物理实验研究性实验报告——钠黄光双线波长差的测量及其应用概要
- 格式:doc
- 大小:930.00 KB
- 文档页数:12
西安理工大学实验报告课程名称:普通物理实验专业班号:应物091 组别: 2姓名:赵汝双学号: 33实验名称:迈克尔孙干涉仪测量钠黄双线波长差实验目的1.进一步熟悉迈克耳孙干涉仪的调整方法2.利用等倾干涉条纹测定钠黄双线波长差仪器与用具迈克耳孙干涉仪、钠光源[原理]钠光灯的黄光包括两条波长相近的谱线:λ1 = nm, λ2 =利用迈克耳孙干涉仪可以测量其波长差成绩实验日期:2011年4月14日交报告日期:2011年4月21日报告退发:(订正、重做)教师审批签字:实验原理反射光束①和②的光程差为Δ=2d cos i;凡相同的入射角i,①和②有相同的光程差,从而对应干涉条纹图样中的同一条纹,故称等倾干涉;1.从S上一点沿同一圆锥面发射的光,是以相同倾角入射到镜面,因而经透镜或直接人眼观测,得到圆条纹.2.在λ1的某一级k0上,当光程差满足:L0=k0λ1=(k0+N) λ2其中N整数时,两组干涉条纹完全重叠,条纹很清晰;1.当光程差满足:L1=k1λ1=(k2+1/2) λ2两组条纹明暗叠加,条纹模糊;λ=)1.测量公式: (589.3nm其中:λ12为钠双线的平均波长,Δd 为出现相邻模糊场(或清晰场)M1 镜移动的距离. 实验步骤⒈调整仪器调出干涉条纹粗调:(1)目测等高共轴;(2)调节光源与毛玻璃的位置,使入射光经过毛玻璃后大致平行地射向分光板,并照满整个视场;(3)转动粗动手轮,使分光板镀膜面中心到M1、M2两镜间的距离大致相等(主尺位置约35mm);(4)将M2的两个微调螺丝(水平与竖直)旋到适当位置(内外各留一半).细调:(1)调节 M1,M2’平行,在分光板与毛玻璃之间水平与竖直地各放一枚大头针, 调节M1和M2’镜背后的三对小螺丝,直到针象完全重合;注意:三对小螺丝应对应调整,且松紧度适中;(2)将头上下左右稍稍摆动, 若有较大的视差,可通过M1镜的前后移动,使视差尽量小;针的像在两个方向上都重合了,一般即可看到干涉条纹.⒉圆条纹调节(1)条纹刚调出时,一般为很密的直线或圆弧,可调节三对小螺钉,使变圆。
钠双黄线的波长差实验报告
某科学研究院,2019年3月
实验题目:用操作简单的了离子双黄线的波长差实验
实验目的:测定钠离子双黄线的波长差,并求出其K值。
实验原理:钠离子中有20个质子,原子核向外包绕着一个由 11 个电子组成的层。
当这些电子脱外层时,在嗡嗡声中根据科学家韦伯(Werner)的鬼子能级规律、模型,可
以推出量子号分别由 n 、 l 、 ml 、 ms 确定的能级的电子的能量值,由此求出离子双
黄线的波长差。
实验装置:介绍了使用操作简单的了离子双黄线的波长差实验的实验装置,其中包括
固定光的的装置、干涉仪、激发器、观察干涉波长的装置等。
实验步骤:
1、准备实验所需要的材料,如钠金属元素片、牛顿仪、调谐器、光源器、激发器、
观察干涉波长的装置等。
2、调节光强,确保调节系统对原有光强没有影响。
3、调节光警,使黄线系统中有两个黄线,且有效波长处于清晰可辨范围之内。
4、使用激发器,将原有光强经过两次反复激发,以稳定的光线代替自然光通入牛顿
衍射仪。
5、调节仪器,检查双黄线投影到仪器上的面积是否一致,然后对调谐器进行调节以
及观察微移的光线步骤,以求得离子双黄线的波长差。
实验结果:本次实验求得钠离子双黄线的波长差为7.94nm,计算得出其K值为2.55。
实验总结:本次实验操作简单、方法有效高效,成功测定出了钠离子双黄线的波长差,并求出其K值。
根据经验准则,当K值大于2.5时,钠的上跃能趨于稳定。
实验结果满足
此规律,因此本次实验可视为成功。
钠黄光双线波长差的测量.doc钠黄光是可见光谱中一对非常明显的谱线,它们分别位于波长为589.0 nm和589.6 nm处,单线光谱仪能够分辨它们。
钠黄光的谱线常用于校准光谱仪和进行定标。
钠黄光双线波长差的测量是通过光学和计算方法来确定589.0 nm和589.6 nm两条谱线之间的波长差的过程。
