小正方形的对角线,形成一个雪花花纹的方形轴对称图形。
4.旋转花纹步骤一:在纸上画一个正方形,确定正方形的边长。
步骤二:从正方形的中心点向四个方向分别画一条垂直线和一条水平线,将正方形分成四个小正方形。
步骤三:在每个小正方形的边上画一个小正方形。
步骤四:依次连接相邻小正方形的对角线,形成一个旋转花纹的方形轴对称图形。
这些方形轴对称图形的画法步骤简单明了,通过不同的组合和变化,可以创造出更多丰富多样的方形轴对称图形。
教案:如何画出轴对称图形?的文章。
一、引言在我们日常生活中,很多物体是对称的,例如正方形、圆形等。
这些物体的对称性带来美感和和谐感,以至于人们能够用很多方式去增加和创造这种对称性。
轴对称图形就是其中一个很好的示例。
轴对称图形是指图形中某个中心轴线(或对称轴线)能将这个图形分成两个完全相等的部分。
假如这个图形是可旋转的,例如一个平面旋转图形,这个中心轴线会让图形每次转一半,还是能够得到相同的结果。
学习如何画出轴对称图形是十分重要的,因为它不仅提高了我们的美学能力,还能帮助我们更好地理解几何学,为今后的学习和探索奠定深厚的基础。
在本文中,将会讨论如何画出轴对称图形的教案。
这个教案适用于初学者,希望读者能够通过这篇文章,对轴对称图形有一个较为全面的了解,并能够通过一些基本技巧和步骤掌握画出轴对称图形的技能。
二、基础理论部分在谈论如何画出轴对称图形之前,有必要先介绍一些基础的理论概念和知识。
1. 轴对称图形的定义和类别轴对称图形是指中心轴线将图形分成两个完全对称的部分的图形。
对称轴线可以存在于纵轴、横轴,还可以为其他方向的轴线。
轴对称图形根据对称轴线的不同方向,又被分为以下几种类型:纵轴对称图形:对称轴线垂直于底边;横轴对称图形:对称轴线水平于底边;轴对称图形:对称轴线垂直于底边和横轴对称轴线都存在。
2. 轴对称图形的性质在学习轴对称图形之前,有必要了解一些图形的默认属性。
这些属性将有助于我们更好地理解轴对称图形的性质。
所有的圆都是对称图形,并且这个对称轴线是过圆心的直径。
所有的等边三角形、正方形和等矩形都有一条划分中心。
任何情况下,底边与中心轴线相垂直的图形总是轴对称的。
3. 轴对称图形的应用轴对称图形有着广泛的应用领域,包括建筑、制造、绘画等领域。
在建筑设计中,轴对称图形可用于构建建筑物的立面、计划和设计;在制造过程中,轴对称图形可用于设计和制造零件或产品的几何结构。
在绘画和艺术领域,轴对称图形被用于创造一种平衡感和视觉和谐感。
怎样画轴对称图形南京财经大学李航在现实生活中,我们经常会见到轴对称图形,如雄伟的北京天安门、美丽的蝴蝶以及漂亮的窗花等等。
那怎么画轴对称图形呢?我们知道几何图形是由点、线、面构成的,由点构成线、由线构成面、再由面构成日常生活中的空间图形。
下面我们从平面上的点开始,从简单到复杂逐步深入的来讨论轴对称图形的画法。
给定平面中的一点和一条直线,怎么作这一点关于这条直线的对称点呢?l 由轴对称图形的性质,我们知道对称轴是垂直平分一对对称点连线。
也就是说,两个对称点在对称轴的两边,且到对称轴的距离相等。
根据这一性质,从已知点向已知直线做垂线段并延长一倍,即可得到这一点关于已知直线的对称点。
A ··B 如左图1,已知点A和直线l,从A点做l的垂线段并延长一倍即可得到A点关于l的对称点B。
如果点在直线上,则该点的对称点是它本身。
图1如果平面上由无数个点构成一条直线,那么怎么去确定一条直线的轴对称图形呢?我们知道,平面上两个不同的点可以确定一条直线,很容易想到,我们只要确定已知直线上两个不同的点的对称点就可以确定这条直线的轴对称直线了。
