TopSis法
- 格式:ppt
- 大小:2.39 MB
- 文档页数:31
topsis方法
Topsis方法是一种多准则决策分析方法,用于帮助决策者从多
个备选方案中选择出最优解。
该方法将备选方案的各个准则指标进行标准化处理,并计算出各个备选方案相对于最理想方案和最负理想方案的接近程度。
在topsis方法中,每个备选方案都有多个准则指标,如成本、
效益、可行性等。
这些准则指标用来评估备选方案的优劣。
为了将这些准则指标进行比较,需要先进行标准化处理。
标准化可以将不同量纲和单位的指标转化为无量纲的相对指标,使得各个指标可以进行比较。
接下来,需要确定最理想方案和最负理想方案。
最理想方案是指在所有准则指标上都取得最优值的方案,而最负理想方案则是指在所有准则指标上都取得最差值的方案。
确定最理想方案和最负理想方案的目的是为了计算每个备选方案相对于这两个理想方案的接近程度。
通过计算每个备选方案与最理想方案和最负理想方案的欧氏距离,可以得到每个备选方案相对于这两个理想方案的接近程度。
欧氏距离越小,表示备选方案越接近于最理想方案;欧氏距离越大,表示备选方案越接近于最负理想方案。
最后,根据每个备选方案的接近程度,可以得出一个综合评价指标,用来衡量备选方案在各个准则指标上的综合表现。
综合评价指标越大,表示备选方案越优于其他方案。
通过topsis方法,决策者可以将备选方案的多个准则指标综合
考虑,选择出最优解。
这种方法可以帮助决策者做出更加科学、客观的决策。
topsis 原理摘要:一、Topsis 算法简介1.Topsis 的全称及英文缩写2.提出背景:解决传统多属性决策方法中的问题3.算法目标:实现属性权重的自动确定二、Topsis 原理1.基于距离的概念2.计算决策对象之间的距离3.确定属性权重4.计算总体距离及排序三、Topsis 算法步骤1.确定决策对象2.计算属性值3.计算距离4.确定权重5.计算总体距离6.排序并返回结果四、Topsis 算法的优缺点1.优点:适用于各种数据类型,计算简单,结果直观2.缺点:对于属性值分布不均匀的情况,结果可能不稳定正文:Topsis 算法是一种解决多属性决策问题的方法,全称为“Technique for Order Preference by Similarity to Ideal Solution”,其英文缩写为TOPSIS。
该算法是在20 世纪80 年代由希腊学者Michalis D.Michael 教授提出的,旨在解决传统多属性决策方法中存在的问题,如:如何确定属性权重、如何将属性值转换为相对重要性等。
Topsis 算法的核心原理是基于距离的概念。
首先,计算决策对象之间的距离,这里的距离可以是欧氏距离、余弦距离等。
接着,通过距离计算来确定属性权重,距离小的属性被赋予较大的权重。
然后,计算总体距离,即所有决策对象与最优解之间的距离之和。
最后,根据总体距离对决策对象进行排序,距离最小的对象被认为是最优解。
具体实施Topsis 算法时,需要按照以下步骤进行:1.确定决策对象:首先需要明确决策问题的对象,这可以是产品、方案、候选人等。
2.计算属性值:对于每个决策对象,需要计算其各个属性的值。
3.计算距离:根据所选距离公式,计算各个决策对象之间的距离。
4.确定权重:根据距离大小确定各个属性的权重,距离小的属性权重较大。
5.计算总体距离:计算所有决策对象与最优解之间的距离之和。
6.排序并返回结果:根据总体距离对决策对象进行排序,返回排序结果。
TOPSIS法是一种多目标决策分析方法,根据有限个评价对象与理想化目标的接近程度进行排序。
这种方法又称为优劣解距离法,其基本原理是通过检测评价对象与最优解最烈解的距离来进行排序。
在解决评价类问题中,TOPSIS法适用于有多个决策变量,或者指标的数据已知的情况。
TOPSIS法的操作方法包括以下步骤:
1.将原始矩阵正向化:即把指标的类型全部转化为极大型(把数值的意义统一)。
常见指标类型如下:极小型→极大型中间型→极大型区间型→
极大型。
2.正向化矩阵标准化:消除指标中不同量纲的影响。
3.计算得分并归一化。
以上信息仅供参考,可以咨询数学领域专业人士获取更准确更全面的信息。
