1.1 热力学基本概念、热、功介绍
- 格式:pdf
- 大小:836.84 KB
- 文档页数:37
第一章热力学基本概念一、基本概念热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。
工质:实现热能与机械能相互转换的媒介物质即称为工质。
热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。
边界:系统与外界得分界面。
外界:边界以外的物体。
开口系统:与外界有物质交换的系统,控制体(控制容积)。
闭口系统:与外界没有物质的交换,控制质量。
绝热系统:与外界没有热量的交换。
孤立系统:与外界没有任何形式的物质和能量的交换的系统。
状态:系统中某瞬间表现的工质热力性质的总状况。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。
状态参数:温度、压力、比容(密度)、内能、熵、焓。
强度性参数:与系统内物质的数量无关,没有可加性。
广延性参数:与系统同内物质的数量有关,具有可加性。
准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。
可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。
膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。
(对外做功为正,外界对系统做功为负)。
热量:通过系统边界向外传递的热量。
热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。
二、基本公式⎰⎰=-=02112dx x x dx理想气体状态方程式:RT pV m =循环热效率1q w nett =η 制冷系数netw q 2=ε 第二章 热力学第一定律一、基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。
热力学能:储存在系统内部的能量(内能、热能) 外储存能:宏观动能和重力位能。
热力学知识:热力学中热力学的基本概念和热力学的法则热力学是研究热和能量转移的学科,应用广泛,涉及到机械工程、化学工程、环境科学、生物学等领域。
本文将从热力学的基本概念和热力学的法则两个方面进行解析。
一、热力学的基本概念1.热:是物质内部分子的运动状态的表现,是能量的形式之一。
2.温度:是物质内部分子运动状态的一种量化描述,是热的量度单位。
3.热量:是在物体之间传递的能量。
4.功:是物体克服外部阻力所做的能量转移工作。
5.内能:物体中分子的运动状态的总和,包括分子的动能和势能。
6.热力学第一定律:能量守恒定律,能量在系统内可以相互转化,但总能量不变。
7.热力学第二定律:热量只能从高温物体向低温物体传递,不可能实现温度无限制提高或降低的过程。
同时,系统中的熵量增加,在孤立系统中不可逆过程的熵增加定律,表明自然界趋向于混沌无序的趋势。
二、热力学的法则1.热力学第一定律热力学第一定律又称为能量守恒定律,表明在任何物理或化学变化中,能量都必须得到守恒。
能够实现一个系统的内部能量的增加或减少,但能量不会被消失或产生。
因此,热力学第一定律是所有热力学问题的基础。
2.热力学第二定律热力学第二定律又称为热力学不可能定律,是热力学领域最基本的性质之一。
这个定律表明,热会自然地从高温物体流向低温物体,而不会自然地从低温物体流向高温物体。
这就是为什么人们需要用加热器加热房间,在使用机器的内部需要用冷却器来降温的原因。
这个定律还表明,任何热量转换为功的过程都是不完美的,因为它们都会产生一些热量。
3.熵增定律热力学第二定律中提出的熵增定律是热力学的基本法则之一。
熵是一种物理量,表示系统的混乱程度。
热力学第二定律表明,系统内的熵总是增加,系统始终趋向于混沌无序。
例如,一杯水细心地倒入一匀净的玻璃杯中,水会保持有序结构,但是把水撒到桌子上,水会漫无目的地散云化开来,这就是熵增的过程。
总之,热力学是一个研究热和能量转移的学科,这些热力学的基本概念和热力学的法则是全球科学研究和工业实践的基础。
1.1热力学基本概念1. 系统和环境系统(system),是热力学研究的对象。
包括指定的物质和空间。
可分为:(1)敞开系统(2)封闭系统(3)隔离系统环境是指系统以外的物质和空间。
