屏蔽效能的计算
- 格式:ppt
- 大小:1.96 MB
- 文档页数:50
EMC实验报告学号:******** 班级:04101101姓名:***EMC 屏蔽效能的测试报告一、实验原理:1. GB12190-1990 高性能屏蔽室屏蔽效能的测量方法:指测试过程中,除了与特定设施有关的频率之外,为考核屏蔽室屏蔽效能而选取的典型测试频率范围,分以下三个频段(见表1)。
表11)在20-300MHz 频段内由于天线尺寸和屏蔽室的谐振效应,使测量结果常常会因测试方法的微小变动产生极不正常的变化,所以在该频段内未推荐测试方法。
如确有必要侧试,本标准的小环法或频段II 测试方法可供参考。
2)侮个频段仅测一个频率点,用以粗略估计屏蔽室的屏蔽效能。
屏蔽效能的表示:在频段I ,屏蔽效能由右式表示:SE=20log12E E→→,在频段II ,屏蔽效能由右式表示:SE=20log12HH →→,在频段III ,屏蔽效能根据指示器方式的用右式表示:SE=10log 12P P 。
2. 测量的一般要求一般要求a.在正式侧量之前可对屏蔽室进行初测,找出性能差的门、接缝和安装不良的电源滤波器及通风孔,以便正式测量之前子以修补。
对于新建的屏蔽室,尤其有必要进行初测;b.在测试之前,应把金属设备或带金属的设备搬走,如桌子、椅子、柜子和不用的仪器等;c.屏蔽室的电源滤波器及室内电源线只给检测仪器及照明供电;d.在测试中,所有的射频电缆、电源和其他平时要求进人屏蔽室的设施均应按正常位置放置;e.电磁环境应满足GB 3907的要求,检测仪器本身应满足抗干扰要求,f.为了不致发生生理危害,应采取专门的预防措施,这对频段Ⅲ的测量尤为重要;9.测量中,对各种导线、电缆的进出口、门、观察口及板与板之间的接缝应特别注意;h.有些测试方法要求在不同的位置、不同的极化条件下对某一结构要素作多次测量,i.测试报告应记录可接近的屏蔽壁数目、受试屏蔽壁的数目,以及局部测试区的数目和位置。
3.测试用天线本标准对不同频段的测试天线规定如下:a.频段I:环形天线,b.频段I:偶极子天线,c.频段III:微波喇叭及其等效天线。
屏蔽效能的计算用途与材料一,电磁屏蔽效能电磁屏蔽是解决电子设备电磁兼容问题的重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决,特别是随着电路工作的频率日益提高,单纯依靠线路板设计往往不能满足电磁兼容标准的要求。
电子设备的屏蔽设计与传统的结构设计有许多不同之处,一般的在结构设计师如果没有考虑屏蔽问题,很难满足电磁兼容性要求。
所以再设计电子产品时,必须从一开始就考虑电磁屏蔽问题。
电磁屏蔽主要是用来放置高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。
基本原理是才艺欧诺个低电阻值得导体材料,利用电磁波在屏蔽体表面的反射以及在到体内部的吸收和传输过程中的损耗而产生屏蔽作用。
电磁屏蔽的目的就是抑制电磁噪声的传播,使处在电磁环境中的仪器在避免电磁干扰的同时也不产生电磁干扰,通常采用导电性导磁性较好的材料把所需屏蔽的区域与外部隔离开来。
屏蔽体的有效性是用屏蔽效能来度量的,屏蔽效能定义为:电磁场中同一地点没有屏蔽存在时电磁场强度E1与有效屏蔽时的电磁场强度E2的比值,它表征了屏蔽体对电磁波的衰减程度。
用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一甚至百万分之一,因此通常用分贝来表述屏蔽效能。
一般民用产品机箱的屏蔽效能在40dB以下,军用设备机箱的屏蔽效能一般要达到60B,屏蔽室或屏蔽舱等往往要达到100dB。
100dB以上的屏蔽体是很难制造的,成本也很高。
二,屏蔽材料选择(1)金属铁磁材料适用于低频(f<300Hz)磁场的磁屏蔽。
