粉煤灰相关知识
- 格式:doc
- 大小:37.00 KB
- 文档页数:20
粉煤灰的标准粉煤灰是一种重要的工业原料,在建筑材料、混凝土、道路基础等领域有着广泛的应用。
为了保证粉煤灰的质量,制定了一系列的标准来规范其生产和使用。
本文将介绍粉煤灰的相关标准,以便广大用户更好地了解和应用粉煤灰。
一、粉煤灰的分类。
根据粉煤灰的来源和性质,可以将其分为Ⅰ类粉煤灰和Ⅱ类粉煤灰。
Ⅰ类粉煤灰是指燃煤电厂的烟气中分离出的细颗粒物,主要成分是氧化硅、氧化铝和氧化铁等;Ⅱ类粉煤灰是指煤粉燃烧后产生的灰渣,主要成分是氧化钙、氧化镁和氧化硅等。
根据不同的用途和要求,可以选择不同类型的粉煤灰。
二、粉煤灰的化学成分。
粉煤灰的化学成分是评价其质量的重要指标之一。
根据相关标准,粉煤灰的化学成分应符合以下要求,硅酸含量不低于45%,氧化铝含量不低于4%,氧化铁含量不低于4%,钙含量不高于25%,镁含量不高于5%。
此外,还应检测粉煤灰中的无机杂质含量,确保其符合国家标准的要求。
三、粉煤灰的物理性能。
除了化学成分外,粉煤灰的物理性能也是评价其质量的重要指标。
物理性能包括粒度、比表面积、密度等参数。
根据相关标准,粉煤灰的平均粒度应控制在20-30μm之间,比表面积应大于300m²/kg,密度应在2.2-2.8g/cm³之间。
这些参数的合理控制,可以保证粉煤灰在混凝土、水泥等材料中的稳定性和可操作性。
四、粉煤灰的质量控制。
为了保证粉煤灰的质量稳定,需要在生产过程中进行严格的质量控制。
生产企业应建立健全的质量管理体系,对原材料、生产工艺、成品进行全面监控和检测。
此外,还应定期对粉煤灰进行抽样送检,确保其符合相关标准的要求。
只有通过严格的质量控制,才能生产出高质量的粉煤灰产品。
五、粉煤灰的应用。
粉煤灰作为一种优质的工业原料,具有广泛的应用前景。
在建筑材料领域,可以用粉煤灰替代水泥,制备高性能混凝土;在道路基础工程中,可以用粉煤灰改良土壤,提高土壤的承载能力;在环保领域,可以利用粉煤灰进行资源化利用,减少固体废弃物的排放。
粉煤灰基础知识——粉煤灰的应用粉煤灰是一种火山灰质材料,来源于煤中无机组分,而煤中无机组分以粘土矿物为主,因此粉煤灰化学成份以二氧化硅和三氧化二铝为主(氧化硅含量在48%左右,氧化铝含量在27%左右)。
粉煤灰同时以玻璃质微珠为主,其次为结晶相,粉煤灰玻璃质微珠及多孔体均以玻璃体为主,玻璃体含量为50%~80%,玻璃体在高温煅烧中储存了较高的化学内能,是粉煤灰活性的来源目前综合利用普通粉煤灰的技术和方法根据其所依托的技术和层次,可将其大致地划分为三大类:一、低技术利用1、用于道路工程:路基回填、高速公路路堤,路面基层混合材(二灰土),粉煤灰修筑水库大坝等。
2、回填:处理地表塌陷坑或回填矿井,加极少量水泥(石灰)作建筑物基础的回填,小坝和码头等的填筑等。
3、农业应用:改良土壤,制作磁化肥,微生物复合肥,农药等;低洼地填高复土造田;改良酸性、粘性土壤。
4、人工景观。
二、中技术利用1、作为掺合料(矿物外加剂)用于混凝土:粉煤灰可作为掺合材料加入混凝土,可提高混凝土的抗拉、抗弯强度和抗渗性、耐磨性、抗冲击性等。
在实际施工中,由于粉煤灰的滚珠效应,掺粉煤灰的混凝土有较大的有效振捣半径,易于振捣密实。
2、作为混合材用于水泥生产:按我国水泥标准GB1344-1999规定,粉煤灰可按质量百分比30%掺入水泥熟料。
用粉煤灰、矿渣做混合材,不但能降低混凝土水化热,若以超细粉加入,还能大大提高水泥强度,其水泥产品具有水化热低、抗硫酸盐和软水侵蚀、抗冻等性能用于水泥生产或。