2. 广度性质(n, V, U, H, A, G)和强度性质(T, p, H m等)3. 热和功热Q, 系统得到热量时,Q>0,Q sy =-Q su体积功W V,系统得到体积功(被压缩)时,W V>04. 相和相变只要物质的存在形式有任何一种物理或化学性质不同,它们便属于不同的相。
相变,是指物质从一种聚集形态转变为另一种聚集形态,包括液体的气化(vaporization),气体的液化(liquefaction),液体的凝固(freezing),固体的熔化(fusion),固体的升华(sublimation),气体的凝华,固体不同晶型间的转化(crystal form transition)等。
5. 液体的正常沸点和标准沸点液体在正常压力(101.325 kPa)下的沸点称为该液体的正常沸点;在标准压力(100 kPa)下的沸点称为该液体的标准沸点。
6. 状态函数和过程函数状态函数的特点是,其改变量只取决于系统的始态和终态,而与系统变化的途径无关。
过程函数的特点是,其正负和大小是和过程直接相关的。
7. 系统的典型变化过程:(1)定温过程:T1=T2=T su。
(2)定压过程:p1=p2=p su。
(3)定容过程:d V= 0。
系统体积始终保持恒定。
(4)绝热过程:Q = 0。
(5)对抗恒外压过程:p su=常数。
气体向真空的膨胀过程属于对抗恒外压过程. (6)循环过程:系统经多次变化后又回到原来的始态,即系统的终态和始态是同一状态。
对于循环过程,所有状态函数的改变值一定为0。
1.2体积功的计算几种典型过程的体积功:(1)定容过程:(2)对抗恒定外压膨胀过程:3)气体自由膨胀过程:(4)定温准静态膨胀过程(p=p su):给出了体积功计算实例两个:(1)有状态方程的(2)化学反应的1.4可逆途径与可逆过程多个相继的过程称为途径。
热力学基本概念热力学是研究热能与其他形式能量之间转化和传递规律的科学学科。
它涉及到一系列基本概念和定律,这些概念和定律是理解和应用热力学的基础。
本文将介绍热力学中的几个基本概念,包括热、温度、功、热容和熵。
一、热热是一种能量传递方式,当物体与外界存在温度差时,热就会从高温物体传递到低温物体。
热是热力学系统与外界之间的能量交换形式之一。
热的单位是焦耳(J)。
二、温度温度是表征物体热状态的物理量,它反映了物体中分子的平均热运动程度。
温度用开尔文(K)作为单位,也可以使用摄氏度(℃)或华氏度(℉)进行表示。
热力学中的零绝对温标是绝对零度,对应着开尔文的0K。
三、功功是热力学系统与外界相互作用过程中的能量传递形式之一。
当一个物体受到外力作用,同时沿着力的方向发生位移时,就会进行功的交换。
功的单位也是焦耳(J)。
四、热容热容描述了物体受热后温度变化的程度。
它是指单位质量物体温度升高1K(或1℃)所需要吸收或放出的热量。
热容的单位可以是焦耳/开尔文(J/K)、焦耳/摄氏度(J/℃)或卡路里/开尔文(cal/K)。
五、熵熵是用来描述系统无序程度的物理量。
它是热力学第二定律的核心概念,表示系统的混乱程度或无序程度。
熵的增加代表着系统趋于混乱,反之则代表着系统趋于有序。
熵的单位是焦耳/开尔文(J/K)。
在热力学中,这些基本概念相互联系、相互影响,通过热力学定律加以描述和解释。
例如,热力学第一定律表示能量守恒,即能量可以从一种形式转化为另一种形式,但总能量的数量保持不变。
热力学第二定律则说明了在孤立系统中热流只会从高温物体流向低温物体,并且系统的熵将不断增加。
通过对这些基本概念的理解和应用,我们可以更好地理解和研究能量的转化和传递过程。
热力学在能源、化学、物理等领域都有广泛的应用,并对相关工程和技术的发展起到了重要的推动作用。
总结起来,热力学基本概念包括热、温度、功、热容和熵。
这些概念相互联系、相互作用,通过热力学定律来描述和解释。
1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。
按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。
按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。
按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。
工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。
