1.3 解直角三角形(3)
- 格式:ppt
- 大小:2.06 MB
- 文档页数:17
1.3 解直角三角形同步练习一、单选题1、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=,则下列结论中正确的个数为()①DE=3cm;②EB=1cm;③S菱形ABCD=15cm2A、3个B、2个C、1个D、0个2、如图,在菱形ABCD中,∠ABC=60°,AC=4,则BD的长为()A、2B、4C、8D、83、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A、mB、4 mC、mD、8 m4、如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值()A、B、2C、D、5、如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A、B、C、D、6、在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是A、B、C、D、7、某水坝的坡度i=1:,坡长AB=20米,则坝的高度为( )A、10米B、20米C、40米D、20米8、一斜坡长为米,高度为1米,那么坡比为()A、1:3B、1:C、1:D、1:9、如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b的值为 ( )A、3B、C、D、10、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB 上的一动点,则PA+PC的最小值为A、B、C、D、211、在△ABC中,∠A,∠B均为锐角,且sinA=, cosB=, AC=40,则△ABC的面积是()A、800B、800C、400D、40012、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A、3B、4C、5D、613、小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A、B、C、D、14、一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A、75cm2B、(25+25)cm2C、(25+)cm2D、(25+)cm215、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、3二、填空题16、在Rt△ABC中,∠A=90°,AB=2,若sinC=,则BC的长度为________17、已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.18、如图,在平行四边形ABCD中,AD=5cm, AP=8cm, AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP =________19、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,则CD=________20、如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=________.三、解答题21、如图,矩形ABCD的对角线AC.BD相交于点O ,过点O作OE⊥AC交AD于E ,若AB=6,AD=8,求sin∠OEA的值.22、如图的斜边AB=5,cosA=(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法、证明);(2)若直线与AB,AC分别相交于D,E两点,求DE的长23、如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB ,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3 .若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)24、如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.(1)求cos∠ADE的值;(2)当DE=DC时,求AD的长.25、如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到y轴距离相等时,求点E坐标. (3)当的面积为时,求的值.答案部分一、单选题1、【答案】A2、【答案】B3、【答案】B4、【答案】B5、【答案】A6、【答案】C7、【答案】A8、【答案】A 9、【答案】C 10、【答案】B 11、【答案】D 12、【答案】B 13、【答案】A 14、【答案】C 15、【答案】B二、填空题16、【答案】10 17、【答案】18、【答案】19、【答案】20、【答案】三、解答题21、【答案】解:连接EC ,∵四边形ABCD为矩形,∴OA=OC ,∠ABC=90°,利用勾股定理得:AC= =10,即OA=5,∵OE⊥AC ,∴AE=CE ,在Rt△EDC中,设EC=AE=x ,则有ED=AD-AE=8-x , DC=AB=6,根据勾股定理得:x2=(8-x)2+62,解得:x= ,∴AE= ,在Rt△AOE中,sin∠OEA= .22、【答案】解:(1)作图(2)因为直线垂直平分线段AC,所以CE=AE,又因为BC AC,所以DE//BC,所以DE=BC.