食工原理-第5章 传热(1)讲解
- 格式:ppt
- 大小:13.25 MB
- 文档页数:8
实验五 传热实验一、实验目的1、了解换热器的结构及用途2、学习换热器的操作方法3、了解传热系数的测定方法4、测定所给换热器的传热系数K5、学习应用传热学的概念和原理去分析和强化传热过程,并实验之二、实验原理根据传热方程m t ∆=KA Q ,只要测得传热速率Q 、有关各温度和传热面积,即可算出传热系数K 。
在该实验中,利用加热空气和自来水通过列管式换热器来测定K ,只要测出空气的进出口温度、自来水进出口温度以及水和空气的流量即可。
在工作过程中如不考虑热量损失,则加热空气放出的热量Q 1与自来水得到的热量Q 2应相等,但实际上因热损失的存在,次两热量不相等,因此实验中以Q 2为准。
三、实验流程及设备本实验装置由列管换热器、风机、空气电加热器、管路、转子流量计、温度计等组成。
空气走管程,水走壳程。
列管式换热器的传热面积由管径、管数和管长进行计算。
四、实验步骤及操作要领1、熟悉设备流程,掌握各阀门、转子流量计和温度计的作用2、在实验开始时,先开水路,再开气路,最后再开加热器3、控制所需的气体和水的流量4、待系统稳定后,记录水的流量、进出口温度,记录空气的流量和进出口温度,记录设备的有关参数,重复一次5、保持空气的流量不变,改变自来水的流量,重复第四步6、保持第四步水的流量,改变空气的流量,重复第四步7、实验结束后,关闭加热器、风机和自来水阀门五、实验数据记录和整理1、设备参数及有关常数:列管换热器的管数:n= 根 管长:l= m 空气温度: ℃ 大气压: MPa 转子材料: 换热流型: 逆流 换热面积: 0.4 m 22、实验数据记录表序号风机出口压强KPa 空气流量读数m 3/h 空气进口温度℃ 空气出口温度℃ 水流量L/h 水进口温度℃ 水出口温度℃ 1 14 16 117.8 30.2 120 20.2 22.3 2 14 16 115.0 30.1 120 20.2 22.3 1 14 16 115.0 29.6 80 20.4 22.9 2 14 16 114.5 30.6 80 20.4 23.2 1 14 16 110.7 32.9 40 20.4 25.9 2 14 16 116.0 33.3 40 20.4 25.9 1 14 11 111.0 32.0 40 20.4 24.6 2 14 11 115.0 31.5 40 20.4 24.4 114 6 113.0 30.2 40 20.4 22.9 2146115.729.54020.422.73、数据处理表 以序号①为例:水:水质量流量为s /kg 033.0360011203600V Wc =⨯=⨯=ρ水的平均温度为25.2123.222.202t t t 21=+=+=水的传热速率为06.291)2.203.22(4200033.0)t -t (12=-⨯⨯==PC C C W Q J/s 查表得:0.98tϕ=,对数平均温差89.372.202.303.228.117ln)2.202.30()3.228.117(t t ln t -t t 2121m=-----=∆∆∆∆=∆m t 0.98=,m m t t *37.89*0.9837.13t ∆=ϕ==所以水的m 21t ()pc pc K A W C t t ∆=-21m()0.033420019.60t 0.437.13pc pc W C t t K A -⨯⨯(22.3-20.2)===∆⨯传热系数为K W/m 5.34620.2-.3224.006.291)t -t (222===)(A Q K由热平衡可得)1221()-(t t C W T T C W Q cp c ph h -==故可得空气的传热系数为2112()0.03342007.62()0.4pc pc W C t t K A T T -⨯⨯(22.3-20.2)===-⨯(117.8-22.3)水W/m 2K则传热系数K 的平均值为219.607.6213.61W /m K 22K K K ++===水空序号空气流量10-3m 3/s 水流量kg/s 水的算术平均温度水的比热J/kg 传热速率J/s 对数平均温差换热面积m 2传热系数K W/m 2KK 的平均值W/m 2K1 4.44 0.033 21.25 4200 291.06 37.13 0.4 19.60 13.952 4.44 0.033 21.25 4200 291.06 36.28 0.4 20.06 14.31 1 4.44 0.022 21.65 4200 231.00 35.27 0.4 16.37 11.57 2 4.44 0.022 21.80 4200 258.72 36.26 0.4 17.84 12.77 1 4.44 0.011 23.15 4200 254.10 37.00 0.4 17.17 12.67 2 4.44 0.011 23.15 4200 254.10 38.93 0.4 16.32 12.00 1 3.06 0.011 22.50 4200 194.04 36.51 0.4 13.29 9.71 2 3.06 0.011 22.40 4200 184.80 37.11 0.4 12.45 8.99 1 1.67 0.011 21.65 4200 115.50 35.48 0.4 8.14 5.81 21.670.01121.554200106.2635.38 0.47.515.30六、实验结果及讨论1.求出换热器在不同操作条件下的传热系数 答:见上解答。
食品工程原理复习第一章 流体力学基础1.单元操作与三传理论的概念及关系。
不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉碎、乳化萃取、吸附、干燥 等。
这些基本的物理过程称为 单元操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。
