大学物理场强电势习题课
- 格式:ppt
- 大小:485.00 KB
- 文档页数:14
第十二章 静电场中的导体和电介质12-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将如何变化.答:电场中通常以无穷远处的电势为零电势参考点。
导体B 离A 很远时,其电势为零。
A 带正电,所以其电场中各点的电势均为正值。
因此B 靠近A 后,处于带电体A 的电场中时,B 的电势为正,因而B 处的电势升高。
12-2 如附图所示,一导体球半径为R 1,外罩一半径为R 2的同心薄球壳,外球壳所带总电荷为Q ,而内球的电势为U 0,求此系统的电势和电场分布。
解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r E R 1<r <R 2 时,()202π4rεq r E =r >R 2 时, ()202π4rεq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q U R R R R rrεε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q rq U R R rrεε+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l Er >R 2 时,rQ q U r03π4d ε+=⋅=⎰∞l E 3由题意得201001π4π4R Q R q U U εε+==代入电场、电势的分布得 r <R 1时,01=E ;01U U =R 1<r <R 2 时,22012012π4rR Q R rU R E ε-=;rR Q R r rU R U 201012π4)(ε--=r >R 2 时,220122013π4)(rR Q R R rU R E ε--=;rR Q R R rU R U 2012013π4)(ε--=12-3证明:对于两个无限大的平行平面带电导体板来说,(1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等且符号相同。
13—1如图所示孤立导体球,带电为Q , (1)Q 是怎么分布的?为什么? (2)导体内部场强是多少?(3)导体球表面附近一点P 的场强是多少?P 点的场强是否是由P 点附近的电荷产生的?(4)当P 点很靠近球面时,对着P 点的那一部分球面可以看作无限大平面。
而无限大带电面两侧的场强为02εσ=E ,而这里的结果是εσ=p E ,两者是否矛盾?为什么?13—2上题中如果导体球附近移来一个带电为q 的另一导体A ,如图所示,达静电平衡后,(1)q 是否在导体球内产生场?导体球内场强是否仍为零? (2)导体球上Q 的分布是否改变?为什么?习题13-1 习题13-2(3)P 点的场强是否改变?公式0εσ=p E 是否成立?它是否反映了q的影响(即p E 是否包括了q 在P 点产生的场)?13—3 三个平行金属板A ﹑B 和C ,面积都是2002cm ,A ﹑B 相距0.4mm ,A ﹑C 相距0.2mm ,B ﹑C 两板都接地,如图所示,如果使A 板带正电C 7100.3-⨯,略去边缘效应,求: (1)B 板和C 板上的感应电荷各为多少? (2)取地的电势为O ,A 板的电势为多少?13—4 导体球半径为R ,带电量为Q ,距球心为d 处有一点电荷q ,如图所示,现把球接地,求流入大地的电量。
13—5 同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱体构成的,设内圆柱体的电势为1U ,半径为R ,外圆筒的电势为2U ,内半径为2R ,求其间离轴为r 处)(21R r R <<的电势。
习题13-3Q习题13-413—6 点电荷q 放在中性导体球壳的中心,壳的内外半径分别为1R 和2R ,求空间的电势分布。
13—7 如图所示,一半径为R 的中性导体球,中间有两个球形空腔,半径分别为1R 和2R ,在空腔中心处分别有点电荷1q 和2q ,试求: (1)两空腔内表面和导体外表面的电荷密度1σ﹑2σ﹑3σ (2)导体外任一点的场强和电势 (3)两空腔中的场强和电势。
大学物理习题集(一)大学物理教研室2010年3月目录#部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 \练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27、练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1~摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量 = ×10-8 W·m2·K4标准大气压 1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m、真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;((D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;。
练习五 电势(续)一、选择题1. 如图所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA = l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷−q ,若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所作的功等于: −q l l ll +qA BC D EF• •(A ) 515π420−⋅lq ε。