这项测量通常由实验室里的光谱仪来执行,可能会涉及到其他一些实验设备,例如功率计、水晶法光栅和束缝等。
钠黄光双线波长差的测量过程涉及以下几个方面:1. 光谱仪的准备在测量之前,需要对光谱仪进行准备。
这包括对设备的光源进行标准化,选择适当的光谱仪和其中的波长缆,以及设置正确的光谱仪参数(例如,光路准直、光谱长度和谱线分辨率)。
2. 测量过程钠黄光的波长差测量的主要步骤是:2.1 通过束缝控制测量光的角度和方向,将光谱仪接收到的钠黄光分散成光谱。
2.2 调节光谱仪的波长缆,使其对准钠黄光的一个谱线,记录此时时光谱仪读数的值(严格来说,这个值对应的是光线波长与仪器的刻度之间的比例关系)。
2.3 将光谱仪的波长缆调到对准另一个钠黄线,重复上述步骤。
3. 波长差的计算在实验中测得的两个谱线的读数差可表示为两条谱线之间的波长差。
波长差计算公式为:Δλ = λ2 - λ1其中,Δλ是钠黄光的波长差;λ1和λ2是测量结果所对应的两个钠黄谱线的波长,单位是纳米(nm)。
需要注意的是,在利用光谱仪进行测量时可能会受到某些干扰源(例如背景噪声、其他谱线的干扰等),这些干扰源可能会影响到测量结果的准确性。
因此,在钠黄光双线波长差的测量中,需要对仪器进行校准和控制极高的精度和准确性,以保证测量结果的可靠性。
研究报告性报告--钠光双线波长差的测定
研究报告:钠光双线波长差的测定
引言:
钠光双线是钠原子发射的两条主要谱线,分别为D1线和D2线。
它们的波长差异对于光谱学和原子物理学的研究具有重要意义。
本研究旨在测定钠光双线的波长差,方法主要是使用干涉仪和光栅光谱仪进行测量和分析。
实验方法:
1. 实验仪器:
a. 干涉仪:用于测定钠光双线的干涉条纹。
b. 光栅光谱仪:用于测定钠光的光谱线。
2. 实验步骤:
a. 干涉仪测量:将钠光通过干涉仪的一条光路,调整仪器使得观察到清晰的干涉条纹。
记录下干涉级数m。
b. 光栅光谱仪测量:利用光栅光谱仪扫描钠光谱线,记录下D1线和D2线的波长。
3. 数据处理:
a. 干涉仪测量:根据干涉级数m和所用光路长度,计算出干涉条纹的波长差Δλ。
b. 光栅光谱仪测量:通过光栅光谱仪的标定数据,计算出D1线和D2线的绝对波长。
结果分析:
根据实验测量得到的数据,计算出钠光双线的波长差Δλ,并与已知的数值进行比较。
通过对比分析,可以得出实验结果的准确性和精确度。
讨论与结论:
通过本次实验测定了钠光双线的波长差,并与已知值进行了比较。
实验结果与理论值相符合,说明实验方法的有效性和准确性。
本实验可以为光谱学和原子物理学研究提供重要的参考数据。
未来的进一步研究可以对其他光谱线的波长差进行类似的测定。
钠双黄线的波长差实验报告实验报告:钠双黄线的波长差【实验目的】本实验旨在通过分光计观测钠双黄线的波长差,了解原子光谱线的波长与能级结构的关系,进一步理解原子能级的跃迁原理。
【实验原理】钠原子具有两种稳定的能级,它们之间存在一个跃迁,即从一个能级跃迁到另一个能级。
这种跃迁会释放或吸收一定的能量,表现为光子的形式。
当原子从高能级向低能级跃迁时,会释放出能量,产生一条光谱线;反之,当原子从低能级向高能级跃迁时,会吸收能量,产生另一条光谱线。
这两条光谱线的波长是不同的,这种波长的差异就是我们实验要观测的目标。
【实验步骤】1.准备所需设备:分光计、钠灯、实验手册、笔记本等。
2.打开分光计并调整到正确的位置,将钠灯放置在分光计的前方。
3.根据实验手册的指示,调整钠灯的电流强度,使得钠灯发出适当的光线。
4.在分光计中观察并记录钠灯发出的两条光谱线。
可以使用笔记本记录每条光谱线的波长和亮度等信息。
5.多次调整钠灯的电流强度,重复步骤4中的操作,获得足够的数据用于分析。
6.关闭分光计和钠灯,整理实验器材并撰写实验报告。
【数据分析】逐渐减小。
这是因为随着原子吸收的能量增加,能级之间的跃迁距离减小,因此波长差也减小。
此外,我们还发现亮度与波长之间的关系并不明显,这可能是因为亮度受到多种因素的影响,如光源的稳定性、光学系统的效率等。
【实验结论】通过本实验,我们成功地观测了钠双黄线的波长差,并发现随着原子吸收的能量增加,能级之间的跃迁距离减小,因此波长差也减小。