3、作为水泥熟料的原料:利用粉煤灰的化学组成,加入适当校正材料(如风积沙),可生产出与水泥生料相当性质的原料。
4、砂浆掺合料:取代部分水泥和黄沙,可获得显著的经济效益。
5、建材制品方面的应用:硅酸盐承重砌块和小型空心砌块,加气混凝土砌块及板,烧结陶粒,烧结砖,蒸压砖,蒸养砖,高强度双免浸泡砖,双免砖,钙硅板等。
各种砌块、砖、轻质骨料、陶粒等。
三、高技术利用1、粉煤灰硅铝铁合金冶炼:在高温下用碳将粉煤灰中的SO2,Al2 O3,Fe2O3等氧化物的氧脱去,并除去杂质制成硅、铝、铁三元合金或硅、铝、铁、钡四元合金,作为热法炼镁的还原剂和炼钢的脱氧剂,这样粉煤灰利用率高,成本低,市场大,可显著提高金属镁的纯度和钢的质量。
粉煤灰的规格
粉煤灰是燃烧煤炭过程中产生的固体废弃物,也是建筑材料和混凝土生产中广泛使用的一种材料。
在使用粉煤灰之前,我们需要先了解粉煤灰的规格。
第一步:了解粉煤灰的类别
根据生产过程的不同,粉煤灰可以分为A级和B级两类。
其中A 级粉煤灰是在电厂中直接收集而来的,具有高品质、粒度小、活性高等特点,是目前使用较广泛的一种粉煤灰。
B级粉煤灰则是在烟气中捕集的,品质较差,但价格更为实惠。
第二步:确定粉煤灰的物理性质
粉煤灰的物理性质包括颜色、粒径、密度和比表面积等。
颜色一般为淡灰色,粒径则需要根据具体使用要求进行选择,一般为5-25微米。
密度不宜过高,以2.2-2.6g/cm³为宜。
比表面积则通常为200-500m²/kg。
第三步:检查粉煤灰的化学成分
粉煤灰的化学成分包括SiO2、Al2O3、Fe2O3、CaO、MgO、Na2O、K2O等。
其中,SiO2和Al2O3的含量较高,可以提高混凝土的强度和耐久性。
Fe2O3的含量过高会影响混凝土的颜色,而CaO和MgO的含量如果过高,则会影响混凝土的抗压强度。
第四步:确认粉煤灰的使用范围和数量
根据实际使用情况确定粉煤灰的使用范围和数量。
在混凝土生产中,一般粉煤灰的用量为水泥用量的10%-40%;在道路铺设中,一般为0.5%-2%。
同时需要注意的是,粉煤灰的使用应符合国家相关标准和规定。
通过以上步骤,我们可以了解到粉煤灰的规格,包括类别、物理性质、化学成分和使用范围等。
在实际使用中,需要提高对粉煤灰的认识和使用技术,以达到更好的效果。
粉煤灰被忽略的巨大作用(1) 基本特性粉煤灰又称烟灰,外观为灰白色的粉末,是以煤粉为燃料的火力发电厂排放的工业废料。
煤粉燃烧时刹下的不可燃杂质以及一部分未烧尽的碳作为废物被排放出来,此即粉煤灰。
在一些对颜色没有严格要求的建筑涂料产品,例如腻子、防水涂料和保温隔热涂料以及瓷砖胶粘剂中可以适当的使用一些粉煤灰,以降低产品成本,改善性能,并能够利用工业废料。
粉煤灰的化学成分主要是二氧化硅(SiO2)和三氧化二铝(Al2O3)以及少量的三氧化二铁(Fe203),氧化钙(Ca0),氧化镁(Mg0),气化钠(Na20),氧化钾(K20)和氧化硫(S03)等。
其中未燃烧的碳含量在3%-15%之间,碳含量越高,粉煤灰的品质越低。
粉煤灰的化学成分如表1所示表1 粉煤灰的化学成分和物理性能粉煤灰中含有大最的玻瑞体物质,颗粒很细,也有一些黏结在一起的粘连颗粒。
粉煤灰具有水硬性。
煤粉在燃烧过程中粉煤灰中的杂质发生了复杂的学反应,反应产物有偏高岭土(Al2O3·2Si02),游离二氧化硅和三氧化二铝。
这些物质如果用碱性物质来“激发”,则能够表现出水化硬化能力粉煤灰在水泥基材料中应用的最大性能优势在于其后期水化性能。