(B ) 551π40−⋅l q ε。
(C )313π40−⋅l qε。
(D )515π40−⋅l qε。
2. 某电场的电力线分布情况如图所示,一负电荷从M 点移到N 点。
有人根据这个图做出下列几点结论,其中哪点是正确的? (A ) 电场强度E M < E N 。
(B ) 电势U M < U N 。
(C ) 电势能W M < W N 。
(D ) 电场力的功A > 0。
3. 在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电量和q +q 3−。
现将一电量为+Q 的带电粒子从内球面处由静止释放,则该粒子达到外球面时的动能为: (A )R qQ0π4ε。
(B )R qQ0π2ε。
(C )RqQ0π8ε。
(D ) RqQ0π83ε。
4. 真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度 E v和电位U 是 (A ) 都是常量。
(B ) 都不是常量。
(C ) E 是常量,U 不是常量。
(D ) U 是常量,E 不是常量。
5. 电量Q 均匀分布在半径为R 的球面上,坐标原点位于球心处,现从球面与X 轴交点处挖去面元ΔS ,并把它移至无穷远处(如图),若选无穷远为零电势参考点,且将ΔS 移走后球面上的电荷分布不变,则此球心O 点的场强0E v与电位U 0分别为(注:i 为单位矢量)ˆ(A ) -Q ΔS /[(4πRiˆ2)2ε0];[Q /(4πε0R )][1-ΔS /(4πR 2)]。
大学物理(II )重修课习题第一部分:电磁场1、均匀带电圆盘轴线上一点的场强。
设圆盘带电量为q ,半径为R 。
2、求均匀带电半圆环圆心的场强。
设圆 环带电密度为 λ ,半径为R 。
3、两块平行放置的面积为S 的金属板,各带电量Q1、Q2 , 板距与板的线度相比很小。
求:① 静电平衡时, 金属板电荷的分布和周围电场的分布。
②若把第二块金属板接地,以上结果如何?4、一个带电金属球半径R 1,带电量q 1 ,放在另一个带电球壳内,其内外半径分别为R 2、R 3,球壳带电量为 q 。
试求此系统的电荷、电场、电势分布以及球与球壳间的电势差。
5、求电偶极子电场中任一点的电势。
6、一平板电容器充满两层厚度各为d 1和d 2的电介质,它们的相对电容率分别为1r ε和 2r ε,极板的面积为S 。
求:(1)电容器的电容;(2)当极板上的自由电荷面密度为0σ时,两介质分解面上的极化电荷的面密度;(3)两层介质的电位移。
7、同轴电缆的内导体圆柱半径为R1,外导体圆筒内外半径分别为R2、 R3,电缆载有电流I ,求磁场的分布。
8、载流长直导线与矩形回路 ABCD 共面,且导线平行于 AB ,如图,求下列情况下ABCD 中的感应电动势:(1)长直导线中电流恒定,t 时刻 AB 以垂直于导线的速度 V 以图示位置远离导线匀速平移到某一位置时,(2)长直导线中电流 I = I0 sin ω t ,ABCD 不动,(3)长直导线中电流 I = I0 sin ω t , ABCD 以垂直于导线的速度 V 远离导线匀速运动,初始位置也如图。
9、一长直电流I 在平面内被弯成如图所示的形状,其中直电流 ab 和cd 的延长线过o ,电流bc 是以o 为圆心、以R 2为半径的1/4圆弧,电流de 也是以o 为圆心、但是以R 1为半径的1/4圆弧,直电流ef 与圆弧电流de 在e 点相切,求:场点o 处的磁感强度B 。
I第9题图第10题图10、同轴电缆的内导体圆柱半径为R1,外导体圆筒内外半径分别为R2、R3,电缆载有电流I,求磁场的分布。
习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。
由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。
[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。
A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。
[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。
[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。
中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。
求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。
第七章静电场7-1关于电场强度与电势的关系,描述正确的是[ ]。
(A) 电场强度大的地方电势一定高;(B) 沿着电场线的方向电势一定降低;(C) 均匀电场中电势处处相等;(D) 电场强度为零的地方电势也为零。
分析与解电场强度与电势是描述静电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零;电场强度等于负电势梯度;静电场是保守场,电场线的方向就是电势降低的方向。
正确答案为(B)。
7-2半径为R的均匀带电球面的静电场中各点的电场强度的大小E与距球心的距离r之间的关系曲线为[ ]。
7-3、下分析与解根据静电场的高斯定理可以求得均匀带电球面的电场强度分布为。