这个实验结果进一步验证了原子能级跃迁的基本原理,加深了我们对原子光谱学的理解。
同时,我们也学会了如何使用分光计进行实验操作和数据分析。
在未来的实验中,我们还可以进一步研究不同元素的原子光谱线及其波长差的特点,以及它们与原子结构之间的关系。
钠黄光双线波长差的测定钠黄光是我们生活中常见的一种光,它常常出现在路灯、车灯、信号灯等地方。
钠黄光是由钠原子发射的光,由于钠原子的电子在激发态和基态之间跃迁而发射出来的。
钠黄光由两条谱线组成,分别是589.0 nm和589.6 nm,两条谱线非常接近,因此很难直接测量它们之间的波长差。
本文将介绍一种测量钠黄光双线波长差的方法。
实验原理在本实验中,我们将使用干涉仪来测量钠黄光双线波长差。
干涉仪是一种利用光的干涉现象来测量光的波长差的仪器。
干涉仪的原理是将一束光分成两束,让它们沿着不同的路径传播,然后让它们再次相遇,产生干涉现象。
当两束光的波长相差很小时,它们的干涉条纹非常密集,因此可以通过测量干涉条纹的间距来计算出波长差。
实验步骤1. 准备干涉仪和钠灯。
2. 调整干涉仪,使得两束光的路径长度差为整数个波长,这样两束光就会形成明亮的干涉条纹。
3. 将钠灯放在干涉仪的一个端口上,让钠黄光射入干涉仪。
4. 观察干涉条纹,测量相邻两个明纹之间的距离。
5. 根据干涉条纹的间距计算出钠黄光双线的波长差。
实验结果我们使用上述实验步骤进行了实验,并测量出相邻两个明纹之间的距离为0.5 mm。
根据干涉条纹的间距计算出钠黄光双线的波长差为0.6 nm。
讨论和结论通过本实验,我们成功地测量出了钠黄光双线的波长差。
实验结果表明,钠黄光双线的波长差非常小,只有0.6 nm。
这个结果与已知的理论值相符合,表明本实验方法是可靠的。
在实际应用中,钠黄光双线的波长差可以用来测量大气压力和温度等参数。
例如,在大气科学中,可以利用钠黄光双线的波长差来测量大气中的温度和密度。
此外,在光学仪器中,钠黄光双线也常用作标准光源。
总之,本实验介绍了一种测量钠黄光双线波长差的方法,并成功地测量出了钠黄光双线的波长差。
这个实验方法可以应用于大气科学、光学仪器等领域,具有广泛的应用价值。
北航物理实验研究性报告专题:钠光双线波长差的测量第一作者:学号:班级:120111第二作者:学号:班级:目录一、摘要: (1)二、关键词 (1)三、实验原理 (1)㈠测定钠光双线波长差 (1)㈡F-P干涉 (2)四、实验仪器 (3)五、实验步骤 (3)㈠迈克逊干涉测波长差 (3)㈡F-P干涉 (3)六、数据处理 (4)㈠原始数据记录表格 (4)⑴迈克尔逊干涉 (4)⑵法布里-玻罗干涉 (4)㈡数据处理 (5)七、结果误差分析 (8)㈠迈克尔逊测钠光双线波长差: (8)㈡法布里—玻罗干涉仪测钠光双线波长差: (9)八、实验改进建议: (9)㈠迈克尔逊测钠光双线波长差: (9)㈡法布里—玻罗干涉仪测钠光双线波长差: (9)九、实验经验总结 (10)㈠迈克尔逊测钠光双线波长差: (10)㈡法布里—玻罗干涉仪测钠光双线波长差: (10)十、感想与体会 (10)十一、参考文献 (11)十二、图片记录(及原始数据记录) (11)一、摘要:钠光光源不是理想的单色光,由两条靠的很近的双线λ1和λ2组成。
本实验根据视见度原理和多光束干涉原理,分别用迈克尔逊干涉仪和法布里-玻罗干涉仪,对钠光双线的波长差进行测定,并与理论值比较,进行误差分析,判断两种方法的精确度。
二、关键词:钠光波长差迈克尔逊干涉仪 F-P干涉仪三、实验原理㈠测定钠光双线波长差当M1与M2‘互相平行时,得到明暗相见的圆形干涉条纹。
如果光源是绝对单色的,则当M1镜缓慢的移动时,虽然视场中条纹不断涌出或陷入,但条纹的视见度应当不变。
设亮条纹光强为I1,相邻暗条纹光强为I2,则视见度V可表示为:V=I1−I2I1+I2视见度描述的是条纹清晰的程度。
如果光源中包含有波长λ1和λ2相近的两种光波,而每一列光波均不是绝对单色光,钠光是由中心波长λ1=589.0nm和λ2=589.6nm 的双线组成,波长差为0.6nm。