较常用的有纯铁、铁硅合金(即硅钢等)、铁镍软磁合金(即坡莫合金)等。
相对磁导率μr越高,屏蔽效果越好;层数越多,屏蔽也越好。
(2)非金属磁性材料——铁氧体磁性材料该材料在高频时具有较高的磁导率,电导率较大,且具有较高的介电性能,已广泛应用于高频弱电领域。
(3)良导体材料适用于高频电磁场、低频电场以及静电场的屏蔽。
高频电磁场及低频电场的屏蔽应选用高电导率良导体(如铜、铝等)。
磁场强度的测量和屏蔽效率的计算C.1 一般原则C.1.1 磁场强度指标(1) GB/T2887和GB50174中规定,电子计算机机房内磁场干扰环境场强不应大于800A/m。
注:本磁场强度是指在电流流过时产生的磁场强度,由于电流元IΔs产生的磁场强度可按下式计算:H = IΔs/4πr2 (C.1)距直线导体r处的磁场强度可按下式计算:H = I/2πr (C.2)磁场强度的单位用A/m表示,1A/m相当于自由空间的磁感应强度为1.26μT。
T(特斯拉)为磁通密度B的单位。
Gs是旧的磁场强度的高斯CGS单位,新旧换算中,1Gs约为79.5775A/m,即2.4Gs 约为:191A/m,0.07Gs约为5.57A/m。
(2) GB/T17626.9中规定,可按下表规定的等级进行脉冲磁场试验:C.1 脉冲磁场试验等级(3) GB/T2887中规定,在存放媒体的场所,对已记录的磁带,其环境磁场强度应小于3200A/m;对未记录的磁带,其环境磁场强度应小于4000A/m。
C.1.2 信息系统电子设备的磁场强度要求1971年美国通用研究公司R.D希尔的仿真试验通过建立模式得出:由于雷击电磁脉冲的干扰,对当时的计算机而言,在无屏蔽状态下,当环境磁场强度大于0.07G S时,计算机会误动作;当环境磁场强度大于2.4G S时,设备会发生永久性损坏。
按新旧单位换算,2.4 G S约为191A/m,此值较C.1.1的(1)中800A/m低,较表C.1中3等高,较4等低。
注:IEC62305-4(81/238/CDV)文件中给出在适于首次雷击的磁场(25K H2)时的1000-300-100A/m值及适用于后续雷击的磁场(1MH2)时的100-30-10A/m指标。
C.1.3 磁场强度测量一般方法(1)雷电流发生器法IEC 62305-4提出的一个用于评估被屏蔽的建筑物内部磁场强度而作的低电平雷电电流试验的建议。
(2)浸入法GB/T17626.9规定了在工业设施和发电厂、中压和高压变电所的在运行条件下的设备对脉冲磁场骚扰的抗扰度要求,指出其适用于评价处于脉冲磁场中的家用、商业和工业用电气和电子设备的性能。
电磁屏蔽室屏蔽效能的测量方法一、简介电磁屏蔽室的屏蔽效能测量是检测电磁屏蔽室对外部电磁场的屏蔽效果的重要手段,其目的是为了判定电磁屏蔽室是否能够达到预期的屏蔽效能。
二、屏蔽效果的测量原理屏蔽效能的测量是利用电磁屏蔽室内部的电压池及电流池在外部电磁场的作用下产生的失真电压与失真电流,使用示波器来测量电压与电流的正常电压和电流,从而计算出屏蔽室内的失真电压和失真电流,从而计算出屏蔽室内的屏蔽效能。
三、测量方法1、准备工作:安装相应的测试设备,如示波器、屏蔽室内部的电压池及电流池,外部电磁场生成装置等。
2、测量步骤:(1)用示波器记录电压池及电流池内的正常电压与电流;(2)打开外部电磁场生成装置,记录放电后屏蔽室内的电压池及电流池内的失真电压与失真电流;(3)计算出屏蔽室内的屏蔽效能。
四、实际测量在实际测量中,主要采用的方法是幅度法、相位法和峰值法。
它们的具体测量步骤如下:(1)幅度法:①首先,设定一定的频率。
②然后,用示波器记录屏蔽室内电压池及电流池内的正常电压与电流。
③将外部电磁场的强度依次增大,当外部电磁场的强度达到某一固定值时,记录屏蔽室内的电压池及电流池内的失真电压与失真电流,然后计算出屏蔽室内的屏蔽效能。