因为在中,AB=5,cosA=,所以AC=ABcosA=,BC=4得DE=2.23、【答案】解:需要拆除,理由为:∵CB⊥AB ,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i= :3,即∠CDB=30°,∴DC=2BC=20米,BD= 米,∴AD=BD-AB=(10 -10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.24、【答案】解:(1)∵DE⊥AB,∴∠DEA=90°,∴∠A+∠ADE=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠ADE=∠B,在Rt△ABC中,∵AC=12,BC=5,∴AB=13,∴,∴;(2)由(1)得,设AD为x,则,∵AC=AD+CD=12,∴,解得,∴.25、【答案】解:(1)令y=0,则有-x2+2x+8=0. 解得:x1=-2,x2=4∴OA=2,OB=4.过点O作OG∥AC交BE于G∴△CEG∽△OGD∴∵DC=DO∴CE=0G∵OG∥AC∴△BOG∽△BAE∴∵OB=4,OA=2∴;(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,∴C(2,8)设AC所在直线解析式为:y=kx+b把 A 、C两点坐标代入求得k=2,b=4所以y=2x+4分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H由△AEF∽△ACH可求EF=,OF=, ∴E点坐标为(,)(3)连接OE∵D是OC的中点,∴S△OCE=2S△CED∵S△OCE:S△AOC=CE:CA=2:5∴S△CED:S△AOC=1:5.∴S△AOC=5S△CED=8∴∴CH=8。
浙教版数学九年级下册《1.3 解直角三角形》说课稿2一. 教材分析《1.3 解直角三角形》是浙教版数学九年级下册的第一章第三节内容。
这一节主要让学生掌握解直角三角形的方法,包括正弦、余弦、正切函数的定义及应用,以及直角三角形的边角关系。
这部分内容是初等数学的重要基础,也是中学数学的难点之一。
教材通过具体的例题和练习题,引导学生理解和掌握解直角三角形的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,包括代数、几何等。
他们对直角三角形有一定的了解,知道直角三角形的三个内角和为180度,但可能对正弦、余弦、正切函数的定义及应用还不够清楚。
因此,在教学过程中,我需要以学生已有的知识为基础,通过引导学生自主探究和合作交流,帮助他们理解和掌握解直角三角形的方法。
三. 说教学目标1.知识与技能目标:使学生理解和掌握解直角三角形的方法,包括正弦、余弦、正切函数的定义及应用,以及直角三角形的边角关系。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生解决问题的能力和合作交流能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 说教学重难点1.教学重点:解直角三角形的方法,正弦、余弦、正切函数的定义及应用。
2.教学难点:正弦、余弦、正切函数在解直角三角形中的应用,尤其是对复杂三角形的理解和计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究和理解解直角三角形的方法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,为学生提供丰富的学习资源和方法。
六. 说教学过程1.导入新课:通过一个实际问题,引出解直角三角形的重要性,激发学生的学习兴趣。
2.自主探究:让学生独立思考,尝试解决实际问题,引导学生发现解直角三角形的规律。
3.合作交流:学生进行小组讨论,分享各自的解题方法和思路,培养学生的合作交流能力。
九数下册第1章解直⾓三⾓形1.3解直⾓三⾓形作业设计(含解析浙教版)九数下册第1章解直⾓三⾓形1.3解直⾓三⾓形作业设计(含解析浙教版)九年级数学下册第1章解直⾓三⾓形1.3解直⾓三⾓形作业设计(含解析浙教版)1.3解直⾓三⾓形⼀、选择题1.cos30°的值是()A. √2/2B. √3/3C. 1/2D. √3/22.已知在Rt△ABC中,∠C=90°,AB=7,BC=5,那么下列式⼦中正确的是()A. “sin” A=5/7B. “cos” A=5/7C. “tan” A=5/7D. “cot” A=5/73.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A. 7sin35°B. 7cos35°C. 7tan35°D. 7/(cos35°)4.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直⾓边BC的长是()A. msin35°B. mcos35°C. m/(sin35°)D. m/(cos35°)5.如图,在菱形ABCD中,DE⊥AB,cosA= 3/5,AE=6,则tan∠BDE的值是( )A. 4/3B. 3/4C. 1/2D. 2:16.在Rt△ABC中,∠C=90°,a=1,b= √3,则∠A=()A. 30°B. 45°C. 60°D. 90°7.