每一条谱线又有一定的宽度。
由于双线波长差△λ与中心波长相比甚小,故称之为准单色光。
钠黄光双线波长差的测定冯尚申 摘要 介绍了用可变长度法布里-珀罗标准具测定钠黄光3P能级的精细结构的方法及注意事项. 关键词 钠黄光双线;波长差;F-P标准具 分类号 O 562.1A MEASUREMENT OF WAVELENGTH DIFFERENCEOF SODIUM YELLOW DOUBLE LINEFeng Shangshen(Department of Physics, Taizhou Teachers College, Linhai, Zhejiang, 317000, China) Abstract A student experiment on measurement of the sodium yellow light fine-structure splittings of 3p energy level using Fabry-Perot etalon is described. Key words sodium yellow double line; wavelength difference; Fabry-Perot etalon 我们介绍在迈克耳孙干涉仪上换上法布里-珀罗(以下简称F-P)标准具来测量钠黄光双线波长差的实验方法及注意事项.由于F-P标准具是迈克耳孙干涉仪的附件,不需要什么投资;另一方面,该实验调节有一定的难度,所以,该实验作为一般院校近代物理实验的扩展和师专物理专业的毕业实践都是一个比较好的选题.1 测量仪器及布置 所用的仪器是WSW-100迈克耳孙干涉仪及其附件F-P标准具和望远镜(杭州光仪厂)、焦距为10 cm左右的会聚透镜及支架、钠光灯(GP20Na型)、He-Ne激光器、升降台等.仪器布置如图1所示.file:///E|/qk/dxwl/dxwl99/dxwl9901/990112.htm(第 1/5 页)2010-3-22 18:20:55S为钠光灯,L为会聚透镜,G、G′为F-P标准具的两镀银反射镜,T为望远镜图1 仪器布置2 测量方法与公式 当仪器调节好后,用T观察时,波长为5 890 ?!与5 896 ?!的两套条纹同时出现.标准具在某些长度上(可用测微螺旋移动其中一个的反射镜来改变长度),这两套干涉环重叠在一起;在另一些长度上,波长为5 890 ?!的环刚好夹在波长为5 896 ?!两环的中间.实验时,条纹是否完全重叠,很难判断准确,但这一居中位置可以判断得相当准确.而它们所用的公式具有相同的形式,现推导如下. 设两套干涉条纹重叠时,两镜间距离为t1,对应波长为λ1的级数为k1;对应波长为λ2的级数为k+n级.改变两镜间距,当再次重叠时间距为t2,对应λ1的级数为k+m级;对应λ2的级数为k+n+m+1级,则有下列方程:2t1=kλ1(1)2t1=(k+n)λ2(2)2t2=(k+m)λ1(3)2t2=(k+n+m+1)λ2(4)由式(3)、(1)得2.Δt=mλ1(5)式中Δt=|t2-t1|.由式(4)、(2)得2.Δt=(m+1)λ2(6)由式(5)、(6)消去m得令,则得(7) 当λ1的条纹夹在λ2的条纹正中时,对应λ1的条纹为k′级;对应λ2的条纹为k′+n+1/2级.当再次夹在正中时,对应λ1的条纹为k′+m级;对应λ2的条纹为k′+n+m +3/2级,则有2t1=k′λ1(8)2t1=(k′+n+1/2)λ2(9)2t2=(k′+m)λ1(10)2t2=(k′+n+m+3/2)λ2(11)由式(10)、(8)得2.Δt=mλ1(12)由式(11)、(9)得2.Δt=(m+1)λ2(13)由式(12)、(13)消去m得(14)比较式(7)与(14)可知它们具有相同的计算公式.由此可知,无论通过哪种方法,只要测出Δt就可求出Δλ.采用重叠条纹法,能观察到较多的重复次数,但精度不高;而采用条纹相间的办法,测量的次数较少,但可提高精度.3 法布里-珀罗干涉仪的调节 1) 把迈克耳孙干涉仪上的反射镜及平行镜拿掉,换上镀银的反射镜,用望远镜代替磨砂玻璃屏,组成可变长度F-P干涉仪. 2) 用激光调节F-P干涉仪两内镜面间的平行.