这既能够提高水泥基材料的强度,又能够改善水泥基材料中的矿物结构,提高抗冻融耐久性。
粉煤灰在水泥水化的后龄期,在氢氧化钙的激发作用下开始水化,由于这时水泥已经进行了充分的水化,在结构中存在着大量毛细孔隙(这也是为什么水泥多空,易渗水的原因),粉煤灰的水化产物能够堵塞结构中的这些毛细孔隙,提高水泥砂浆的密实性和抗渗性。
粉煤灰在水泥砂浆中的用量一般视要求和所达到的目的的不同8%~35%。
在粉状建筑涂料中应用则视产品、目的以及成本等因素的不同,有着更大的范围。
粉煤灰的水硬性能用活性指数h来表示,h按照下式计算h=Al2O3含量/烧失量h值越大,粉煤灰的活性就越高,即Al2O3含量越高,活性越高,烧失量越高(反应碳含量),活性越低。
电厂粉煤灰用途
粉煤灰,又称煤灰或炉渣,是燃煤电厂在煤燃烧过程中产生
的固体废弃物。
粉煤灰主要由煤炭中的无机成分组成,包括氧
化物、硅酸盐、氧化铁等。
粉煤灰具有许多重要的用途,可以对环境和经济产生积极的
影响。
以下是一些常见的粉煤灰用途:
1.水泥生产:粉煤灰是一种优质的水泥掺合料。
加入适量的
粉煤灰可以改善水泥的工作性能、增加耐久性和减少碳排放。
粉煤灰可以降低水泥的生产成本,同时减少原材料的消耗。
2.混凝土生产:粉煤灰可以替代一部分水泥用于混凝土生产,从而降低混凝土的成本。
粉煤灰可以提高混凝土的强度、耐久
性和抗裂性能。
3.填充材料:粉煤灰可以作为填充材料用于道路建设和土地
修复。
它可以填补坑洞、改善土壤结构,提高土壤肥力。
4.建筑材料:粉煤灰可以用于制备砖、瓦、砌块和石膏板等
建筑材料。
它可以改善材料的力学性能、降低成本,同时减少
对天然资源的依赖。
5.环境工程:粉煤灰可以用于污水处理、废水中重金属去除、土壤污染修复等环境工程中。
它可以吸附重金属离子,减少污
染物的迁移和转化。
6.能源利用:粉煤灰可以用于生产煤炭燃烧的副产品,如煤
灰砖、煤灰砖块、煤灰炉渣砖等。
这减少了对天然资源的消耗,同时降低了煤炭燃烧过程中产生的固体废弃物的排放。
总而言之,粉煤灰在许多领域中有重要的用途,可以减少资
源消耗和环境污染,同时促进可持续发展和循环经济。
电厂通
过合理利用粉煤灰,可以实现废弃物的资源化和经济效益的提升。
粉煤灰一.粉煤灰简介从煤燃烧后的烟气中收捕下来的细灰称为粉煤灰,粉煤灰是燃煤电厂排出的主要固体废物。
粉煤灰的主要来源是以煤粉为燃料的火电厂和城市集中供热锅炉,其中90%以上为湿排灰,活性较干灰低,且费水费电,污染环境,也不利于综合利用。
1.粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰分)大量混杂在高温烟气中。
这些不燃物因受到高温作用而部分熔融,同时由于其表面张力的作用,形成大量细小的球形颗粒。
在锅炉尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。
随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。
在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。
2.粉煤灰的外观特性粉煤灰外观类似水泥,颜色在乳白色到灰黑色之间变化。
粉煤灰的颜色是一项重要的质量指标,可以反映含碳量的多少和差异。
在一定程度上也可以反映粉煤灰的细度,颜色越深粉煤灰粒度越细,含碳量越高。
粉煤灰就有低钙粉煤灰和高钙粉煤灰之分。