第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。
在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。
*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。
处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。
而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。
对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。
各种不平衡势的消失是系统建立起平衡状态的必要条件。
*状态参数:用来描述热力系平衡态的物理量。
处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。
状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。
热力学统计物理简明教程第一章:热力学基本概念1.1 热力学系统:定义热力学系统为与外界相互作用的物质集合,可以是一个孤立系统、封闭系统或开放系统。
1.2 热平衡:当一个系统与外界无能量交换时,系统达到热平衡。
系统内各部分的温度、压力等宏观性质保持恒定。
1.3 状态函数:热力学基本量,与系统的当前状态有关而与历史路径无关,如内能、熵、压力、温度等。
第二章:热力学定律2.1 第一定律:能量守恒原理,能量既不能被创造也不能被毁灭,只能转化形式或在系统间传递。
2.2 第二定律:熵的增加原理,自然界中熵总是趋向增加的方向进行变化,热量只能自高温物体流向低温物体。
2.3 第三定律:绝对零度不可达到,任何物体都无法降至绝对零度(零开尔文)。
3.1 宏观态与微观态:一个宏观系统对应于多个微观系统可能的状态,微观态是描述微观粒子的位置和动量等的状态。
3.2 统计平均:宏观量可以通过对大量微观状态进行统计平均来获得。
3.3 热力学极限:当系统粒子数足够大时,微观态的统计平均值可以近似为宏观量。
第四章:分布函数与统计热力学4.1 统计系综:包括正则系综、巨正则系综和平均系综等,用于描述与热平衡态相关的情况。
4.2 分布函数:用于描述系统处于不同状态的概率分布,如能级分布函数、玻尔兹曼分布等。
4.3 统计热力学量:基于分布函数和统计平均,可以推导出各种统计热力学量的表达式,如配分函数、自由能、熵等。
第五章:应用与实例5.1 理想气体模型:通过应用统计物理理论,可以推导出理想气体的各种性质,如压力、内能和熵等。
5.2 凝聚态物质:应用统计物理理论可以解释凝聚态物质的相变,如固体到液体的熔化和液体到气体的汽化等。
5.3 热力学函数的应用:通过计算热力学函数,可以推导出一些与实际系统相关的性质,如化学反应平衡条件和热电材料的热电效应等。
以上是热力学统计物理简明教程的大致内容,希望能够帮助你对热力学统计物理有初步的了解。
工程热力学知识点笔记总结第一章热力学基本概念1.1 热力学的基本概念热力学是研究能量与物质的转化关系的科学,它关注热与功的转化、能量的传递和系统的状态变化。
热力学中最基本的概念包括系统、热力学量、状态量、过程、功和热等。
1.2 热力学量热力学量是描述系统的性质和状态的物理量,包括内能、焓、熵、自由能等。
内能是系统的总能量,焓是系统在恒压条件下的能量,熵是系统的无序程度,自由能是系统进行非体积恒定的过程中能够做功的能量。
1.3 热力学第一定律热力学第一定律是能量守恒的表达形式,在闭合定容系统中,系统的内能变化等于系统所接受的热量减去系统所做的功。
1.4 热力学第二定律热力学第二定律是描述系统不可逆性的定律,它包括开尔文表述和克劳修斯表述。
开尔文表述指出不可能将热量完全转化为功而不引起其他变化,克劳修斯表述指出热量自然只能从高温物体传递到低温物体。
根据第二定律,引入了熵增大原理和卡诺循环。
1.5 热力学第三定律热力学第三定律是指当温度趋于绝对零度时,系统的熵趋于零。
这一定律揭示了绝对零度对热力学过程的重要意义。
第二章热力学系统2.1 定态与非定态定态系统是指系统的性质在长时间内不发生变化,非定态系统是指系统的性质在长时间内发生变化。
2.2 开放系统与闭合系统开放系统是指与外界交换物质和能量的系统,闭合系统是指与外界不交换物质但可以交换能量的系统。
2.3 热力学平衡热力学平衡是指系统内各部分之间的温度、压力、化学势等性质达到一致的状态。