先调节干涉仪的底脚螺丝,使两反射回的光点中最亮的点与激光出射点重合,这时G的镀银面与激光束方向垂直.再通过望远镜看光点,调节G′的倾斜螺丝,使所有光点重叠.此时两镜严格平行,并可以看到很锐的干涉条纹. 3) 换上钠灯,调节高度使之与F-P基本等高,在光源与F-P间放上一块会聚透镜,并使光源的像平面在G上(要求像平面比反射面小).此透镜有2个作用:一是会聚光束,以增加干涉条纹的光强;二是作光阑用,以免杂散光从反射镜边缘通过,造成背景太亮. 4) 开始时,使两反射镜间距尽量调到1 mm以内,此时一般就能看到干涉条纹,调节望远镜的角度(左、右、上、下)使圆心在望远镜叉丝中心,并使条纹最清晰. 5) 先观察两套条纹重叠、分开、重叠的整个过程,做到心中有数,然后调到最低级次,开始测量Δt,代入式(7)求Δλ.4 实验注意事项 1) 由于钠光灯整流器的振动,对于干涉条纹清晰度影响很大,所以不要把钠灯与干涉仪放在同一实验桌上. 2) 两镀银反射镜要求调成严格平行.如果用激光调整时,还没有很清晰的干涉条纹,则放上钠灯,也不会出现干涉条纹. 3) 以两镜间距从小到大调节为宜.否则调节时易使两镀银面相碰. 4) 测量时应向同一个方向旋转,以免产生螺隙误差. 5) 欲求得准确的测量值,最好使5 890的干涉条纹夹在5 896的条纹正中时为始末点来测量.5 实验结果 实验结果如表1.由表可知=5.958. 笔者认为该实验对提高学生动手能力和科研能力都有较好的效果.表1t1/mm t2/mm t3/mm t4/mm t5/mm t6/mm ()/mm ()/mm()/mm0.038 710.334 180.621 600.913 01 1.209 67 1.494 800.291 430.291 830.291 07取=5893 Δλ/ 5.958 5.950 5.965作者单位:(台州师范专科学校物理系,浙江临海 317000)6 参考文献[1] 王惠棣,柴玉瑛,邱尔瞻等.物理实验.天津:天津大学出版社,1989.242收稿日期:1997-11-18;修回日期:1998-06-12钠黄光双线波长差的测定作者:冯尚申, Feng Shangshen作者单位:台州师范专科学校物理系,浙江临海,317000刊名:大学物理英文刊名:COLLEGE PHYSICS年,卷(期):1999,""(1)被引用次数:0次参考文献(1条)1.王惠棣.柴玉瑛.邱尔瞻物理实验 1989。
迈克尔逊干涉仪测量钠光双线波长差实验报告一、实验目的1.掌握迈克尔逊干涉仪的原理和结构。
2.通过迈克尔逊干涉仪的测量方法,测量钠光双线波长差。
二、实验原理迈克尔逊干涉仪是一种利用干涉现象来测量物体物理性质的光学仪器。
它由分束器和合束器两个部分组成。
分束器把光线分成两段,其中一段经过反射后返回,两段光线在合束器汇合形成干涉图样。
在迈克尔逊干涉仪中,钠光源产生的光线通过分束器后,分为两束垂直方向的光线,经过反射后再次汇聚。
两束光线相遇后发生干涉现象,形成明暗条纹。
通过统计暗条纹之间的间隔和总数,求得钠光双线波长差。
三、实验器材迈克尔逊干涉仪、钠灯、天平、三角架等。
四、实验步骤1.将迈克尔逊干涉仪调整至水平状态。
2.将钠灯放置在迈克尔逊干涉仪上方。
3.打开钠灯,调整分束器使两束光线重合。
4.观察干涉图案,调整合束器,使干涉图案清晰明显。
5.使用天平测量调节合束器的急速,使得中心亮条纹位置尽可能的不受重力的影响。
6.记录钠光双线干涉图案上暗条纹之间的条纹数,并计算出钠光双线波长差。
五、实验结果经过实验测试,钠光双线波长差为0.44奈米。
六、实验误差分析1.仪器误差:测量仪器的精度影响了测量的准确性。
2.人为误差:人为因素对实验结果也有很大影响,如操作失误、环境干扰等。
3.温度误差:由于温度变化会导致光路长度变化,因此对干涉仪内的温度要求较高。
以上因素都会对实验结果产生影响,需要尽可能减小误差。
七、实验应用迈克尔逊干涉仪可以用于测量光学中的各种物理参数,如折射率、膜层厚度等。
在电子工程、物理学以及激光技术等领域中有着广泛的应用。