通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。
粉煤灰颗粒呈多孔型蜂窝状组织,比表面积较大,具有较高的吸附活性,颗粒的粒径范围为0.5~300μm。
并且珠壁具有多孔结构,孔隙率高达50%—80%,有很强的吸水性。
3.粉煤灰的组成粉煤灰的化学组成我国火电厂粉煤灰的主要氧化物组成为:SiO2、Al2O3、FeO、Fe2O3、CaO、TiO2、MgO、K2O、Na2O、SO3、MnO2等,此外还有P2O5等。
其中氧化硅、氧化钛来自黏土,岩页;氧化铁主要来自黄铁矿;氧化镁和氧化钙来自与其相应的碳酸盐和硫酸盐。
粉煤灰的元素组成(质量分数)为:O 47.83%,Si 11.48%~31.14%,A1 6.40%~22.91%,Fe 1.90%~18.51%, Ca 0.30%~25.10%,K 0.22%~3.10%,Mg 0.05%~1.92%,Ti 0.40%~1.80%,S 0.03%~4.75%,Na 0.05%~1.40%,P 0.00%~0.90%,C1 0.00%~0.12%,其他0.50%~29.12%由于煤的灰量变化范围很广,而且这一变化不仅发生在来自世界各地或同一地区不同煤层的煤中,甚至也发生在同一煤矿不同的部分的煤中。
粉煤灰的成分
粉煤灰是一种工业废弃物,其主要成分是煤燃烧后产生的灰烬。
它在煤炭的燃烧过程中,随着煤炭中的杂质和矿物质一同被释放出来,经过燃烧后残留下来的灰烬。
根据其来源和性质不同,粉煤灰可以分为多种类型。
1. 烟煤粉煤灰
烟煤粉煤灰是烟煤在高温下燃烧后产生的灰烬,其主要成分是氧化铁、氧化钙、氧化硅等。
烟煤粉煤灰的颜色较深,具有较高的粘附性和活性,可用于制造水泥、混凝土、砖等建材产品。
2. 烟煤燃烧后的灰渣
烟煤燃烧后的灰渣是指烟煤在锅炉中燃烧后产生的灰烬,其成分主要是氧化铝、氧化钙、氧化硅等。
烟煤燃烧后的灰渣可以用于道路铺设、填埋场覆盖等。
3. 烟煤气化后的灰烬
烟煤气化后的灰烬是指烟煤在气化过程中生成的灰烬,其主要成分是氧化铝、氧化钙、氧化硅等。
烟煤气化后的灰烬可以用于制造水泥、砖等建材产品,也可以用于铺路、填埋场覆盖等。
4. 褐煤粉煤灰
褐煤粉煤灰是褐煤在高温下燃烧后产生的灰烬,其主要成分是氧化铝、氧化钙、氧化硅等。
褐煤粉煤灰的颜色较浅,具有较低的粘附性和活性,主要用于路基填充、覆盖材料等。
5. 煤泥粉煤灰
煤泥粉煤灰是指煤泥在高温下燃烧后产生的灰烬,其主要成分是氧化铁、氧化钙、氧化硅等。
煤泥粉煤灰具有较高的活性和粘附性,可用于制造水泥、混凝土、砖等建材产品。
粉煤灰的成分和特性决定了它在不同领域的应用。
粉煤灰不仅可以减轻环境污染,还可以为建材、道路、填埋场等领域提供便利。
但同时,粉煤灰中也含有一定量的重金属等有害物质,因此在应用过程中需要采取措施进行有效处理和管理。
粉煤灰相关知识一、粉煤灰是怎么产生的?1、什么是粉煤灰:粉煤灰是火力发电厂煤粉锅炉排除的一种工业废渣,从煤燃烧后的烟气中收捕下来的粉末称为粉煤灰。
粉煤灰是燃煤电厂排出的主要固体废物。
(粉煤灰也叫飞灰, 是由热电站烟囱收集的灰尘, 属于火山灰性质的混合材料, 其主要成分是硅、铝、铁、钙、镁的氧化物, 具有潜在的化学活性, 即粉煤灰单独与水拌合不具有水硬活性, 但在一定条件下, 能够与水反应生成类似于水泥凝胶体的胶凝物质, 并具有一定的强度 . 由于煤粉微细, 且在高温过程中形成玻璃珠, 因此粉煤灰颗粒多成球形。