TOPSIS法TOPSIS法(Technique for Order Preferenceby Similarity to Ideal Solution,)逼近理想解排序法、理想点法TOPSIS法概述TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution )法是C.L.Hwang和K.Yoon于1981年首次提出,TOPSIS法根据有限个评价对象与理想化目标的接近程度进行排序的方法,是在现有的对象中进行相对优劣的评价。
理想化目标(Ideal Solution)有两个,一个是肯定的理想目标(positive ideal solution)或称最优目标,一个是否定的理想目标(negative ideal solution)或称最劣目标,评价最好的对象应该是与最优目标的距离最近,而与最劣目标最远,距离的计算可采用明考斯基距离,常用的欧几里德几何距离是明考斯基距离的特殊情况。
TOPSIS法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。
它通过归一化后的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理想解和反理想解表示) ,分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。
贴近度取值在0~1 之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。
该方法已经在土地利用规划、物料选择评估、项目投资、医疗卫生等众多领域得到成功的应用,明显提高了多目标决策分析的科学性、准确性和可操作性。
[编辑]TOPSIS法的基本原理其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则为最差。
其中最优解的各指标值都达到各评价指标的最优值。
topsis法优劣解距离法(TOPSIS法)(备用)优劣解距离法(TOPSIS)又称理想解法,是一种有效的多指标评价方法。
这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。
TOPSIS过程比较简单,请参考司守奎第二版14章第一节,但是TOPSIS的代码暂时无法直接运用,因为这种类型的评价方法还要考虑一下,最优解是越大越好还是越小越好。
例研究生院试评估。
为了客观地评价我国研究生教育的实际情况和各研究生院的教学质量,国务院学位委员会组织过一次研究生院的评估。
为了取得经验,先选5所研究生院,收集有关数据资料进行了试评估,表1是所给出的部分数据。
其MATLAB求解源代码如下:clc, cleara=[0.1550004.70.2660005.60.4770006.70.910100002.31.224001.8];[m,n]=size(a);qujian=[5,6]; lb=2; ub=12;a(:,2)=x2(qujian,lb,ub,a(:,2)); %对属性2进行变换,针对这个题目比较特殊,其他题目一般用不到,详细介绍看司老师的书即可。
for j=1:nb(:,j)=a(:,j)/norm(a(:,j)); %向量规划化 endw=[0.20.30.40.1];c=b.*repmat(w,m,1); %求加权矩阵 Cstar=max(c); %求正理想解Cstar(4)=min(c(:,4)); %属性4为成本型的,越小越好 fprintf('正理想解为:\n');disp(Cstar); C0=min(c); %q 求负理想解C0(4)=max(c(:,4)); %属性4为成本型的,越小越好 fprintf('负理想解为:\n');disp(C0); for i=1:mSstar(i)=norm(c(i,:)-Cstar); %求到正理想解的距离S0(i)=norm(c(i,:)-C0); %求到负理想的距离 endf=S0./(Sstar+S0);[sf,ind]=sort(f,'descend'); %求排序结果 fprintf('排序指标值:\n');disp(sf); fprintf('排序结果为:\n');disp(ind);根据MATLAB源代码运行结果可得:从优到劣的次序为4、3、2、1、5。
topsis 方法
TOPSIS法是一种灵活的决策分析方法,用于识别最佳替代方案。
它结合了两项测量标准,一项衡量最优选择,另一项衡量最差选择。