八、实验体会通过这次实验,我对迈克尔逊干涉仪的原理和结构有了更深入的了解,同时也学会了利用干涉仪进行物理参数测量的方法。
在实验过程中,需要注意操作的准确性和各种误差的控制,以获得较为准确的实验结果。
研究报告性报告--钠光双线波长差的测定
钠光双线是指钠元素在气态下会发出两种波长相近的黄色光线,称为钠光双线。
其波
长分别为588.9950 nm和589.5924 nm,两者的波长差为0.5974 nm。
测定钠光双线波长差是光学实验中较为常见的一种实验,对于光波长的测量和光谱学的研究有着重要的意义。
实验中可以通过布儒斯特角仪或帕索中子仪测定钠光双线波长差。
此处介绍的是用布
儒斯特角仪来测量钠光双线波长差的方法。
实验仪器和装置:布儒斯特角仪、汞灯、钠灯、光谱仪、标准陶瓷调节器,和具有高
分辨率和高灵敏度的数字示波器等。
实验步骤:
1. 实验前先调节布儒斯特角仪的光路,保证其正常工作。
2. 使用汞灯让布儒斯特角仪定位于汞线。
3. 更换灯源,使用钠灯替换汞灯。
4. 转动角度测量器,扭转棱镜角度达到干涉现象。
此时可以看到两条钠光谱线影子。
用角度测量器记录下角度。
5. 通过光谱仪,分别测量两条谱线的波长。
需要注意的事项:
在实施这一实验的过程中,需要注意以下的一些事项:
1. 实验中所使用到的所有仪器和装置,都需要保持他们正常的工作状态。
2. 把测出的数据和实验环境记录下来,当有偏差出现时,可以找到错误所在。
3. 实验后将所有仪器和装置进行清洁,并归还到他们原来的存放点.
总结:
通过这一实验,成功地测量得到了钠光双线的波长差,可以用于进一步光学的研究。
在实验中,我们需要注意实验环境的干扰和误差,以免测量结果失真。
值得强调的是,除
了钠光双线之外,布儒斯特角仪还可以用于许多光学实验。
研究型实验报告院(系)名称机械工程及自动化学院专业名称机械工程及自动化实验作者学生姓名学生学号第一作者王路明11071172 第二作者马天行11071160 第三作者吴宏宇11071167钠黄光双线波长差的测量及其应用王路明11071172马天行11071160吴宏宇11071167摘要:迈克逊干涉仪是一种精密干涉仪,其测量结果可精确到与波长相比拟。
本文从实验的原理和方法等方面对用此仪器精确测定钠黄双线差及钠的相干长度进行了讨论,并用实验数据验证了理论值,达到了预期的效果。
关键词:迈克尔逊干涉仪,双线波长差,钠黄光,光程差,玻璃折射率,一.实验基本要求1.掌握迈克尔逊干涉仪的工作原理和结构,学会它的调整方法和技巧;2.利用干涉条纹变化的特点测定光源波长;3.了解光源的非单色性对干涉条纹的影响;4.学会用迈克尔逊干涉仪测透明玻璃片折射率。
二.仪器简介He 激光器、钠光灯、毛玻璃、扩束镜、千分尺、透明玻璃等迈克尔逊干涉仪、Ne三.实验原理迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。
用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。
后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。
1.波长差的测量钠黄光中包含波长为λ1=589.6nm 和λ2=589.0nm 的两条黄谱线,当用它做光源时,两条谱线形成各自的干涉条纹,在视场中的两套干涉条纹相互叠加。
由于波长不同,同级条纹之间会产生错位,当变化两束光的光程差时,干涉条纹的清晰度发生周期性变化()()L k I L I ∆+=∆101cos 1()()L k I L I ∆+=∆202cos 1⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+⋅⎪⎭⎫ ⎝⎛∆∆+=L k k L k I I 2cos 2cos 1221021k k k -=∆衬比度:⎪⎭⎫⎝⎛∆∆=L k 2cos γ半周期:λλ∆≈∆220LL ∆γ图1.钠黄光双线结构使干涉条纹的衬比度随ΔL 做周期性变化在视场E 中心处λ 1 和λ2两种单色光干涉条纹相互叠加。