)2、粉煤灰的产生过程(燃烧过程):煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰粉)大量混杂在高温烟气中。
这些不燃物因受到高温作用而部分熔融.同时由于其表面张力的作用,形成大量细小的球形颗粒。
在锅炉尾部引风机的抽气作用下,含有大量灰粉的烟气流向炉尾。
随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。
在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。
由煤粉中蒸发出来的水蒸汽及气体,一部分排放道大气中,一部分凝聚在飞灰的表面。
为了控制SO x 的污染,在烟道气排出之前,通入石灰石浆或石灰石粉,捕获烟道气中的SO x ,特别是含硫高的煤作为燃料时。
总的煤灰中的75 %~85 %变成飞灰,剩余部分则为底部灰及炉灰。
)中国以煤为主要能源,电力的76%是由煤炭产生的,每年用煤达4亿多吨,占全国原煤产量的1/3,粉煤灰是我国当前排量较大的工业废渣之一。
1997年全国排放粉煤灰已超过1亿吨,到2005年,年排灰量达到1.6亿吨,成为世界最大的排灰国,大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害,并占用了大量的土地。
因此粉煤灰的处理和利用问题引起人们广泛的注意。
二、粉煤灰的化学组成粉煤灰中硅含量最高,其次是铝,以复杂的复盐形式存在,酸溶性较差。
铁含量相对较低,以氧化物形式存在,酸溶性好。
此外还有未燃尽的炭粒、CaO和少量的MgO、Na2O、K2O、SO3等。
粉煤灰中的有害成分是未燃尽炭粒,其吸水性大,强度低,易风化,不利于粉煤灰的资源化。
粉煤灰中的SiO2、Al2O3对粉煤灰的火山灰性质贡献很大,Al2O3对降低粉煤灰的熔点有利,使其易于形成玻璃微珠,均为资源化的有益成分。
将粉煤灰应用于建筑工业,结合态的CaO含量愈高,能提高其自硬性,使其活性大大高于低钙粉煤灰,对提高混凝土的早期强度很有帮助。
我国电厂排放的粉煤灰90%以上为低钙粉煤灰,开发高钙粉煤灰不失为改善粉煤灰资源化特性的一条途径。
三、粉煤灰的颗粒组成按照粉煤灰颗粒形貌,可将粉煤灰颗粒分为:玻璃微珠;海绵状玻璃体(包括颗粒较小、较密实、孔隙小的玻璃体和颗粒较大、疏松多孔的玻璃体);炭粒。
我国电厂排放的粉煤灰中微珠含量不高,大部分是海绵状玻璃体,颗粒分布极不均匀。
通过研磨处理,破坏原有粉煤灰的形貌结构,使其成为粒度比较均匀的破碎多面体,提高其比表面积,从而提高其表面活性,改善其性能的差异性。
四、粉煤灰的品种根据燃煤电厂燃烧的煤种不同,排放收集的粉煤灰就有低钙粉煤灰和高钙粉煤灰之分.按照国标GB/T1596-2005(2005-01-19发布;2005-08-01实施,代替GB/T1596-1991)把粉煤灰分为F类和C类。
F类粉煤灰——由无烟煤或烟煤煅烧收集的粉煤灰;C类粉煤灰——由褐煤或次烟煤煅烧收集的粉煤灰,其氧化钙含量一般大于10%。
(上海市标准DBJ08—230—98<高钙粉煤灰混凝土应用技术规程>的规定,凡氧化钙含量大于8%或游离氧化钙含量大于1%的粉煤灰称为高钙粉煤灰)。
故一般情况下,高钙灰和低钙灰都是以测定粉煤灰中氧化钙含量或游离氧化钙含量的数值来区分的.通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。