它是一种灵活的、容易使用的决策模型,可用于决策制定,评价和研究等方面。
TOPSIS方法主要由三个步骤组成:
1.确定决策问题的指标和决策替代方案,以及每个替代方案在每个指标上的得分;
2.计算每个替代方案的相对优劣,并将其表示为每个替代方案的正相关距离(PPD)和负相关距离(NPD);
3.根据正相关距离和负相关距离的比值,确定最佳替代方案。
TOPSIS方法的主要优点是:
1. 它使用比较简单的数学技术来确定最佳替代方案。
2. 它可以处理多指标问题,并考虑到不同类型的限制条件。
3.它可以系统地考虑各个指标之间的关系,从而更准确地识别最佳替代方案。
TOPSIS方法的主要缺点是:
1. 需要手动计算各个指标之间的相关距离,这可能是一项费时的工作。
2. 对于较复杂的决策问题,必须调整指标的权重,以考虑各指标之间的相关性,这也可能需要一定的时间。
3. 该方法只能处理一些特定的决策问题,无法提供更完整的决
策建议。
TOPSIS综合评价法TOPSIS综合评价法(The Technique for Order Preference by Similarity to Ideal Solution)是一种常用于多指标决策的综合评价方法。
它可以将多个评价指标综合起来,对不同的方案进行排名,找出最优解。
下面将详细介绍TOPSIS综合评价法的原理、步骤以及应用。
TOPSIS综合评价法的原理基于两个关键概念:最优解和最劣解。
最优解是指在评价指标上取最大值的解,而最劣解是指在评价指标上取最小值的解。
TOPSIS的目标是找到一个最优解,使其与最优解之间的距离最大,与最劣解之间的距离最小。
距离计算采用欧氏距离或其他合适的距离度量方法。
1.确定评价指标:根据具体的评价对象和评价目标,确定需要评价的指标。
这些指标应该具有普适性、可度量性和可比较性。
2.数据标准化:对原始数据进行标准化处理,将不同量纲的指标值转化为无量纲的相对指标值。
常见的标准化方法有最大-最小标准化、标准差标准化等。
3.构建评价矩阵:将标准化后的指标值组成评价矩阵,矩阵的每一行代表一个评价对象,每一列代表一个评价指标。
4.确定权重:根据评价指标的重要性确定各指标的权重。
可以使用主观赋权、客观权重法、层次分析法等方法进行权重确定。
5.构建决策矩阵:根据评价矩阵和权重,构建标准化加权评价矩阵。
6.确定理想解和负理想解:根据评价指标的性质确定理想解和负理想解。
理想解是在每个指标上取最大值的解,负理想解是在每个指标上取最小值的解。
7.计算各解与理想解和负理想解之间的距离:利用欧氏距离或其他距离度量方法,计算每个解与理想解和负理想解之间的距离。
8.计算综合得分:根据距离,分别计算每个解与理想解和负理想解的距离比值,得到综合得分。
9.排序:按照综合得分的大小对解进行排名,得到最优解。
TOPSIS综合评价法可以在各种决策环境中应用。
它适用于工程技术领域、经济管理领域、环境评估领域等。
什么是TOPSIS法
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution )法是C.L.Hwang和K.Yoon于1981年首次提出,TOPSIS法根据有限个评价对象与理想化目标的接近程度进行排序的方法,是在现有的对象中进行相对优劣的评价。
TOPSIS法是一种逼近于理想解的排序法,该方法只要求各效用函数具有单调递增(或递减)性就行。
TOPSIS法是多目标决策分析中一种常用的有效方法,又称为优劣解距离法。
2TOPSIS法的原理是什么
其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则不为最优。
其中最优解的各指标值都达到各评价指标的最优值。
最劣解的各指标值都达到各评价指标的最差值。
3TOPSIS法中理想解和负理想解的涵义是什么
TOPSIS法其中“理想解”和“负理想解”是TOPSIS法的两个基本概念。
所谓理想解是一设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;而负理想解是一设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。
方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。