l 如图2,已知直线AB和直线l,要画出AB关于l的对称图形只需要在直线AB上选两个不同的点,作这两点关于l的对称点就可以确定直线AB的对称图形CD。
··点构成线,线构成面,类似的,作出构成这个平面图形的直线的轴对称图形即可确定这个平面的对称图形。
我们以平面三角形为例,如图3,△ABC为平面上的三··角形,作这个三角形关于直线l的轴对称图形。
三角形的三个顶点就可以确定这个平面三角形,将三个顶点的轴对称点确定了,就可以作出平面三角形的轴对称图形了。
图2 l通过以上对点、线、面轴对称图形的探究,我们可以作出任意的不规则图形的轴对称图形。
只需要找出这个不规则图形的关键点,作出关键点的轴对称点,再依据图形的形状和性质画出最终的轴对称图形。
轴对称图形怎么画轴对称是一种基础的几何概念,指一个物体可沿一条轴线对称,使得沿轴线可以重合,而对称轴则把图形分成两个完全相同的部分。
这种对称可以应用于很多方面,如设计、绘画等。
轴对称图形的绘制一般可以分为以下几个步骤:1. 选择轴线首先需要选择一个轴线,这条轴线将用来对称图形。
轴线可以是任何直线,如横线、竖线或倾斜线等,但必须是明显的直线。
2. 绘制对称图形的一半在轴线的一侧绘制图形的一半。
这一半可以是任何形状,如圆形、正方形、三角形、星形等。
重要的是要确保这一半图形与轴线对称。
3. 绘制对称图形的另一半将对称轴看作一面镜子,将第2步中绘制的一半图形翻转到轴线的另一侧。
然后将这一个完整的图形,与第2步的图形组合,使得轴线对称。
4. 润色完成基本的轴对称图形后,可以进行润色,如增加颜色,添加细节等。
下面是轴对称图形的一些例子:1. 倾斜线轴对称图形首先,在页面上绘制一条倾斜的线。
然后,在线的一侧绘制一个正方形。
将这个正方形翻转到另一侧,然后将这个完整的图形用倾斜线对称。
这样就得到了一个倾斜线轴对称图形。
2. 水平线轴对称图形首先,在页面上绘制一条水平线。
然后,在线的上方绘制一个正方形。
将这个正方形翻转到下方,然后将这个完整的图形用水平线对称。
这样就得到了一个水平线轴对称图形。
3. 圆形轴对称图形首先,在页面上绘制一个圆。
然后,在圆的一侧绘制一个三角形。
将这个三角形翻转到另一侧,然后将这个完整的图形用圆形对称。
这样就得到了一个圆形轴对称图形。
总之,轴对称图形的绘制取决于选择的轴线,以及要绘制的形状和图案。
轴对称图形是一种基本的几何概念,它们在很多领域都有广泛的应用。
通过熟练掌握轴对称的基本原理,我们可以绘制出各种形状优美且对称的图形。
画对称轴的三种方法对称轴是图形学中重要的概念之一,它指的是平面上一条直线,将图形沿着这条直线进行翻转后,两边的图形完全一样。
在绘画、制图、设计等领域,对称轴的运用十分广泛,因此学会如何准确地画出对称轴是非常必要的。
本文将介绍三种画对称轴的方法,希望能为读者提供帮助。
一、用工具画对称轴第一种方法是使用直尺和铅笔来画对称轴。
具体步骤如下:1.用直尺在图形中心位置画一条直线,这条直线必须经过图形的中心点。
2.用铅笔将这条直线延长,直到它超出图形的边缘。
3.将图形沿着这条直线进行翻转,如果两边的图形重合,则说明这条直线是对称轴。
4.用橡皮擦去多余的线条,保留对称轴即可。
这种方法简单易行,适合于对称轴较简单的图形。
二、用纸板画对称轴第二种方法是使用纸板来画对称轴。
具体步骤如下:1.将纸板对折,使两边完全重合。
2.将需要画对称轴的图形放在纸板的一侧,使它与纸板的折痕对齐。
3.用铅笔沿着图形的边缘,在纸板上画出图形的轮廓。
4.将纸板展开,将图形沿着纸板的折痕进行翻转,如果两边的图形重合,则说明这条折痕是对称轴。