如图,在平地上种植树⽊时,要求株距(相邻两树间的⽔平距离)为4m.如果在坡度为0.75的⼭坡上种树,也要求株距为4m,那么相邻两树间的坡⾯距离为()A. 5mB. 6mC. 7mD. 8m8.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()9.如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB= 3/5,BD 简:√((sinα-1) )+sinα=________ .13.计算:√12﹣2tan60°+(√﹣1)0﹣(1/3)﹣1=________.14.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式⼦:①a=c?sinB,②a=c?cosB,③a=c?tanB,④a= c/tanB,必定成⽴的是________.15.如图,若点A的坐标为(1,√3),则sin∠1=________.16.如图,甲、⼄两渔船同时从港⼝O出发外出捕鱼,⼄沿南偏东30°⽅向以每⼩时10海⾥的速度航⾏,甲沿南偏西75°⽅向以每⼩时10 √2海⾥的速度航⾏,当航⾏1⼩时后,甲在A处发现⾃⼰的渔具掉在⼄船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°⽅向追赶⼄船,正好在B处追上.则甲船追赶⼄船的速度为________海17.轮船从B处以每⼩时50海⾥的速度沿南偏东30°⽅向匀速航⾏,在B处观测灯塔A位于南偏东75°⽅向上,轮船航⾏半⼩时到达C处,在观测灯塔A北偏东60°⽅向上,则C处与灯塔A的距离是________ 海⾥.18.如图,从⼀运输船的点A处观测海岸上⾼为41m的灯塔BC(观测点A与灯塔底部C在⼀个⽔平⾯上),测得灯塔顶部B的仰⾓为35°,则点A到灯塔BC的距离约为________(精确到1cm).19.如图所⽰,在斜坡的顶部有⼀铁塔AB,B是CD的中点,CD是⽔平的,在阳光的照射下,塔影DE留在坡⾯上.已知铁塔底座宽CD=12⽶,塔影长DE=18⽶,在平地上,影⼦也在平地上,两⼈的影长分别为2⽶和1⽶,那么塔⾼AB为________⽶。
1.3解直角三角形第1课时解直角三角形【基础练习】知识点已知一边一角或两边解直角三角形,BC=6,则AB的长为()1.在Rt△ABC中,△C=90°,sin A=35A.4B.6C.8D.102.如图1,在Rt△ABC中,△C=90°,△B=30°,AB=8,则BC的长为()图1A.4√3B.4C.8√3D.4√333.在Rt△ABC中,已知△C=90°,△A=40°,BC=3,则AC等于()A.3sin40°B.3sin50°C.3tan40°D.3tan50°4.在Rt△ABC中,△C=90°,a,b,c分别为△A,△B,△C的对边,c=10,△A=45°,则a=,b=,△B=°.5.在Rt△ABC中,△C=90°,a,b,c分别为△A,△B,△C的对边,a=6,b=2√3,则△B的度数为.6.如图2,在Rt△ABC中,△C=90°,△B=37°,BC=32,则AC的长约为.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图27.如图3所示,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是米(假设夏至的正午时刻阳光与地平面的夹角为60°).图38.如图4,在Rt△ABC 中,△C=90°,a ,b ,c 分别为△A ,△B ,△C 的对边,由下列条件解直角三角形. (1)△A=60°,b=4; (2)a=13,c=√23;(3)c=2√2,△B=30°;(4)a=8,sin B=√22.图49.如图5,在△ABC 中,△ABC=90°,△A=30°,D 是边AB 上一点,△BDC=45°,AD=4,求BC 的长.(结果保留根号)图5【能力提升】10.某简易房的示意图如图6所示,它是一个轴对称图形,则AC的长为()图6A.511sinα米B.511cosα米C.115sinα米D.115cosα米11.等腰三角形的腰长为2√3,底边长为6,则底角等于()A.30°B.45°C.60°D.120°12.[2019·杭州]如图7,一块矩形木板ABCD斜靠在墙边(OC△OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,△BCO=x,则点A到OC的距离等于()图7A.a sin x+b sin xB.a cos x+b cos xC.a sin x+b cos xD.a cos x+b sin x13.如图8,已知在Rt△ABC中,△ABC=90°,点D沿BC边从点B向点C运动(点D与点B,C不重合),作BE△AD于点E,CF△AD,交AD的延长线于点F,则在点D运动的过程中,BE+CF的值()图8A.不变B.逐渐增大C.逐渐减小D.先增大后减小14.如图9,小明将一张矩形纸片ABCD沿CE折叠,点B恰好落在AD边上,设此点为F.若AB∶BC=4∶5,则tan△ECB的值为.图915.在学习《解直角三角形》一章时,小明同学对一个角的倍角的三角函数值是否具有关系产生了浓厚的兴趣,进行了一些研究.(1)初步尝试:我们知道:tan60°=,tan30°=,发现结论:tan A2tan A2(填“=”或“≠”).(2)实践探究:如图10△,在Rt△ABC中,△C=90°,AC=2,BC=1,求tan A2的值.