(2)相位法:①首先,设定一定的频率,用示波器记录屏蔽室内电压池及电流池内的正常电压与电流。
②然后,将外部电磁场的强度依次增大,当外部电磁场的强度达到某一固定值时,记录屏蔽室内的电压池及电流池内的失真电压与失真电流,并计算它们的相位差,最后计算出屏蔽室内的屏蔽效能。
(3)峰值法:①首先,设定一定的频率,用示波器记录屏蔽室内电压池及电流池内的正常电压与电流。
②然后,将外部电磁场的强度依次增大,当外部电磁场的强度达到某一固定值时,计算屏蔽室内失真电压与失真电流的峰值,然后计算出屏蔽室内屏蔽效能。
五、总结电磁屏蔽室的屏蔽效能的测量是植基于外部电磁场对其内部的影响,通过测量电压池及电流池内的正常电压与电流,以及外部电磁场影响下的失真电压与失真电流计算出屏蔽室内的屏蔽效能。
关于屏蔽效能的工程计算张宏琴【摘要】根据电磁场与电磁波理论,对金属材料的屏蔽效能在各种不同条件进行分析、计算和比较,得到了一定的结论,它极大地方便了电磁兼容技术的工程应用和实践.对于实际工程应用具有一定的指导价值.【期刊名称】《吉林化工学院学报》【年(卷),期】2016(033)001【总页数】3页(P78-80)【关键词】电磁场;屏蔽效能;金属材料【作者】张宏琴【作者单位】吉林化工学院理学院,吉林吉林132022【正文语种】中文【中图分类】TN03电磁波辐射对环境的污染,在许多城市已经相当普遍.但是,人们对电磁波辐射危害的认识却十分不足.因为许多电磁场理论应用设备已经进入千家万户,如每个人经常使用的手机.如果防护不当,可能造成电磁波污染,对人体产生严重的伤害,不利于身体健康.电磁屏蔽是电磁兼容技术得以实现的重要手段之一,如今的人们生活的环境中电磁污染也越来越恶劣,要想防止电磁污染的影响,电磁屏蔽正在日新月异发展起来,并广泛应用于日常生活的各个领域,它的计算及其复杂.虽然使数值法求值在计算上有非常广泛的应用,但其耗费时间太长和计算量太大,对于指导工程实践方面的应用不太适合.因此,针对工程上电磁屏蔽效能的繁杂运算,确定一些行之有效的计算公式和计算方法,对工程应用有一定的指导价值.在实际过程中,各种仪器的电力设备之间都存在相互影响,例如:电磁感应、电磁传导和电磁辐射等各种方式彼此相互影响着.与此同时也会对运行的设备和人员造成辐射干扰影响和危害.由于EMC 的基本要求很高,常有设备不能通过国际(GBl51A-97)规定的EMC试验项目,但将与仪器相连的电缆包敷金属网后测试,很多仪器就能通过国际标准.原因金属网由于柔韧性好、价格合适、使用方便等[1-10].电磁屏蔽是利用屏蔽体 (具有特定性能的材料)阻止或衰减电磁骚扰能量的传输,是电磁场领域抑制电磁干扰的重要方法.其屏蔽有两个目的:其一是防止内部辐射的电磁能量及电磁波泄漏;其二阻止外来电磁辐射及电磁波干扰进入.电磁屏蔽效能 (Shielding Effectiveness) 表示屏蔽体对电磁骚扰的阻止能力及防御效果.电磁屏蔽与很多因素有关:它与屏蔽体材料的组成,屏蔽体材料表面的粗糙度有关,还屏蔽体与干扰源间的距离远近有关等等.电磁屏蔽效能是指电磁场空间某个位置的电场强E1与有屏蔽时该位置的电场强E2的比值,它表示了该电磁波在屏蔽体上的衰减度.一般情况,屏蔽体能将入射的电磁波的强度衰减到原来的百分之一到百万分之一,不同材料有所不同.屏蔽效能的定义为:(1)式只能计算屏蔽材料的电磁屏蔽效能,而材料的性能无法确定.要根据材料特性参数制造屏蔽体,算出其电磁屏蔽效能.根据电磁场理论计算材料屏蔽效能的公式为:SE=A+R(2)式中的A-材料的吸收损耗.当电磁波传播时遇到介质时,计算公式应为:A=3.34t(fμrσr)其中t-屏蔽材料的厚度,μr -屏蔽材料的磁导率,σr- 屏蔽材料的电导率.