5.用剪刀将纸板沿着对称轴剪开,保留对称轴即可。
这种方法适用于对称轴较复杂的图形,可以通过对纸板的折叠来快速确定对称轴的位置。
三、用数学方法画对称轴第三种方法是使用数学方法来画对称轴。
具体步骤如下:1.找到图形的中心点,可以通过计算或者直观感觉来确定。
2.找到图形上每一个点和中心点之间的连线。
3.将每一个点和中心点之间的连线进行翻转,得到一条新的线段。
4.将所有新的线段连接起来,得到一条直线,这条直线就是对称轴。
这种方法需要一定的数学基础,但是可以准确地画出对称轴,适用于对称轴的位置比较重要的情况。
总结以上是三种画对称轴的方法,它们分别是用工具画对称轴、用纸板画对称轴和用数学方法画对称轴。
不同的方法适用于不同的情况,读者可以根据自己的需要选择合适的方法。
在实际应用中,画出准确的对称轴可以帮助我们更好地完成绘画、制图、设计等任务,因此掌握这些方法是非常有用的。
画轴对称图形的“五字法”作者:张志明 中学高级教师画轴对称图形是初中画图形的重要一关,是今后画图形的基础,也是提高动手能力的一个重要环节,能否正确地画出图形将关系到今后画图的成败.现将画轴对称图形的五个步骤用五个字概括如下,简称为画轴对称图形“五字法”.一、定:确定对称轴,对称轴是一条直线,一般在图形外,有时经过图形上,有时是图形上某一条边所在的直线.对称轴的位置确定了对称图形的位置,因此要想确定对称图形的位置必须先确定对称轴的位置.由于图1与图2中的对称轴的位置不同所画△ABC 的对称图形△A 1B 1C 1的位置也不同.二、找:每一个图形上都有无数个点,图形上的每一个点都有对称点,但是我们无法在作图时将这无数个点单独一一作出,这就要求我们要找出图形的关键点,以起到以点带面的作用.一般来讲:线段的关键点是线段的两个端点;多边形的关键点是多边形的顶点;圆的关键点是圆心和圆上的任意一点…….如图1,△ABC 的关键点就是三角形的三个顶点A 、B 、C.三、作:分别从各关键点出发画对称轴的垂线.如图1.作AM⊥l 、BP ⊥l 、CN ⊥l 垂足分别为M 、P 、N .四、截:在对称轴的另一侧的直线上分别以垂足为线段的端点截线段等于原对应垂线段的长度.如图1,分别截取MA 1=MA ,PB 1=PB ,NC 1=NC ,得到各关键点的对称点A 1、B 1、C 1.五、连:连结所得的对称点,即作出原图形的对应线段.如图1,连结A 1B 1、B 1C 1、C 1A 1,则△A 1B 1C 1就是所求作的关于直线l 为对称轴的△ABC 的对称三角形.所画图形是否与原图形成轴对称呢?可通过以下折叠的方法进行检验:沿直线l 进行对折,若两图形完全重合,则所画图形与原图形成轴对称,否则所画图形与原图形不成轴对称.友情提示:画轴对称图形也可利用计算机中的几何画板进行画图.其画法也有如下五个步骤:一、开:打开几何画板;二、画:利用自定义工具或直尺工具画出原图形;如:原图形为等腰三角形,则单击自定义工具按钮,在下拉菜单中指向三角形工具,在其子菜单中单击等腰三角形,然后在工作区画出等腰三角形;图1PN MlB 1C 1A 1C BA图2PN MC 1B 1A 1lCB A三、定:利用直尺工具在工作区适当位置确定出对称轴;四、标:利用变换菜单下的标记镜面命令将对称轴标注成镜面,或双击对称轴;五、射:利用箭头工具将原图形和对称轴选定,然后选择变换菜单中的反射命令,则原图形的轴对称图形就展现在你的眼前.展示你的才能:以直线AB 为对称轴,分别用手和几何画板画出图2中的各图形的轴对称图形.图2(4)(3)(2)(1)BAB A甲参考答案:由图3(4)(3)(2)(1)BABA甲图3图4。