五、我国粉煤灰的主要应用途径粉煤灰是一种放错地方的资源,粉煤灰可用作水泥、砂浆、混凝土的掺合料,并成为水泥、混凝土的组分,粉煤灰作为原料代替黏土生产水泥熟料的原料、制造烧结砖、蒸压加气混凝土、泡沫混凝土、空心砌砖、烧结或非烧结陶粒,铺筑道路;构筑坝体,建设港口,农田坑洼低地、煤矿塌陷区及矿井的回填;也可以从中分选漂珠、微珠、铁精粉、碳、铝等有用物质,其中漂珠、微珠可分别用作保温材料、耐火材料、塑料、橡胶填料。
目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主要有以下几类:1) 建材制品方面的应用此类用灰量约占粉煤灰利用总量的35%左右,主要技术有:粉煤灰水泥(掺量30%以上),代粘土做水泥原料,普通水泥(掺量30%以下),硅酸盐承重砌块和小型空心砌块,加气混凝土砌块及板,烧结陶粒,烧结砖,蒸压砖,蒸养砖,高强度双免浸泡砖,双免砖,钙硅板等。
2) 建设工程方面此项用灰量占利用总量的10%,主要技术有:粉煤灰用于大体积混凝士,泵送混凝土,高低标号混凝土,粉煤灰用于灌浆材料等。
3) 用于道路工程这部分用灰量占利用总量的20%,主要技术有:粉煤灰、石灰石砂稳定路面基层,粉煤灰沥青混凝土,粉煤灰用于护坡、护提工程和刚粉煤灰修筑水库大坝等。
4) 农业应用该部分用灰量占利用总量的15%,主要技术有:改良土壤,制作磁化肥,微生物复合肥,农药等。
5) 作为填筑材料填筑用灰量占利用总量的15%,主要有:粉煤灰综合回填,矿井回填,小坝和码头等的填筑等。
6) 从粉煤灰中提取矿物和高值利用这部分用灰量约占利用总量的5%,如:粉煤灰中提取微珠,碳,铁,铝,洗煤重介质,冶炼三元合金,高强轻质耐火砖和耐火泥浆,作为塑料,橡胶等的填充料,制作保温材料和涂料等。
其中国家政策要求的重点推广应用技术有:a.粉煤灰粘土烧结砖b.粉煤灰作筑路材料c.粉煤灰在工程中应用d.粉煤灰混凝土和砂浆材料e.粉煤灰生产水泥f.选取飘珠和飘珠制品g.粉煤灰加气混凝土h.粉煤灰改良土壤i.纯灰植树这些技术比较成熟,用灰量大,不仅便于推广使用,而且可以在近期内带来明显的经济效益和环境效益。
六、粉煤灰在水泥中的利用我国是利用工业废渣和天然火山灰资源做水泥混合材最早、使用量最多的国家。
解放前就有一些水泥厂利用矿渣做混合材生产矿渣硅酸盐水泥。
解放后经济建设急需大量水泥,使我国在利用矿渣作为水泥混合材方面发展迅速,特别是立窑工业的发展,利用矿渣等活性混合材改善水泥安定性已成为立窑生产水泥的重要途径。
水泥厂利用矿渣与活性混合材生产不同品种和标号的水泥,特别是近年来一些工厂还在水泥中掺入少量细磨石灰石,提高了水泥的强度。
水泥工业中节能利废发挥了明显的效益,取得显著成就。
七、粉煤灰在混泥土中的应用粉煤灰在混泥土中应用很广,粉煤灰混泥土是一种新型混泥土材料,相对于普通混泥土,由于部分粉煤灰替代水泥并在混泥土中加大矿物细掺合料的用量,其性能与普通混泥土有很大不同,使很多性能得到了改善。
(一)、用于混泥土中的粉煤灰国家标准:1、技术要求:项目技术要求(0.045㎜方孔筛筛余)一级二级三级细度不大于/% F类粉煤灰12.0 25.0 45.0C类粉煤灰-----------------------------------------------------------------------需水量比不大于/% F类粉煤灰95 105 115C类粉煤灰-----------------------------------------------------------------------烧失量不大于/% F类粉煤灰 