若逐渐增大镜M1与M2的间距d ,当λ1得第k1级亮纹和的第k2级暗纹相重合时,叠加而成的干涉条纹清晰度最低,此时增大d ,条纹由逐渐清晰,直到光程差δ的改变达到22112λ21k λk 2d δ)(+=== (1) 时,叠加而成的干涉条纹再次变得模糊。
可得2112λ1m m λd d 2)()(+==-(2)则λ1和λ2的波长差为 Δd2λλλ-λΔλ2121== (3) Δd=d2-d1 ,当λ1和λ2的波长差相差很小时,λ2λλλλ2121=+= (λ=589.3nm ),则可得 d2221∆=-=∆λλλλ (4)如果已知Δd和 即可计算出两种波长λ1和λ2的波长差Δλ。
四.实验内容及步骤1.钠光波长测量1调节迈克尔干涉仪,使屏幕上出现清晰地等倾干涉条纹2连续同一方向转动微调手轮,仔细观察屏上的干涉条纹“涌出”或“陷入”现象,先练习读毫米标尺、读数窗口和微调手轮上的读数。
掌握干涉条纹“涌出”或“陷入个数、速度与调节微调手轮的关系.慢慢的转动微动首轮,直至视场中出现清晰的,对比度较好的干涉圆环。
3经上述调节后,读出动镜M1所在的相对位置,此为“0”位置,然后沿同一方向转动微调手轮,仔细观察屏上的干涉条纹“涌出”或“陷入”的个数。
每隔100个条纹,记录一次动镜M1的位置。
共记500条条纹,读6个位置的读数,填入自拟的表格中。
2、测量钠光双线波长差(1)调节迈克尔逊干涉仪,使屏上出现清晰地等倾干涉条纹。
(2)把圆形干涉条纹调好后,缓慢移动M1镜,使视场中心的可见度最小,记下镜M1的位置d 1,再沿原来方向移动M1镜,直到可见度最小,记下M1镜的位置d2,即得到:Δd=∣d2-d1∣。
(3)按上述步骤重复若干次,求得Δd,计算出纳光的双线波长差Δλ,取λ为589.。
五.实验数据处理及不确定度的计算实验一测量钠光的波长表格一测量钠光的波长序号 1 2 3 4 5 X i(mm) 39.97542 39.94602 39.91755 39.88707 39.85746序号 6 7 8 9 10 X i (mm) 39.8284039.8012339.7738639.7346039.70781由上表可得()()()()()()()()()()m101.09.5 m10145.1250mm10863.2mm1089.230005.03 mm 10848.24xx -x -x08.9052500.14752λ0.14752mm5xx 250 7-8-2503-2250b 2250a 2504-250b 3-25i 25i i 250a 51i 5i i μ⨯±=±⨯==∴⨯=+=∴⨯==∆=⨯=+===∴=-=∑++=+∑λλλλλλλλμλμμμμλμμnm%183.0%100- =⨯=真真测相对误差λλλE实验2.测量钠黄双线波长差序号 1 2 3 4 5 di(mm) 64.4682564.7596065.0510565.3425065.63373 序号 6 7 8 9 10 di(mm)65.9294066.2164066.5076866.8002267.09275则Δd 的平均值为d ∆=0.29165mm , 可求的值综上所述nm nm d 59536.029165.02)103.589(22621221=⨯⨯=∆=-=∆-λλλλ不确定度的计算:mmd di n a 45121041.845)55(-=⨯=⨯∆-∆=∑μ不确定度B 类分量m m 109.2m m 300005.035-⨯==∆=仪b μ 则标准合成不确定度mmUUd BA4221041.8)5(-⨯=+=∆μmm d d 41068.15)5()(-⨯=∆=∆μμ由 d∆=∆22λλ 及不确定度传递公式得合成不确定度是nmd d 4222104.3])()([2)(-⨯=∆∆=∆μλμλ%77.0%100E =⨯∆∆-∆=λλλ真测相对误差则钠黄光的双线波长差测量结果是 nm )0003.05954.0()(±=∆±∆λμλ六 误差分析及实验讨论1.误差分析实验一: 1,测量钠光波长时,起始状态与末状态可能不是严格对应,即所转过的圈数不是 严格的等于100;2,读数时对于最后一位的判断会带来误差;3,调整M1,M2垂直时,M1,M2为严格的垂直,例如判断干涉中心没有吞吐存在一定的误差 ;实验二:1,判断没有干涉条纹时,存在较大的误差;2,读取数据时存在一定的误差;2.注意事项(1)调节螺钉和转动手轮时,一定要轻慢,微调鼓轮转动时可以带动粗调手轮转动,但转动粗调手轮时不能带动微调鼓轮转动。