小明想构造包含12△A的直角三角形:延长CA至点D,使得DA=AB,连结BD,可得到△D=12△BAC,即转化为求△D的正切值.请按小明的思路进行余下的求解.(3)拓展延伸:如图△,在Rt△ABC中,△C=90°,AC=3,tan A=13.△tan2A=;△求tan3A的值.图10答案1.D2.D3.D4.5√2 5√2 455.30° [解析] ∵tan B=ba ,b=2√3,a=6, ∴tan B=2√36=√33,∴∠B=30°. 6.24 [解析] 因为在Rt △ABC 中,∠C=90°, 所以tan B=ACBC ,即tan37°=AC32, 所以AC=32·tan37°≈32×0.75=24. 7.√38.解:(1)∵∠A=60°,∠C=90°,∴∠B=30°. ∵b=4,cos A=bc,∴4c=12,解得c=8,∴a=√82-42=4√3.(2)∵a=13,c=√23,∴b=√c 2-a 2=13. ∵sin A=a c =13÷√23=√22, ∴∠A=45°,∴∠B=45°. (3)∵∠B=30°,c=2√2,sin B=bc , ∴12=2√2,∠A=60°,∴b=√2,∴a=√c 2-b 2=√(2√2)2-(√2)2=√6. (4)∵sin B=√22,∴∠B=45°, ∴∠A=45°,∴b=a=8, ∴c=√a 2+b 2=8√2.9.解:∵∠ABC=90°,∠BDC=45°, ∴BD=BC.∵∠ABC=90°,∠A=30°, ∴AB=√3BC ,∴AD+BD=√3BC ,即AD+BC=√3BC. 又∵AD=4,∴4+BC=√3BC , 解得BC=2√3+2.10.D [解析] 如图,过点A 作AH ⊥BC 于点H.由题意,得AB=AC ,BC=4+0.2+0.2=4.4(米). ∵AH ⊥BC , ∴BH=CH=2.2米. 在Rt △ABH 中,cos α=BH AB,∴AB=BHcosα=2.2cosα=115cosα(米),即AC=115cosα米. 故选D . 11.A [解析] 如图所示,在△ABC 中,AB=AC=2√3,BC=6,过点A 作AD ⊥BC 于点D , 则BD=12BC=12×6=3.在Rt △ABD 中,cos B=BDAB =2√3=√32,∴∠B=30°.故选A .12.D [解析] 如图,过点A 分别作AE ⊥OC 于点E ,AF ⊥OB 于点F .∵四边形ABCD 是矩形, ∴∠ABC=90°.∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x,∴∠FBA=x.∵AB=a,AD=b,∴AE=FO=FB+BO=a cos x+b sin x.故选D.13.C[解析] ∵BE⊥AD,CF⊥AD,∴CF∥BE,∴∠DCF=∠DBE.设∠DCF=∠DBE=α,则CF=CD·cosα,BE=DB·cosα,∴BE+CF=(DB+CD)cosα=BC·cosα.∵∠ABC=90°,∴0°<α<90°,当点D从点B向点C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC·cosα的值是逐渐减小的.故选C.14.12[解析] 设AB=4k,则BC=5k.在△DFC中,FC=BC=5k,CD=AB=4k,∴DF=3k,∴AF=2k.由折叠的性质可知∠CFE=∠B=90°,∴∠CFD+∠AFE=90°.又∵∠CFD+∠DCF=90°,∴∠AFE=∠DCF.又∵∠D=∠A=90°,∴△DFC∽△AEF,∴DFAE =FCEF,即3kAE=5k4k-AE,解得AE=1.5k,∴BE=2.5k,∴tan∠ECB=2.5k5k =1 2 .15.解:(1)√3√33≠(2)在Rt△ABC中,∵∠C=90°,AC=2,BC=1,∴AB=√AC 2+BC 2=√5. ∵DA=AB ,∴∠D=∠ABD ,CD=DA+AC=√5+2, ∴∠BAC=2∠D , ∴tan A2=tan D=BCCD =√5+2=√5-2.(3)①34 [解析] 如图ⓐ,作AB 的垂直平分线交AC 于点E ,连结BE ,则AE=BE ,∠A=∠ABE ,∴∠BEC=2∠A. ∵在Rt △ABC 中,∠C=90°,AC=3,tan A=13, ∴BC=1,则AB=√AC 2+BC 2=√10. 设AE=x ,则BE=x ,EC=3-x.在Rt △EBC 中,由勾股定理,得BE 2=EC 2+BC 2,即x 2=(3-x )2+1, 解得x=53,即AE=BE=53,∴EC=43,∴tan2A=tan ∠BEC=BC EC=34.故答案为34.②如图ⓑ,作AB 的垂直平分线交AC 于点E ,连结CE ,作BM 交AC 于点M , 使∠MBE=∠ABE ,则∠BMC=∠A+∠MBA=3∠A. 设EM=y ,则CM=EC -EM=43-y. ∵∠MBE=∠ABE ,∠A=∠ABE ,∴∠A=∠MBE ,∠ABM=2∠A=∠BEC , ∴△ABM ∽△BEM , ∴AB BE =BM EM,即√1053=BM y,∴BM=3√105y. 在Rt △MBC 中,BM 2=CM 2+BC 2, 即3√105y 2=43-y 2+1,整理得117y 2+120y -125=0, 解得y 1=2539,y 2=-53(不合题意,舍去), 即EM=2539,则CM=43-2539=913,∴tan3A=tan ∠BMC=BCCM=1913=139.。