系统处于热力学平衡时,不会产生宏观的变化。
第三章热力学过程3.1 等温过程在等温过程中,系统的温度保持不变,内能的变化全部转化为热量输给外界。
3.2 绝热过程在绝热过程中,系统不与外界交换热量,内能的变化全部转化为对外界所做的功。
3.3 等容过程在等容过程中,系统的体积保持不变,内能的变化全部转化为热量。
3.4 等压过程在等压过程中,系统的压强保持不变,内能的变化转化为对外界所做的功和系统所吸收的热量。
热力学中的基本概念及应用热力学是一门物理学科,研究的是热量和功的传递关系,以及微观粒子对宏观物质性质和状态的影响。
在热力学当中,有一些基本概念和定理,这些概念和定理非常重要,是我们理解和应用热力学知识的基础。
一、热力学基本概念1. 系统系统是指我们研究的物体或物质,它可以是一个独立的物体,也可以是多个物体共同组成的系统。
在研究热力学问题的时候,我们需要把系统和外界分开考虑,从而确定系统的性质和状态。
2. 热量热量是指物体内部的热运动的能量,通常用Q表示。
当两个物体的温度不同的时候,它们之间会发生热传递,也就是热流动,这时就会有热量在两个物体之间转移。
3. 温度温度是衡量物体热度高低的物理量,通常用T表示。
温度越高,物体的分子运动越剧烈,能量就越大。
温度的单位是“开尔文(K)”,也可以用摄氏度(℃)表示。
4. 压力压力是指单位面积下物体所受的压力,通常用p表示。
压力越大,物体就越容易被压缩。
5. 热力学定律热力学中有三个基本定律,它们分别是:热力学第一定律、热力学第二定律和热力学第三定律。
这些定律是热力学的基本法则,它们被广泛应用于各种领域。
二、热力学应用热力学不仅是一门理论学科,还应用于很多实际问题当中。
下面我们来看看一些热力学应用的例子。
1. 冷却器冷却器是一种将热量转移出去的设备,它通常用于发动机、电子设备等地方。
在冷却器中,通过流过散热片的冷却液,将发动机产生的热量转移到空气中,从而保持发动机的工作温度。
2. 发电厂发电厂是一种将热能转化为电能的设备。
在发电厂中,首先需要产生热量,这个热量可以来自于燃烧煤、燃气或核聚变反应。
然后,这个热量会使得水变成蒸汽,推动涡轮旋转,最终产生电能。
3. 空调空调是一种将室内热量转移到外界的设备,通过空调可以使得室内温度保持在舒适的范围内。
在空调中,通过制冷剂的循环来吸收室内的热量,然后将这个热量传递到室外,从而达到降温的目的。
总结热力学是一门非常重要的物理学科,它帮助我们理解了物体的热运动和温度变化,也启示我们将热能转化为其他形式的能量。
热力学基础知识热力学是物理学的一个分支,研究热现象和热能转化的规律。
在我们生活中,也可以看到许多与热力学有关的现象,比如汽车引擎的工作、空调的制冷、发热体的加热等等。
在接下来的文章中,我们将深入了解一些热力学的基本概念和原理。
一、热力学的基本概念1. 温度和热量温度是描述物体热度的物理量,单位是摄氏度(℃)、开尔文(K)、华氏度(℉)等。
热量是指热能的转移量,单位是焦耳(J)、卡路里(cal)等。
两者的联系可以用下面的公式表示:Q=m×c×ΔT其中,Q表示热量,m表示物体质量,c表示物体的热容量,ΔT表示物体温度变化量。
此外,还有一个重要的物理量叫做热力学摩尔容量,指的是单位量物质在温度变化1K时所吸收的热量,单位是焦/摩尔-开尔文(J/mol-K)。
2. 热力学第一定律热力学第一定律也叫做能量守恒定律,指的是能量不能被创造或毁灭,只能从一种形式转化为另一种形式,并且总能量守恒。
从热观点来看,热量也是一种能量,因此热能也具有守恒性质。
3. 热力学第二定律热力学第二定律是一个非常重要的定律,它规定了热能转化的方向性,即热量只能从高温物体流向低温物体,不可能反向。
这个定律也成为热力学的增熵定律,指的是一个孤立系统的熵(混乱度)只可能增加,而不可能减小。
二、热力学的应用1. 热力学循环热力学循环是指通过对气体或液体的加热或冷却来产生机械功或者热量,再将剩余的热量排放到外界,从而实现能量转化的过程。
熟悉汽车工作原理的人应该都知道,汽车引擎就是一种热力学循环系统,通过燃烧汽油来加热气体,从而产生机械功驱动车轮,同时排放废气。
2. 热力学平衡当物体的温度相同时,此时物体达到了热力学平衡,它们之间的热量不再交换。
但是,这并不意味着温度相同的两个物体一定热力学平衡。
比如,在室内放着一瓶冰水和一只热汤的碗,虽然它们的温度都是20℃,但是它们内部的热量分布不同,因此不能说它们处于热力学平衡状态。