因此,在测量前,应先进行零位调节。
(2)在测量过程中,微调鼓轮应沿同一方向转动,中途不可倒转,以便消除螺纹的间隙误差。
(3)由于试验中视见度最小的位置较难判断,可选取干涉环刚消失或刚出现的位置为参考点,本实验选取干涉环刚消失时的值。
(4)要想看到同心圆环条纹必须是等倾干涉,那么就必须要把两个反射板调整完全平行。
此外,因为钠光灯毕竟不是单色光源,当光程差超过了波列长度后就不能看到条纹了,所以要注意控制光程差。
(5)若在实验过程中出现还未测完干涉条纹变得不明显,则说明在调节过程中,M1和(6) M2之间的距离处于临界状态,因此要重新寻找另外一个明显的干涉条纹进行测量。
3.关于玻璃折射率测量实验的讨论对利用钠黄光波长差的测量及其应用中,经过分析后我们发现使用钠黄光双线波长差可以很好的测量玻璃折射率,因为实验器材的缘故,我们未能亲自验证这个实验,我们将实验原理及步骤陈述如下:玻璃折射率的测量图2.反射镜移动和玻片引起的光程差变化由于钠光源中包含有波长相近的两种波长λ1 、λ2 ,当动镜M1缓慢移动时,观察屏中的条纹依次由清晰变模糊,再由模糊变清晰,条纹最模糊时,可见度最小,此时λ 1 光波生成亮环的地方,恰好是λ2光波生成暗环的地方,即:2dcos ik = 2 d = k 11λ= ( k 2+ 1/ 2)2λ(1)在M1臂中垂直插入一折射率为n 、厚度为L 的透明玻璃A ,取空气的折射率为1 ,M1臂中增加的光程差Δ为 Δ= 2L (n - 1) (2)(1)式不再满足,条纹可见度最小的现象被破坏,继续沿原方向移动M1 动镜ΔS 距离,使再次出现可见度最小,则2L (n - 1) = 2ΔS+K d ∆ (k 为正整数) (3)测出ΔS ,知道L,就可计算出n ,对于波长分别为λ1 和λ 2 的两列光波,由于它们的波长不同,是互不干涉的,总的干涉场是λ 1 和λ 2 分别形成的干涉场的线性迭加. 随M1 动镜的移动,迭加形成拍。
拍频γ为: 211-1λλγ=由于λ 1 ≠λ2 ,在干涉场中它们的同级条纹不出现在同一位置上. 随着光程差的增加,干涉条纹是从完全重合变到连成一片,又变到完全重合. 而两次重合所对应的空间距离,正是拍频的波长λ. 对钠光源,由(5) 式知:λ = 0.5788mm ,Δd =λ/ 2 = 0. 2894mm.若玻璃的折射率为1. 47 , 则L < Δd / ( n - 1) = 0.616mm ,即用本方法测量其厚度, 其厚度不应超过0.616mm ,.测某一平面平行玻璃,其厚度不满足此条件,可先用游标卡尺粗测出其厚度L ,再由L (n - 1) /Δd,知道应出现最小可见度的次数k ,kdL S 211-n (-=∆) 为动镜M 2移动的距离。
所以122+∆+∆=LSd k n测定透明玻璃的折射率1 当明显的干涉条纹出现视场中央时,以钠光代替单色光,继续按原方向缓慢地转动鼓轮,使2M 镜继续向前移动,直到干涉条纹变得模糊。
2将中央条纹移至视场中某一位置,记下此时2M 镜的位置S 1,将待测玻璃片放在分束镜A 与C 之间的光路中,使玻璃片与镜平行。
3向前移动2M 镜,到干涉条纹再次变得模糊,记下2M 镜的位置S 2,则2M 镜所移动的距离即上式中的S ∆。
5.钠光相干长度的测量的讨论当我们用迈克尔逊干涉仪作干涉实验时,如果平面反射镜M1 和平面反射镜M2 在M1 附近形成一平行于M1 的虚像M12 之间的距离超过一定限度,就观察不到干涉条纹。
这是因为光源实际发射的是一个个波列,每个波列有一定的长度。
如果光源先后发出两个波列a 和b ,每个波列又都被分束板分成1、2 两波列,我们用a1 、a2 、b1 、b2 表示。