凡是遵循流体流动基本规律的单元操作,均可用动量传递的理论去研究。
热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。
凡是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。
质量传递 : 两相间物质的传递过程即为质量传递。
凡是遵循传质基本规律的单元操作,均可用质量传递的理论去研究。
单元操作与三传的关系“三传理论”是单元操作的理论基础,单元操作是“三传理论”的具体应用。
同时,“三传理论”和单元操作也是食品工程技术的理论和实践基础2.粘度的概念及牛顿内摩擦(粘性)定律。
牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。
μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈大。
所以称为粘滞系数或动力粘度,简称为粘度3.理想流体的概念及意义。
理想流体的粘度为零,不存在内摩擦力。
理想流体的假设,为工程研究带来方便。
4.热力体系:指某一由周围边界所限定的空间内的所有物质。
边界可以是真实的,也可以是虚拟的。
边界所限定空间的外部称为外界。
5.稳定流动:各截面上流体的有关参数(如流速、物性、压强)仅随位置而变化,不随时间而变。
6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。
7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。
8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。
1、传热的基本方式热传导:物体各部分之间不发生相对位移对流:流体各部分之间发生相对位移,热对流仅发生在流体中自然对流:流体各处的温度不同而引起强制对流:外力所导致的对流,在同一流体中有也许同时发生自然对流和强制对流。
辐射:因热的因素而产生的电磁波在空间的传递,称为热辐射。
不需要任何介质。
绝对零度以上都能发射辐射能2、稳态传热:传热系统中,温度分布不随时间而改变。
3、热流量(热流率):传过一个传热面的热量Q与传热时间之比。
定义式:热流密度(热通量):热流量与传热面积A之比。
4、热互换:两个温度不同的物体由于传热,进行热量的互换,称为热互换,简称换热a.无相变,b.相变,5、温度场:某一瞬间空间中各点的温度分布,称为温度场6、一维温度场:若温度场中温度只沿着一个坐标方向变化。
7、稳定温度场:若温度不随时间而改变。
8、等温面:温度场中同一时刻相同温度各点组成的面。
等温面的特点:(1)等温面不能相交;(2)沿等温面无热量传递。
沿等温面将无热量传递,而沿和等温面相交的任何方向,因温度发生变化则有热量的传递。
温度梯度是向量,其方向垂直于等温面,并以温度增长的方向为正。
9、傅立叶定律:单位时间内传导的热量与温度梯度及垂直于热流方向的截面积成正比,即导热系数表征物质导热能力的大小,是物质的物理性质之一10、金属的导热率最大,固体非金属次之,液体较小,气体最小。
物质的热导率均随温度变化而变化11、圆筒壁与平壁不同点是其等温面随半径而变化。
圆筒的长度为L,则半径为r处的传热面积为A=2πrL。
12、对于圆筒壁的稳定热传导,通过各层的热传导的热流量都是相同的,但是热通量(热流密度)却不相等。
13、热量的传递重要研究冷热流体通过管路器壁传递的过程。
14、不同区域的传热特性:1. 湍流主体对流传热温度分布均匀2. 层流底层热传导温度梯度大3. 壁面热传导有温度梯度传热的热阻即重要集中在层流层中。
15、α代替λ/δtα反映对流传热的快慢,其越大,表达对流传热速率越快。
第五章习题解答1. 什么样的溶液适合进行蒸发?答:在蒸发操作中被蒸发的溶液可以是水溶液,也可以是其他溶剂的溶液。
只要是在蒸发过程中溶质不发生汽化的溶液都可以。
2. 什么叫蒸发?为什么蒸发通常在沸点下进行?答:使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发。
在蒸发操作过程中物料通常处于相变状态,故蒸发通常在沸点下进行。
3. 什么叫真空蒸发?有何特点?答:真空蒸发又称减压蒸发,是在低于大气压力下进行蒸发操作的蒸发处理方法。
将二次蒸汽经过冷凝器后排出,这时蒸发器内的二次蒸汽即可形成负压。
操作时为密闭设备,生产效率高,操作条件好。
真空蒸发的特点在于:①操作压力降低使溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源;②对相同压强的加热蒸汽而言,溶液的沸点随所处的压强减小而降低,可以提高传热总温度差;但与此同时,溶液的浓度加大,使总传热系数下降;③真空蒸发系统要求有造成减压的装置,使系统的投资费和操作费提高。
4. 与传热过程相比,蒸发过程有哪些特点?答:①传热性质为壁面两侧流体均有相变的恒温传热过程。
②有些溶液在蒸发过程中有晶体析出、易结垢或产生泡沫、高温下易分解或聚合;溶液的浓度在蒸发过程中逐渐增大、腐蚀性逐渐增强。
二次蒸汽易挟带泡沫。
③在相同的操作压强下,溶液的沸点要比纯溶剂的沸点高,且一般随浓度的增大而升高,从而造成有效传热温差减小。
④减少加热蒸汽的使用量及再利用二次蒸汽的冷凝热、冷凝水的显热是蒸发操作过程中应考虑的节能问题。
5. 单效蒸发中,蒸发水量、生蒸气用量如何计算?答:蒸发器单位时间内从溶液中蒸发出的水分质量,可用热负荷来表示。
也可作物料衡算求得。
在蒸发操作中,加热蒸汽冷凝所放出的热量消耗于将溶液加热至沸点、将水分蒸发成蒸汽及向周围散失的热量。
蒸汽的消耗量可通过热量衡算来确定。
6. 何谓温度差损失?温度差损失有几种?答:溶液的沸点温度t往往高于二次蒸汽的温度T’,将溶液的沸点温度t与二次蒸汽的温度T'之间的差值,称为温度差损失。