正确答案为(B)。
7-3下列说法正确的是[ ]。
(A)带正电的物体电势一定是正的(B)电场强度为零的地方电势一定为零(C)等势面与电场线处处正交(D)等势面上的电场强度处处相等分析与解正电荷在电场中所受的电场力的方向与电场线的切线方向相同,电荷在等势面上移动电荷时,电场力不做功,说明电场力与位移方向垂直。
正确答案为(C)。
7-4真空中一均匀带电量为Q的球壳,将试验正电荷q从球壳外的R处移至无限远处时,电场力的功为[ ]。
(A)(B)(C)(D)分析与解静电场力是保守力,电场力做的功等电势能增量的负值,也可以表示成这一过程的电势差与移动电量的乘积,由习题7-2可知电场强度分布,由电势定义式可得球壳与无限远处的电势差。
正确答案为(D)。
7-5 关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。
(A)如果高斯面上电场强度处处为零,则高斯面内必无电荷;(B)如果高斯面内有净电荷,则穿过高斯面的电场强度通量必不为零;(C)高斯面上各点的电场强度仅由面内的电荷产生;(D)如果穿过高斯面的电通量为零,则高斯面上电场强度处处为零分析与解静电场的高斯定理表明,高斯面上的电场强度是由面内外电荷共同产生,而高斯面的电通量只由面内电荷决定。
习题课(场强、电势)1、描述静电场性质的两条基本规律是 高斯定理 ,环流定理 , 相应的数学表达式为∑⎰=∙02/εi sq s d E=∙⎰ll d E2 、在静电场中,场强沿任意闭合路径的线积分等于零,即∮L ·d =0,这表明静电场中的电力线_不可能形成闭合曲线。
3、一均匀静电场,场强 =(400 +600 )V ·m-1 ,则点a(3,2)和点b(1,0)之间的电势差Uab= -2000V 。
4、半径为R 的球面上有一小孔、小孔的面积为△S ,△S 与球面积相比很小,若球面的其余部分均匀分布着正电荷q ,则球心0点场强大小E =40216/R sq επ∆,方向 O s ∆→,电势=u R q 04/πε。
5、一“无限长”均匀带电直线沿Z 轴放置,线外某区域的电势表达式为U =Aln(x2+y2) ,式中A 为常数,该区域电场强度的两个分量为:Ex =--)/(222y x Ax +,Ey =)/(222Y x Ay +- 。
6、在圆心角为α,半径为R 的圆弧上均匀分布着电荷q ,试求(1)圆心处的电势; (2)圆心处的场强。
解:电荷线密度R q αλ/=任取一小段圆弧dl ,其电量为θλλRd dl dq ==Rq R dq dU U q004/4/πεπε===⎰⎰204/R dq dE πε=根据对称性可知:0=y EE lE i j202/2/2/)2/sin(cos R q dE dE E E x x απεαθαα====⎰⎰-7、一个半径为R1的均匀带电球面,带电+q ,其外套一个半径为R2的同心均匀带电球面。
R2>R1,外球面带电—Q ,求两球面间的电势差;若有一试验电荷q0从外球面处移到无限远处,电场力作功多少?解:由电势叠加原理可得两球面电势2010144R Q R q U πεπε-+=2020244R Q R q U πεπε-+=)11(42102112R R q U U U -=-=πε200204)()(R q Q q U U q A πε-=-=∞8、一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ=Ar(r <R),式中A 为常数,试求: (1)圆柱体内,外各点场强大小分布;(2)选距离轴线的距离为R0(R0>R)处为电势零点,计算圆柱体内,外各点的电势分布。
班级______________学号____________姓名________________练习 十二一、选择题1. 电荷分布在有限空间内,则任意两点P 1、P 2之间的电势差取决于 ( ) (A) 从P 1移到P 2的试探电荷电量的大小; (B) P 1和P 2处电场强度的大小; (C) 试探电荷由P 1移到P 2的路径;(D) 由P 1移到P 2电场力对单位正电荷所作的功。
2. 下面说法正确的是 ( ) (A) 等势面上各点的场强大小都相等; (B) 在电势高处电势能也一定大; (C) 场强大处电势一定高;(D) 场强的方向总是从高电势指向低电势。
3. 如图所示,绝缘的带电导体上a 、b 、c 三点, 电荷密度( ) 电势( ) (A)a 点最大; (B)b 点最大; (C)c 点最大; (D)一样大。
4. 一个带正电的点电荷飞入如图所示的电场中,它在电场中的运动轨迹为 ( )(A)沿a ; (B)沿b ; (C) 沿c ;(D) 沿d 。
二、填空题1. 边长为a 的正六边形每个顶点处有一个点电荷,取无限远处作为参考点,则o 点电势为 ,o 点的场强大小为 。
2. 一个半径为R 的均匀带电的薄圆盘,电荷面密度为σ。
在圆盘上挖去一个半径为r 的同心圆盘,则圆心处的电势将 。
(变大或变小)3. 真空中一个半径为R 的球面均匀带电,面电荷密度为0>σ,在球心处有一个带电量为q 的点电荷。
取无限远处作为参考点,则球内距球心r 的P 点处的电势为 。
4. 半径为r 的均匀带电球面1,带电量为1q ,其外有一同心的半径为R 的均匀带电球面2,带电量为2q ,则两球面间的电势差为 。
5. 两个同心的薄金属球壳,半径分别为1R 、2R (1R >2R ),带电量分别为1q 、2q,q -将二球用导线联起来,(取无限远处作为参考点为 。
6. 两段形状相同的圆弧如图所示对称放置,圆弧半径为R ,圆心角为θ,均匀带电,线密度分别为λ+和λ-,则圆心O 点的场强大小为 。