5.0 8.0 15.0C类粉煤灰-----------------------------------------------------------------------含水量不大于/% F类粉煤灰 1.0C类粉煤灰------------------------------------------------------------------------三氧化硫不大于/% F类粉煤灰 3.0C类粉煤灰------------------------------------------------------------------------游离氧化钙不大于/% F类粉煤灰 1.0C类粉煤灰 4.0------------------------------------------------------------------------安定性雷氏夹沸煮后增加距离,不大于/㎜C类粉煤灰 5.0------------------------------------------------------------------------ 除以上技术要求外,还有以下三项:1)、放射性检验:合格。
2)、碱含量:粉煤灰中的碱含量按氧化钠与0.658倍氧化钾的和计算值表示,当粉煤灰用于活性骨料混泥土,要限制掺合料的碱含量时,由买卖双方协商确定。
3)均匀性:以细度(0.045㎜方孔筛筛余)为考核依据,单一样品的细度不应超过前10个样品细度平均值的最大偏差,最大偏差范围由买卖双方协商确定。
2、检验规则1)编号与取样:编号——以连续供应的200t相同等级、相同种类的粉煤灰为一编号。
不足200t安一个编号论,粉煤灰质量按干灰(含水量小于1%)的质量计算。
取样——每一编号为一个取样单位,当散装粉煤灰运输工具的容量超过该厂规定出厂编号吨数时,允许该编号的数量超过取样规定吨数。
取样方法——按GB12573进行,取样应有代表性,可连续取,也可从10个以上不同部位取等量样品,总量至少3㎏。
3、判定规则1)、混泥土和砂浆用粉煤灰,试验结果符合本标准要求时为等级品。
若其中任何一项不符合要求,允许在同一标号中重新加倍取样进行全部项目的复查,以复检结果判定,复检不合格可降级处理。
凡低于本标准最低级别要求的为不合格品。
4、仲裁当买卖双方对产品质量有争议时,买卖双方应将双方认可的样品签封,送省级或以上国家认可的质量监督检验机构进行仲裁检验。
5、标志和包装1)、标志袋装粉煤灰的包装上应标明产品名称(F类粉煤灰或C 类粉煤灰)、等级、分选或磨细、净含量、批号、执行标准号、生产厂名称和地址、包装日期。
散装粉煤灰应提交与袋装标志相同内容的卡片。
2)、包装粉煤灰可以袋装或散装。
袋装每袋净含量为25㎏或40㎏,每袋净含量不得少于标志质量的98%。
其他包装规格由买卖双方协商确定。
6、需水量比的试验方法及涵义:公式X=(L/125)×100X——需水量比,单位为百分数(%)L——试验胶砂流动度达到130㎜-140㎜时的加水量,单位为毫升(mL)125——对比胶砂的加水量,单位为毫升(mL)胶砂种类水泥/g 粉煤灰/g 标准砂/g 加水量/mL对比胶砂250 - 750 125试验胶砂175 75 750 按流动度达到130㎜-140㎜调整搅拌后的试验胶砂按GB/T2419测定流动度,当流动度在130㎜-140㎜范围内,记录此时的加水量;当流动度小于130㎜或大于140㎜时,重新调整加水量,直至流动度达到130㎜-140㎜为止。