对于固定的材料,这些都是已知的,f-入射电磁波的频率.R-屏蔽材料的反射损耗.当电磁波传播入射到不同介质的分界面时发生反射,其反射细数为:R=20lg(ZW/ZS)(4)式中,ZW-电磁波遇到介质分界面的波阻抗,ZS-屏蔽材料本身的特性阻抗.以金属网包敷在圆柱形电缆为研究对象,计算不同金属材料的在10 K-100 MHz的平面波的影响,如表1:以长度L=1 m,Ф=8 cm金属网为例,由图1可以看出:(1) 金属网的屏蔽效能由电磁波传播过程中的传输损耗、反射损耗及电磁波的频率决定.(2) 金属网的蔽效能均和电磁波的频率成反比,不同的材料频率越高,差别越小;(3) 不同材料相同规格情况下,铜网比钢网电磁屏蔽效果好;对于同样材料,目数越多屏蔽效越好;(4) 当电磁波频率在1 MHz时,电磁屏蔽效能缓慢下降,在100 MHz时,其屏蔽效能下降迅速,因此金属网不适用高频电磁波.但由于柔软性好、使用灵活,铜网用于设备间互连的屏蔽电缆.铜网分为黄铜网、紫铜网和磷铜网三种,从性能特性考虑,常常磷铜网.对于其丝径不同规格相同的铜网,其屏蔽效能是不同的,如表2:由图2可以看出,要得更高的屏蔽效能,在相同规格条件,常常要选择孔径小的丝径大的铜网.从图3可以看出,在相同条件下,双层铜网的屏蔽效能比单层铜网的屏蔽效能高,因此实际可采用双层屏蔽网.假设80目铜网不同缝隙的屏蔽效能的影响如图4.由图4可以知,规格同样的缝隙,沿径向开缝(图4中曲线4)横向开缝(图4中曲线2)电磁屏蔽效果好.原因是方向缝隙对铜网上高频电磁波感应通路的电流影响不同,横向的缝隙对高频电磁波感应电流通路破坏很大.随着缝隙尺寸增大,高频电磁波电磁泄漏也越大.因此,如果确定了电磁波频率区间,铜网的电磁屏效完全由缝隙决定.在实际工程中,电缆屏蔽铜网与连接器等设备处往往出现横向的缝隙.通过计算数据分析可知,缝隙泄露将严重损失铜网的屏蔽效能.因此最好采用铜网接地包裹胶带连接的方法.通过对不同规格不同材料金属电缆屏蔽效能的计算比较,得出以下结论:(1) 金属网屏蔽效能随着入射电磁波频率的升高而降低,但两种网屏蔽效能差别不大;(2) 入射电磁波频率高于100 MHz时,金属网屏蔽效能迅速下降.因此高频时金属网不再适用.(3) 金属网的屏蔽效能与很多因素有关.例如:铜网与钢网相较,其屏蔽效能要略高一些;条件相同的密网比疏网屏蔽效能要高;双层屏蔽网的屏蔽效能要远超单层屏蔽网;(4) 金属网缝隙的电磁泄漏对电磁屏蔽效能也有一定的影响.入射的电磁波频率越高,横向缝隙越大,其电磁泄漏也越大.因此如果给定的频率区间,铜网的屏效主要由缝隙决定.【相关文献】[1] 杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004:12-48.[2] 白同云.电磁兼容设计实践[M].北京:中国电力出版社,2007:9-35.[3] 高攸刚.屏蔽与接地[M].北京:北京邮电大学出版社,2004:11-42.[4] 段玉平.缝隙对金属网屏蔽效能的影响[J].安全与电磁兼容,2004,4:46-48.[5] 赵万章.屏蔽效能的工程计算[J].长春工业大学学报.2005,26(4):335-338.[6] 邱扬.电磁屏蔽效能的计算方法[J].系统工程与电子技术,1992(3):12-18.[7] 程丽丽.黄铜和不锈钢丝网电磁屏蔽效能的研究[J].电子质量,2006(6):72-74.[8] 旭锋,李颖,倪谷炎.有孔腔体屏蔽效应分析的混合模型[J].电波科学学报,2011,26(1):25-29.[9] 石丹,沈远茂,高攸纲.有孔屏蔽腔屏蔽效能的高次模分析[J].电波科学学报,2009,24(3):510-513.[10] 张宏琴.关于手机电磁辐射的研究[J].吉林化工学院学报,2014(11):98-100.。